E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx16-1vq100m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 51	BG272	45
Figure 52	PG132	53
Figure 53	CQ172	58

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 15.0

The following is a summary of the changes in revision 15.0 of this document.

- Table 15, page 21 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 22, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 23, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

1.2 Revision 14.0

The following is a summary of the changes in revision 14.0 of this document.

- Added CQFP package information for A42MX16 device in Product Profile, page 1 and Ceramic Device Resources, page 4 (SAR 79522).
- Added Military (M) and MIL-STD-883 Class B (B) grades for CPGA 132 Package and added Commercial (C), Military (M), and MIL-STD-883 Class B (B) grades for CQFP 172 Package in Temperature Grade Offerings, page 5 (SAR 79519)
- Changed Silicon Sculptor II to Silicon Sculptor in Programming, page 12 (SAR 38754)
- Added Figure 53, page 158 CQ172 package (SAR 79522).

1.3 **Revision 13.0**

The following is a summary of the changes in revision 13.0 of this document.

- Added Figure 42, page 97 PQ144 Package for A42MX09 device (SAR 69776)
- Added Figure 52, page 153 PQ132 Package for A42MX09 device (SAR 69776)

1.4 **Revision 12.0**

The following is a summary of the changes in revision 12.0 of this document.

- Added information on power-up behavior for A42MX24 and A42MX36 devices to the Power Supply, page 13 (SAR 42096
- Corrected the inadvertent mistake in the naming of the PL68 pin assignment table (SARs 48999, 49793)

1.5 Revision 11.0

The following is a summary of the changes in revision 11.0 of this document.

- The FuseLock logo and accompanying text was removed from the User Security, page 12. This marking is no longer used on Microsemi devices (PCN 0915)
- The Development Tool Support, page 19 was updated (SAR 38512)

1.6 Revision 10.0

The following is a summary of the changes in revision 10.0 of this document.

- Ordering Information, page 3 was updated to include lead-free package ordering codes (SAR 21968)
- The User Security, page 12 was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34673)

3.3.7 Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

3.4 **Power Dissipation**

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation.

3.4.1 General Power Equation

P = [ICCstandby + ICCactive]*VCCI + IOL*VOL*N + IOH*(VCCI - VOH)*M

EQ 1

where:

- ICCstandby is the current flowing when no inputs or outputs are changing.
- ICCactive is the current flowing due to CMOS switching.
- IOL, IOH are TTL sink/source currents.
- VOL, VOH are TTL level output voltages.
- N equals the number of outputs driving TTL loads to VOL.
- M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

3.4.2 Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

3.4.3 Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

$$Power(\mu W) = C_{EO}^* VCCA2^* F(1)$$

where:

C_{EQ} = Equivalent capacitance expressed in picofarads (pF)

EQ 2

Figure 13 • Silicon Explorer II Setup with 42MX

Table 8 • Device Configuration Options for Probe Capability

Security Fuse(s) Programmed	Mode	PRA, PRB ¹	SDI, SDO, DCLK ¹
No	LOW	User I/Os ²	User I/Os ²
No	HIGH	Probe Circuit Outputs	Probe Circuit Inputs
Yes	_	Probe Circuit Secured	Probe Circuit Secured

1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the Pin Descriptions, page 83 for information on unused I/O pins

3.4.7 Design Consideration

It is recommended to use a series 70Ω termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry

42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 14, page 18). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and some optional instructions. Table 9, page 18 describes the ports that control JTAG testing, while Table 10, page 18 describes the test instructions supported by these MX devices.

Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector).

The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles.

42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin.

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

		–3 SI	peed	–2 S	beed	–1 Sp	beed	Std S	Speed	–F Sj	peed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.6		5.3		5.6		7.0		9.8		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.6		5.3		5.6		7.0		9.8		ns
t _A	Flip-Flop Clock Input Period	6.8		7.8		8.9		10.4		14.6		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency (FO = 128)		109		101		92		80		48	MHz
Input Mo	odule Propagation Delays											
t _{INYH}	Pad-to-Y HIGH		1.0		1.1		1.3		1.5		2.1	ns
t _{INYL}	Pad-to-Y LOW		0.9		1.0		1.1		1.3		1.9	ns

