

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	101
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-pqg160i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 15.0

The following is a summary of the changes in revision 15.0 of this document.

- Table 15, page 21 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 22, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 23, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

1.2 Revision 14.0

The following is a summary of the changes in revision 14.0 of this document.

- Added CQFP package information for A42MX16 device in Product Profile, page 1 and Ceramic Device Resources, page 4 (SAR 79522).
- Added Military (M) and MIL-STD-883 Class B (B) grades for CPGA 132 Package and added Commercial (C), Military (M), and MIL-STD-883 Class B (B) grades for CQFP 172 Package in Temperature Grade Offerings, page 5 (SAR 79519)
 - Changed Silicon Sculptor II to Silicon Sculptor in Programming, page 12 (SAR 38754)
- Added Figure 53, page 158 CQ172 package (SAR 79522).

1.3 **Revision 13.0**

The following is a summary of the changes in revision 13.0 of this document.

- Added Figure 42, page 97 PQ144 Package for A42MX09 device (SAR 69776)
- Added Figure 52, page 153 PQ132 Package for A42MX09 device (SAR 69776)

1.4 **Revision 12.0**

The following is a summary of the changes in revision 12.0 of this document.

- Added information on power-up behavior for A42MX24 and A42MX36 devices to the Power Supply, page 13 (SAR 42096
- Corrected the inadvertent mistake in the naming of the PL68 pin assignment table (SARs 48999, 49793)

1.5 **Revision 11.0**

The following is a summary of the changes in revision 11.0 of this document.

- The FuseLock logo and accompanying text was removed from the User Security, page 12. This marking is no longer used on Microsemi devices (PCN 0915)
- The Development Tool Support, page 19 was updated (SAR 38512)

1.6 Revision 10.0

The following is a summary of the changes in revision 10.0 of this document.

- Ordering Information, page 3 was updated to include lead-free package ordering codes (SAR 21968)
- The User Security, page 12 was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34673)

- The Transient Current, page 13 is new (SAR 36930).
- Package names were revised according to standards established in *Package Mechanical Drawings* (SAR 34774)

1.7 Revision 9.0

The following is a summary of the changes in revision 9.0 of this document

In Table 20, page 23, the limits in VI were changed from -0.5 to VCCI + 0.5 to -0.5 to VCCA + 0.5

In Table 22, page 25, V_{OH} was changed from 3.7 to 2.4 for the min in industrial and military. V_{IH} had V_{CCI} and that was changed to VCCA

1.8 Revision 6.0

The following is a summary of the changes in revision 6.0 of this document.

- The Ease of Integration, page 1 was updated
- The Temperature Grade Offerings, page 5 is new
- The Speed Grade Offerings, page 5 is new
- The General Description, page 6 was updated
- The MultiPlex I/O Modules, page 11 was updated
- The User Security, page 12 was updated
- Table 6, page 13 was updated
- The Power Dissipation, page 14 was updated.
- The Static Power Component, page 14 was updated
- The Equivalent Capacitance, page 15 was updated
- Figure 13, page 17 was updated
- Table 10, page 18 was updated.
- Figure 14, page 18 was updated.
- Table 11, page 19 was updated.

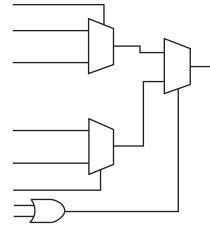
2.4 Plastic Device Resources

Table 2 • Plastic Device Resources

	User I/Os												
Device		PLCC 68-Pin		PQFP 100-Pin	PQFP 144- Pin	PQFP 160-Pin	PQFP 208- Pin	PQFP 240-Pin	VQFP 80-Pin	VQFP 100- Pin	TQFP 176- Pin	PBGA 272- Pin	
A40MX02	34	57	_	57	_	_	-	_	57	-	_	_	
A40MX04	34	57	69	69	_	-	-	_	69	_	-	-	
A42MX09	-	-	72	83	95	101	-	_	-	83	104	-	
A42MX16	_	-	72	83	-	125	140	_	-	83	140	_	
A42MX24	-	-	72	_	-	125	176	_	-	-	150	_	
A42MX36	_	_	_	-	-	-	176	202	_	-	-	202	