		-3 S	peed	–2 S	peed	–1 S	peed	Std S	Speed	–F Sj	peed	
Parame	ter / Description	Min	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	tput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		4.3		5.1		7.1	ns
t _{DHL}	Data-to-Pad LOW		4.0		4.5		5.1		6.1		8.3	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad),64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.00		0.00		0.00		0.10		0.01	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.09		0.10		0.10		0.10		0.10	ns/pF

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

	-3 Speed	-2 Speed	-1 Speed	Std Speed	-F Speed	
eter / Description	Min. Max.	Min. Max.	Min. Max.	Min. Max.	Min. Max.	Units
tput Module Timing ⁴						
Data-to-Pad HIGH	2.5	2.8	3.2	3.7	5.2	ns
Data-to-Pad LOW	3.0	3.3	3.7	4.4	6.1	ns
Enable Pad Z to HIGH	2.7	3.0	3.4	4.0	5.6	ns
Enable Pad Z to LOW	3.0	3.3	3.8	4.4	6.2	ns
Enable Pad HIGH to Z	5.4	6.0	6.8	8.0	11.2	ns
Enable Pad LOW to Z	5.0	5.6	6.3	7.4	10.4	ns
G-to-Pad HIGH	2.9	3.2	3.6	4.3	6.0	ns
G-to-Pad LOW	2.9	3.2	3.6	4.3	6.0	ns
I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading	5.7	6.3	7.1	8.4	11.9	ns
Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading	8.0	8.9	10.1	11.9	16.7	ns
Capacitive Loading, LOW to HIGH	0.03	0.03	0.03	0.04	0.06	ns/pF
Capacitive Loading, HIGH to LOW	0.04	0.04	0.04	0.05	0.07	ns/pF
	tput Module Timing ⁴ Data-to-Pad HIGH Data-to-Pad LOW Enable Pad Z to HIGH Enable Pad Z to LOW Enable Pad HIGH to Z Enable Pad LOW to Z G-to-Pad HIGH G-to-Pad LOW I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading Capacitive Loading, LOW to HIGH	Iter / DescriptionMin.Max.tput Module Timing42.5Data-to-Pad HIGH2.5Data-to-Pad LOW3.0Enable Pad Z to HIGH2.7Enable Pad Z to LOW3.0Enable Pad Z to LOW3.0Enable Pad A HIGH to Z5.4Enable Pad LOW to Z5.0G-to-Pad HIGH2.9G-to-Pad LOW2.9I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading5.7Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading8.0Capacitive Loading, LOW to HIGH0.03	Iter / DescriptionMin.Max.Min.Max.tput Module Timing42.52.8Data-to-Pad HIGH2.52.8Data-to-Pad LOW3.03.3Enable Pad Z to HIGH2.73.0Enable Pad Z to LOW3.03.3Enable Pad Z to LOW5.46.0Enable Pad HIGH to Z5.46.0Enable Pad LOW to Z5.05.6G-to-Pad HIGH2.93.2I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading5.76.3Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading8.08.9Capacitive Loading, LOW to HIGH0.030.03	Image: Marce of Description Min. Max. Min. Max. Min. Max. tput Module Timing ⁴ 2.5 2.8 3.2 Data-to-Pad HIGH 2.5 2.8 3.2 Data-to-Pad LOW 3.0 3.3 3.7 Enable Pad Z to HIGH 2.7 3.0 3.4 Enable Pad Z to LOW 3.0 3.3 3.8 Enable Pad HIGH to Z 5.4 6.0 6.8 Enable Pad HIGH to Z 5.0 5.6 6.3 G-to-Pad HIGH 2.9 3.2 3.6 G-to-Pad HIGH 2.9 3.2 3.6 I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 Capacitive Loading, LOW to HIGH 0.03 0.03 0.03	Image: Marce / Description Min. Max. Max. Max. <th< td=""><td>Min. Max. Min. Max. <th< td=""></th<></td></th<>	Min. Max. Min. Max. <th< td=""></th<>