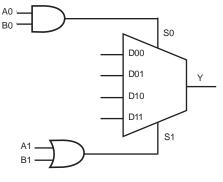
Note: Package Definitions: PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array

2.5 Ceramic Device Resources

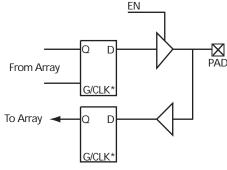

Table 3 • Ceramic Device Resources

	User I/Os										
Device	CPGA 132-Pin	CQFP 172-Pin	CQFP 208-Pin	CQFP 256-Pin							
A42MX09	95										
A42MX16		131									
A42MX36			176	202							

Note: Package Definitions: CQFP = Ceramic Quad Flat Pack



The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). The following figure illustrates the combinatorial logic module. The S-module, shown in Figure 4, page 8, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic.



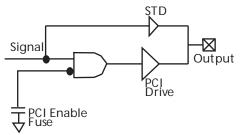

Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs.

Figure 10 • 42MX I/O Module

Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module)

Figure 11 • PCI Output Structure of A42MX24 and A42MX36 Devices

3.3 Other Architectural Features

The following sections cover other architectural features of 40MX and 42MX FPGAs.

3.3.1 Performance

MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-to-market. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance.

3.3.2 User Security

Microsemi FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and protect against unauthorized users attempting to access the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Microsemi antifuse FPGAs protected with the highest level of security available from both invasive and noninvasive attacks.

Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device.

3.3.3 Programming

Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor is designed to allow concurrent programming of multiple units from the same PC.

- VCCA = Power supply in volts (V)
- F = Switching frequency in megahertz (MHz)

3.4.4 Equivalent Capacitance

Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

3.4.5 C_{EQ} Values for Microsemi MX FPGAs

Modules (C_{EQM})3.5

Input Buffers (C_{FOI})6.9

Output Buffers (C_{EQO})18.2

Routed Array Clock Buffer Loads (C_{EQCR})1.4

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. The equation below shows a piece-wise linear summation over all components.

 $\begin{aligned} \text{Power} &= \text{VCCA}^2 * [(\text{m} \times \text{C}_{\text{EQM}} * f_{\text{m}})_{\text{modules}} + (\text{n} * \text{C}_{\text{EQI}} * f_{\text{n}})_{\text{inputs}} + \overline{(\text{p} * (\text{C}_{\text{EQO}} + \text{C}_{\text{L}}) * f_{\text{p}})_{\text{outputs}}} + \\ 0.5 * (q_1 * \text{C}_{\text{EQCR}} * f_{q1})_{\text{routed}_\text{Clk1}} + (r_1 * f_{q1})_{\text{routed}_\text{Clk1}} + \\ 0.5 * (q_2 * \text{C}_{\text{EQCR}} * f_{q2})_{\text{routed}_\text{Clk2}} + (r_2 * f_{q2})_{\text{routed}_\text{Clk2}} (2)] \end{aligned}$

where:

m = Number of logic modules switching at frequency f_m

n = Number of input buffers switching at frequency f_n

p = Number of output buffers switching at frequency fp

 q_1 = Number of clock loads on the first routed array clock

q₂ = Number of clock loads on the second routed array clock

 r_1 = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

C_{EQM} = Equivalent capacitance of logic modules in pF

 C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EQO} = Equivalent capacitance of output buffers in pF

C_{EQCR} = Equivalent capacitance of routed array clock in pF

C_L = Output load capacitance in pF

f_m = Average logic module switching rate in MHz

 f_n = Average input buffer switching rate in MHz

 f_p = Average output buffer switching rate in MHz

 f_{q1} = Average first routed array clock rate in MHz

EQ 3

3. All outputs unloaded. All inputs = VCC/VCCI or GND

3.8 3.3 V Operating Conditions

The following table shows 3.3 V operating conditions.