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 Sj	peed	Std S	peed	–F S	peed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS O	Output Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.1		3.5		3.9		4.6		6.4	ns
t _{DHL}	Data-to-Pad LOW		2.4		2.6		3.0		3.5		4.9	ns
t _{ENZH}	Enable Pad Z to HIGH		2.5		2.8		3.2		3.8		5.3	ns
t _{ENZL}	Enable Pad Z to LOW		2.8		3.1		3.5		4.2		5.8	ns
t _{ENHZ}	Enable Pad HIGH to Z		5.2		5.7		6.5		7.6		10.7	ns
t _{ENLZ}	Enable Pad LOW to Z		4.8		5.3		6.0		7.1		9.9	ns
t _{GLH}	G-to-Pad HIGH		4.9		5.4		6.2		7.2		10.1	ns
t _{GHL}	G-to-Pad LOW		4.9		5.4		6.2		7.2		10.1	ns
t _{LSU}	I/O Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.5		6.1		6.9		8.1		11.3	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		10.6		11.8		13.4		15.7		22.0	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading

Table 43 •A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions,
VCCA = 3.0 V, T_J = 70°C)

		–3 SI	peed	–2 Sp	beed	–1 Sp	eed	Std S	peed	–F S	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic N	Iodule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		2.0		1.8		2.1		2.5		3.4	ns
t _{PDD}	Internal Decode Module Delay		1.1		2.2		2.5		3.0		4.2	ns
Logic N	Iodule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		1.7		1.3		1.4		1.7		2.3	ns
t _{RD2}	FO = 2 Routing Delay		2.0		1.6		1.8		2.1		3.0	ns
t _{RD3}	FO = 3 Routing Delay		1.1		2.0		2.2		2.6		3.7	ns
t _{RD4}	FO = 4 Routing Delay		1.5		2.3		2.6		3.1		4.3	ns
t _{RD5}	FO = 8 Routing Delay		1.8		3.7		4.2		5.0		7.0	ns

		–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	peed	–F Sp	beed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic M	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{PDD}	Internal Decode Module Delay		1.6		1.8		2.0		2.4		3.3	ns
Logic M	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.2		1.4		2.0	ns
t _{RD2}	FO = 2 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD3}	FO =3 Routing Delay		1.6		1.8		2.0		2.4		3.4	ns
t _{RD4}	FO = 4 Routing Delay		2.0		2.2		2.5		2.9		4.1	ns
t _{RD5}	FO = 8 Routing Delay		3.3		3.7		4.2		4.9		6.9	ns
t _{RDD}	Decode-to-Output Routing Delay		0.3		0.4		0.4		0.5		0.7	ns
Logic M	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.3		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.6		1.7		2.0		2.3		3.2	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.5		6.4		9.0		ns
Synchro	nous SRAM Operations											
t _{RC}	Read Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{WC}	Write Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{RCKHL}	Clock HIGH/LOW Time	3.4		3.8		4.3		5.0		7.0		ns
t _{RCO}	Data Valid After Clock HIGH/LOW		3.4		3.8		4.3		5.0		7.0	ns
t _{ADSU}	Address/Data Set-Up Time	1.6		1.8		2.0		2.4		3.4		ns
Synchro	nous SRAM Operations (continu	ied)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.6		0.7		0.8		0.9		1.3		ns
t _{RENH}	Read Enable Hold	3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up	2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
	Block Enable Set-Up	2.8		3.1		3.5		4.1		5.7		ns
t _{BENS}	Diotit Litable Oct Op											

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	peed	–F Sp	beed	
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Ou	tput Module Timing ⁵ (Continued)											
t _{ENLZ}	Enable Pad LOW to Z		4.9		5.5		6.2		7.3		10.2	ns
t _{GLH}	G-to-Pad HIGH		2.9		3.3		3.7		4.4		6.1	ns
t _{GHL}	G-to-Pad LOW		2.9		3.3		3.7		4.4		6.1	ns
t _{LSU}	I/O Latch Output Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Output Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.7		6.3		7.1		8.4		11.8	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		7.8		8.6		9.8		11.5		16.1	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.07		0.08		0.09		0.10		0.14	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.07		0.08		0.09		0.10		0.14	ns/pF

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 S	peed	–1 S	peed	Std S	Speed	–F S	peed	
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		10.9		12.1		13.7		16.1		22.5	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.10		0.11		0.12		0.14		0.20	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.10		0.11		0.12		0.14		0.20	ns/pF
CMOS	Output Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		4.9		5.5		6.2		7.3		10.3	ns
t _{DHL}	Data-to-Pad LOW		3.4		3.8		4.3		5.1		7.1	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.7		5.5		7.7	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.6		5.2		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.4		8.2		9.3		10.9		15.3	ns
t _{ENLZ}	Enable Pad LOW to Z		6.9		7.6		8.7		10.2		14.3	ns
t _{GLH}	G-to-Pad HIGH		7.0		7.8		8.9		10.4		14.6	ns
t _{GHL}	G-to-Pad LOW		7.0		7.8		8.9		10.4		14.6	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.7		0.8		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		7.9		8.8		10.0		11.8		16.5	ns

Table 45 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

3.12 Pin Descriptions

This section lists the pin descriptions for 40MX and 42MX series FPGAs.

CLK/A/B, I/O Global Clock

Clock inputs for clock distribution networks. CLK is for 40MX while CLKA and CLKB are for 42MX devices. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK, I/ODiagnostic Clock

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

GND, Ground

Input LOW supply voltage.

I/O, Input/Output

PL68		
Pin Number	A40MX02 Function	A40MX04 Function
61	I/O	I/O
62	I/O	I/O
63	I/O	I/O
64	I/O	I/O
65	I/O	I/O
66	GND	GND
67	I/O	I/O
68	I/O	I/O

Figure 40 • PL84

Table 49 • PL84

A40MX04 Function	A42MX09 Function	A42MX16 Function	A42MX24 Function
I/O	I/O	I/O	I/O
I/O	CLKB, I/O	CLKB, I/O	CLKB, I/O
I/O	I/O	I/O	I/O
VCC	PRB, I/O	PRB, I/O	PRB, I/O
I/O	I/O	I/O	WD, I/O
I/O	GND	GND	GND
I/O	I/O	I/O	I/O
I/O	I/O	I/O	WD, I/O
I/O	I/O	I/O	WD, I/O
	I/O I/O I/O VCC I/O I/O I/O I/O I/O I/O	I/O CLKB, I/O I/O I/O VCC PRB, I/O I/O I/O	I/O I/O I/O I/O CLKB, I/O CLKB, I/O I/O I/O I/O I/O I/O I/O VCC PRB, I/O PRB, I/O I/O I/O I/O

Table 49 • PL84

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
1	NC	NC	I/O	I/O
2	NC	NC	DCLK, I/O	DCLK, I/O
3	NC	NC	I/O	I/O
4	NC	NC	MODE	MODE
5	NC	NC	I/O	I/O
6	PRB, I/O	PRB, I/O	I/O	I/O
7	I/O	I/O	I/O	I/O
8	I/O	I/O	I/O	I/O
9	I/O	I/O	GND	GND
10	I/O	I/O	I/O	I/O
11	I/O	I/O	I/O	I/O
12	I/O	I/O	I/O	I/O
13	GND	GND	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	VCCA	VCCA
17	I/O	I/O	VCCI	VCCA
18	I/O	I/O	I/O	I/O

PQ144		
Pin Number	A42MX09 Function	
43	I/O	
44	GNDQ	
45	GNDI	
46	NC	
47	I/O	
48	I/O	
49	I/O	
50	I/O	
51	I/O	
52	I/O	
53	I/O	
54	VCC	
55	VCCI	
56	NC	
57	I/O	
58	I/O	
59	I/O	
60	I/O	
61	I/O	
62	I/O	
63	I/O	
64	GND	
65	GNDI	
66	I/O	
67	I/O	
68	I/O	
69	I/O	
70	I/O	
71	SDO	
72	I/O	
73	I/O	
74	I/O	
75	I/O	
76	I/O	
77	I/O	
78	I/O	
79	GNDQ	

Table 51 • PQ144

Table 52 • PQ160

PQ160			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
1	I/O	I/O	I/O
2	DCLK, I/O	DCLK, I/O	DCLK, I/O
3	NC	I/O	I/O
4	I/O	I/O	WD, I/O
5	I/O	I/O	WD, I/O
6	NC	VCCI	VCCI
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	I/O	I/O	I/O
10	NC	I/O	I/O
11	GND	GND	GND
12	NC	I/O	I/O
13	I/O	I/O	WD, I/O
14	I/O	I/O	WD, I/O
15	I/O	I/O	I/O
16	PRB, I/O	PRB, I/O	PRB, I/O
17	I/O	I/O	I/O
18	CLKB, I/O	CLKB, I/O	CLKB, I/O
19	I/O	I/O	I/O
20	VCCA	VCCA	VCCA