Table 16 • Absolute Maximum Ratings for 40MX Devices*

Symbol	Parameter	Limits	Units		
VCC	DC Supply Voltage	-0.5 to +7.0	V		
VI	Input Voltage	-0.5 to VCC + 0.5	V		
VO	Output Voltage	-0.5 to VCC + 0.5	V		
t _{STG}	Storage Temperature	-65 to + 150	°C		

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 17 • Absolute Maximum Ratings for 42MX Devices*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.5 to +7.0	V
VCCA	DC Supply Voltage for Array	-0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCCI+0.5	V
VO	Output Voltage	-0.5 to VCCI+0.5	V
t _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 18 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCC (40MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCA (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCI (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

All the following tables show various specifications and operating conditions of 40MX and 42MX FPGAs.

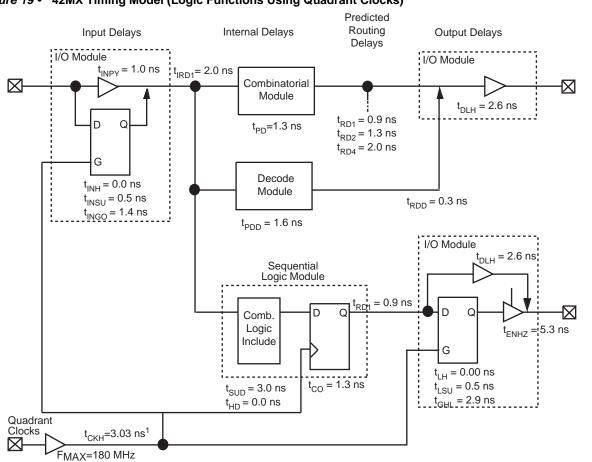
3.3 V LVTTL Electrical Specifications 3.8.1

Table 19 • 3.3V LVTTL Electrical Specifications

		Comr	nercial	Com	nercial -F	Indus	trial	Milita	ry	
VOL ¹ VIL VIH (40MX) VIH (42MX) IIL IIH Input Transition Time, T _R and T C _{IO} I/O Capacitance Standby	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	IOH = -4 mA	2.15		2.15		2.4		2.4		V
VOL ¹	IOL = 6 mA		0.4		0.4		0.48		0.48	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH (40MX)		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
VIH (42MX)		2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	V
IIL			-10		-10		-10		-10	μA
IIH			-10		-10		-10		-10	μA
Input Transition Time, T_R and T_F			500		500		500		500	ns
C _{IO} I/O Capacitance			10		10		10		10	pF
Standby Current, ICC ²	A40MX02, A40MX04		3		25		10		25	mA
	A42MX09		5		25		25		25	mA
	A42MX16		6		25		25		25	mA
	A42MX24, A42MX36		15		25		25		25	mA
Low-Power Mode Standby Current	42MX devices only		0.5		ICC - 5.0		ICC - 5.0		ICC - 5.0	mA
IIO, I/O source	Can be derive	ed from	the IBIS mo	del (htt	p://www.micr	osemi.	com/soc/tech	ndocs/n	nodels/ibis.ht	ml)

sink current

Only one output tested at a time. VCC/VCCI = min. 1.


All outputs unloaded. All inputs = VCC/VCCI or GND. 2.

Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX 3.9 **Devices Only)**

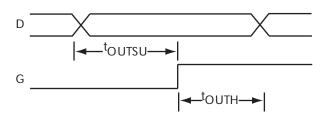
Table 20 • Absolute Maximum Ratings*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	–0.5 to +7.0	V
VCCA	DC Supply Voltage for Array	-0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCCA +0.5	V
VO	Output Voltage	-0.5 to VCCI + 0.5	V
t _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device

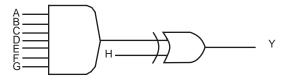
Figure 19 • 42MX Timing Model (Logic Functions Using Quadrant Clocks)

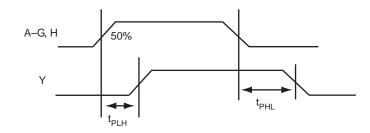
Note: 1. Load-dependent


Note: 2. Values are shown for A42MX36 -3 at 5.0 V worst-case commercial conditions

Power Matters."

Figure 27 • Output Buffer Latches





3.10.4 Decode Module Timing

The following figure shows decode module timing.