Table 57 • TQ176

TQ176				
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function	
10	NC	I/O	I/O	
11	NC	I/O	I/O	
12	I/O	I/O	I/O	
13	NC	VCCA	VCCA	
14	I/O	I/O	I/O	
15	I/O	I/O	I/O	
16	I/O	I/O	I/O	
17	I/O	I/O	I/O	
18	GND	GND	GND	
19	NC	I/O	I/O	
20	NC	I/O	I/O	
21	I/O	I/O	I/O	
22	NC	I/O	I/O	
23	GND	GND	GND	
24	NC	VCCI	VCCI	
25	VCCA	VCCA	VCCA	
26	NC	I/O	I/O	
27	NC	I/O	I/O	
28	VCCI	VCCA	VCCA	
29	NC	I/O	I/O	
30	I/O	I/O	I/O	
31	I/O	I/O	I/O	
32	I/O	I/O	I/O	
33	NC	NC	I/O	
34	I/O	I/O	I/O	
35	I/O	I/O	I/O	
36	I/O	I/O	I/O	
37	NC	I/O	I/O	
38	NC	NC	I/O	
39	I/O	I/O	I/O	
40	I/O	I/O	I/O	
11	I/O	I/O	I/O	
12	I/O	I/O	I/O	
43	I/O	I/O	I/O	
44	I/O	I/O	I/O	
45	GND	GND	GND	
46	I/O	I/O	TMS, I/O	

CQ208	
Pin Number	A42MX36 Function
1	GND
2	VCCA
3	MODE
4	I/O
5	I/O
6	I/O
7	I/O
8	I/O
9	I/O
10	I/O
11	I/O
12	I/O
13	I/O
14	I/O
15	I/O
16	I/O
17	VCCA
18	I/O
19	I/O
20	I/O
21	I/O
22	GND
23	I/O
24	I/O
25	I/O
26	I/O
27	GND
28	VCCI
29	VCCA
30	I/O
31	I/O
32	VCCA
33	I/O
34	I/O
35	I/O
36	I/O

CQ256	
Pin Number	A42MX36 Function
22	I/O
23	I/O
24	I/O
25	I/O
26	VCCA
27	I/O
28	I/O
29	VCCA
30	VCCI
31	GND
32	VCCA
33	LP
34	TCK, I/O
35	I/O
36	GND
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
42	I/O
43	I/O
44	I/O
45	I/O
46	I/O
47	I/O
48	GND
49	I/O
50	I/O
51	I/O
52	I/O
53	I/O
54	I/O
55	I/O
56	I/O
57	I/O
58	I/O

PG132	
Pin Number	A42MX09 Function
N10	I/O
M10	I/O
N11	I/O
L10	I/O
M11	I/O
N12	SDO
M12	I/O
L11	I/O
N13	I/O
M13	I/O
K11	I/O
L12	I/O
L13	I/O
K13	I/O
H10	I/O
J12	I/O
J13	I/O
H11	I/O
H12	I/O
H13	VKS
G13	VPP

Table 61 • PG132			
PG132			
Pin Number	A42MX09 Function		
G12	VSV		
F13	I/O		
F12	I/O		
F11	I/O		
F10	I/O		
E13	I/O		
D13	I/O		
D12	I/O		
C13	I/O		
B13	I/O		
D11	I/O		
C12	I/O		
A13	I/O		
C11	I/O		
B12	SDI		
B11	I/O		
C10	I/O		
A12	I/O		
A11	I/O		
B10	I/O		
D8	I/O		
A10	I/O		
C8	I/O		
A9	I/O		
B8	PRBA		
A8	I/O		
B7	CLKA		
A7	I/O		
B6	CLKB		
A6	I/O		
C6	PRBB		
A5	I/O		
D6	I/O		
A4	I/O		
B4	I/O		
A3	I/O		
C4	I/O		