Figure 28 • Decode Module Timing

3.10.5 SRAM Timing Characteristics

The following figure shows SRAM timing characteristics.

Figure 29 • SRAM Timing Characteristics

Write Port		Read Port	
 WRAD [5:0] BLKEN WEN WCLK WD [7:0]	RAM Array 32x8 or 64x4 (256 Bits)	RDAD [5:0] LEW REN RCLK RD [7:0]	

3.10.6 Dual-Port SRAM Timing Waveforms

The following figures show dual-port SRAM timing waveforms.

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70° C)

			–3 Sp	beed	–2 Sp	beed	–1 Sp	beed	Std S	Speed	–F S	peed	
Paramet	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _P	Minimum Period	FO = 16	6.5		7.5		8.5		10.1		14.1		ns
		FO = 128	6.8		7.8		8.9		10.4		14.6		
f _{MAX}	Maximum	FO = 16		113		105		96		83		50	MHz
	Frequency	FO = 128		109		101		92		80		48	
TTL Out	put Module Timing ⁴												
t _{DLH}	Data-to-Pad HIGH			4.7		5.4		6.1		7.2		10.0	ns
t _{DHL}	Data-to-Pad LOW			5.6		6.4		7.3		8.6		12.0	ns
t _{ENZH}	Enable Pad Z to H	IGH		5.2		6.0		6.8		8.1		11.3	ns
t _{ENZL}	Enable Pad Z to LO	WC		6.6		7.6		8.6		10.1		14.1	ns
t _{ENHZ}	Enable Pad HIGH	to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW t	o Z		8.2		9.5		10.7		12.6		17.7	ns
d_{TLH}	Delta LOW to HIGH	4		0.03		0.03		0.04		0.04		0.06	ns/pF
d _{THL}	Delta HIGH to LOV	V		0.04		0.04		0.05		0.06		0.08	ns/pF

Table 36 • A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C)

		-3 Speed		-2 Speed -1 Speed		Std S	Speed	–F Sp	peed	<u> </u>		
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{ENLZ}	Enable Pad LOW to Z		5.9		6.8		7.7		9.0		12.6	ns
d_{TLH}	Delta LOW to HIGH		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 S	peed	–1 S	beed	Std S	speed	–F S	beed	
Paramet	ter / Description	Min.	Max.	Units								
t _{RD3}	FO = 3 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD4}	FO = 4 Routing Delay		1.6		1.7		2.0		2.3		3.2	ns
t _{RD8}	FO = 8 Routing Delay		2.6		2.9		3.2		3.8		5.3	ns
Logic M	odule Sequential Timing ^{3,4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.4		3.8		4.3		5.0		7.1		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		5.0		5.6		6.6		9.2		ns
t _A	Flip-Flop Clock Input Period	6.8		7.6		8.6		10.1		14.1		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		215		195		179		156		94	MHz
Input Me	odule Propagation Delays											
t _{INYH}	Pad-to-Y HIGH		1.1		1.2		1.3		1.6		2.2	ns
t _{INYL}	Pad-to-Y LOW		0.8		0.9		1.0		1.2		1.7	ns
t _{INGH}	G to Y HIGH		1.4		1.6		1.8		2.1		2.9	ns
t _{INGL}	G to Y LOW		1.4		1.6		1.8		2.1		2.9	ns
Input Mo	odule Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		1.8		2.0		2.3		2.7		4.0	ns
t _{IRD2}	FO = 2 Routing Delay		2.1		2.3		2.6		3.1		4.3	ns
t _{IRD3}	FO = 3 Routing Delay		2.3		2.6		3.0		3.5		4.9	ns
t _{IRD4}	FO = 4 Routing Delay		2.6		3.0		3.3		3.9		5.4	ns
t _{IRD8}	FO = 8 Routing Delay		3.6		4.0		4.6		5.4		7.5	ns
Global (Clock Network											
t _{СКН}	Input LOW to HIGH FO = 32 FO = 384		2.6 2.9		2.9 3.2		3.3 3.6		3.9 4.3		5.4 6.0	ns ns
t _{CKL}	Input HIGH to LOW FO = 32 FO = 384		3.8 4.5		4.2 5.0		4.8 5.6		5.6 6.6		7.8 9.2	ns ns
t _{PWH}	Minimum Pulse WidthFO = 32HIGHFO = 384	3.2 3.7		3.5 4.1		4.0 4.6		4.7 5.4		6.6 7.6		ns ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	peed	–F Sp	beed	
Paramet	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic M	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{PDD}	Internal Decode Module Delay		1.6		1.8		2.0		2.4		3.3	ns
Logic M	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.2		1.4		2.0	ns
t _{RD2}	FO = 2 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD3}	FO =3 Routing Delay		1.6		1.8		2.0		2.4		3.4	ns
t _{RD4}	FO = 4 Routing Delay		2.0		2.2		2.5		2.9		4.1	ns
t _{RD5}	FO = 8 Routing Delay		3.3		3.7		4.2		4.9		6.9	ns
t _{RDD}	Decode-to-Output Routing Delay		0.3		0.4		0.4		0.5		0.7	ns
Logic M	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.3		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.6		1.7		2.0		2.3		3.2	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.5		6.4		9.0		ns
Synchro	onous SRAM Operations											
t _{RC}	Read Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{WC}	Write Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{RCKHL}	Clock HIGH/LOW Time	3.4		3.8		4.3		5.0		7.0		ns
t _{RCO}	Data Valid After Clock HIGH/LOW		3.4		3.8		4.3		5.0		7.0	ns
t _{ADSU}	Address/Data Set-Up Time	1.6		1.8		2.0		2.4		3.4		ns
Synchro	onous SRAM Operations (continu	ied)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.6		0.7		0.8		0.9		1.3		ns
t _{RENH}	Read Enable Hold	3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up	2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{BENS}	Block Enable Set-Up	2.8		3.1		3.5		4.1		5.7		ns
-	Block Enable Hold	0.0		0.0		0.0		0.0		0.0		ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	–2 Speed –1		–1 Sp	-1 Speed		Std Speed		–F Speed	
Paramet	Parameter / Description			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Asynchr	onous SRAM Operat	ions											
t _{RPD}	Asynchronous Acces	s Time		8.1		9.0		10.2		12.0		16.8	ns
t _{RDADV}	Read Address Valid		8.8		9.8		11.1		13.0		18.2		ns
t _{ADSU}	Address/Data Set-Up	Time	1.6		1.8		2.0		2.4		3.4		ns
t _{ADH}	Address/Data Hold T	ime	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSUA}	Read Enable Set-Up Valid	to Address	0.6		0.7		0.8		0.9		1.3		ns
t _{RENHA}	Read Enable Hold		3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up		2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{DOH}	Data Out Hold Time			1.2		1.3		1.5		1.8		2.5	ns
Input Mc	dule Propagation De	lays											
t _{INPY}	Input Data Pad-to-Y			1.0		1.1		1.3		1.5		2.1	ns
t _{INGO}	Input Latch Gate-to-C	Dutput		1.4		1.6		1.8		2.1		2.9	ns
t _{INH}	Input Latch Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up		0.5		0.5		0.6		0.7		1.0		ns
t _{ILA}	Latch Active Pulse W	/idth	4.7		5.2		5.9		6.9		9.7		ns
Input Mc	dule Predicted Routi	ing Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.0		2.2		2.5		2.9		4.1	ns
t _{IRD2}	FO = 2 Routing Delay			2.3		2.6		2.9		3.4		4.8	ns
t _{IRD3}	FO = 3 Routing Delay			2.6		2.9		3.3		3.9		5.5	ns
t _{IRD4}	FO = 4 Routing Delay			3.0		3.3		3.8		4.4		6.2	ns
t _{IRD8}	FO = 8 Routing Delay			4.3		4.8		5.5		6.4		9.0	ns
Global C	lock Network												
t _{СКН}	Input LOW to HIGH	FO = 32 FO = 635		2.7 3.0		3.0 3.3		3.4 3.8		4.0 4.4		5.6 6.2	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 635		3.8 4.9		4.2 5.4		4.8 6.1		5.6 7.2		7.8 10.1	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 635	1.8 2.0		2.0 2.2		2.2 2.5		2.6 2.9		3.6 4.1		ns ns
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 635	1.8 2.0		2.0 2.2		2.2 2.5		2.6 2.9		3.6 4.1		ns ns
t _{CKSW}	Maximum Skew	FO = 32		0.8 0.8		0.8 0.8		0.9 0.9		1.0 1.0		1.4 1.4	ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

			-3 Speed		–2 Sp	beed	–1 Sp	beed	Std Speed		-F Speed		
Parameter / Description			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 635	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 635	2.8 3.3		3.2 3.7		3.6 4.2		4.2 4.9		5.9 6.9		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 635	5.5 6.0		6.1 6.6		6.6 7.2		7.6 8.3		12.7 13.8		ns ns
f _{MAX}	Maximum Datapath Frequency	FO = 32 FO = 635		180 166		164 151		151 139		131 121		79 73	MHz MHz
TTL Out	put Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			2.6		2.8		3.2		3.8		5.3	ns
t _{DHL}	Data-to-Pad LOW			3.0		3.3		3.7		4.4		6.2	ns
t _{ENZH}	Enable Pad Z to HIG	Н		2.7		3.0		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOW			3.0		3.3		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to	Z		5.3		5.8		6.6		7.8		10.9	ns

PL68		
Pin Number	A40MX02 Function	A40MX04 Function
24	I/O	I/O
25	VCC	VCC
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	VCC	VCC
39	I/O	I/O
40	I/O	I/O
41	I/O	I/O
42	I/O	I/O
43	I/O	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	I/O	I/O
48	I/O	I/O
49	GND	GND
50	I/O	I/O
51	I/O	I/O
52	CLK, I/O	CLK, I/O
53	I/O	I/O
54	MODE	MODE
55	VCC	VCC
56	SDI, I/O	SDI, I/O
57	DCLK, I/O	DCLK, I/O
58	PRA, I/O	PRA, I/O
59	PRB, I/O	PRB, I/O
60	I/O	I/O

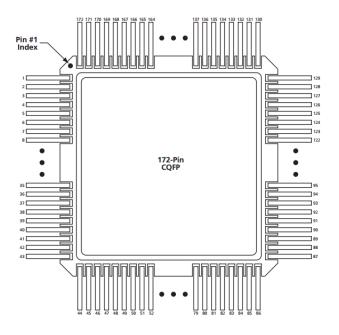


Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
132	VCCI	VCCI	VCCI
133	VCCA	VCCA	VCCA
134	I/O	I/O	I/O
135	I/O	I/O	I/O
136	VCCA	VCCA	VCCA
137	I/O	I/O	I/O
138	I/O	I/O	I/O
139	I/O	I/O	I/O
140	I/O	I/O	I/O
141	NC	I/O	I/O
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	I/O	I/O	I/O
146	NC	I/O	I/O
147	NC	I/O	I/O
148	NC	I/O	I/O
149	NC	I/O	I/O
150	GND	GND	GND
151	I/O	I/O	I/O
152	I/O	I/O	I/O
153	I/O	I/O	I/O
154	I/O	I/O	I/O
155	I/O	I/O	I/O
156	I/O	I/O	I/O
157	GND	GND	GND
158	I/O	I/O	I/O
159	SDI, I/O	SDI, I/O	SDI, I/O
160	I/O	I/O	I/O
161	I/O	WD, I/O	WD, I/O
162	I/O	WD, I/O	WD, I/O
163	I/O	I/O	I/O
164	VCCI	VCCI	VCCI
165	NC	I/O	I/O
166	NC	I/O	I/O
167	I/O	I/O	I/O
168	I/O	WD, I/O	WD, I/O

Figure 53 • CQ172

CQ172		
Pin Number	A42MX16 Function	
1	MODE	
2	I/O	
3	I/O	
4	I/O	
5	I/O	
6	I/O	
7	GND	
8	I/O	
9	I/O	
10	I/O	
11	I/O	
12	VCC	
13	I/O	
14	I/O	
15	I/O	
16	I/O	
17	GND	
18	I/O	
19	I/O	
20	I/O	