

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx16-vqg100m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 40MX and 42MX FPGA Families

2.1 Features

The following sections list out various features of the 40MX and 42MX FPGA family devices.

2.1.1 High Capacity

- Single-Chip ASIC Alternative
- 3,000 to 54,000 System Gates
- Up to 2.5 kbits Configurable Dual-Port SRAM
- Fast Wide-Decode Circuitry
- Up to 202 User-Programmable I/O Pins

2.1.2 High Performance

- 5.6 ns Clock-to-Out
- 250 MHz Performance
- 5 ns Dual-Port SRAM Access
- 100 MHz FIFOs
- 7.5 ns 35-Bit Address Decode

2.1.3 HiRel Features

- Commercial, Industrial, Automotive, and Military Temperature Plastic Packages
- Commercial, Military Temperature, and MIL-STD-883 Ceramic Packages
- QML Certification
- Ceramic Devices Available to DSCC SMD

2.1.4 Ease of Integration

- Mixed-Voltage Operation (5.0 V or 3.3 V for core and I/Os), with PCI-Compliant I/Os
- Up to 100% Resource Utilization and 100% Pin Locking
- Deterministic, User-Controllable Timing
- Unique In-System Diagnostic and Verification Capability with Silicon Explorer II

Low Power Consumption IEEE Standard 1149.1 (JTAG) Boundary Scan Testing

2.2 Product Profile

The following table gives the features of the products.

Table 1 • Product profile

Device	A40MX02	A40MX04	A42MX09	A42MX16	A42MX24	A42MX36
Capacity						
System Gates	3,000	6,000	14,000	24,000	36,000	54,000
SRAM Bits	_	-	-	-	-	2,560
Logic Modules						
Sequential	_	_	348	624	954	1,230
Combinatorial	295	547	336	608	912	1,184
Decode	_	-	-	-	24	24
Clock-to-Out	9.5 ns	9.5 ns	5.6 ns	6.1 ns	6.1 ns	6.3 ns
SRAM Modules						
(64x4 or 32x8)	_	_	-	_	_	10
Dedicated Flip-Flops	_	_	348	624	954	1,230

2.3 Ordering Information

The following figure shows ordering information.All the following tables show plastic and ceramic device resources, temperature and speed grade offerings.

Figure 1 • Ordering Information

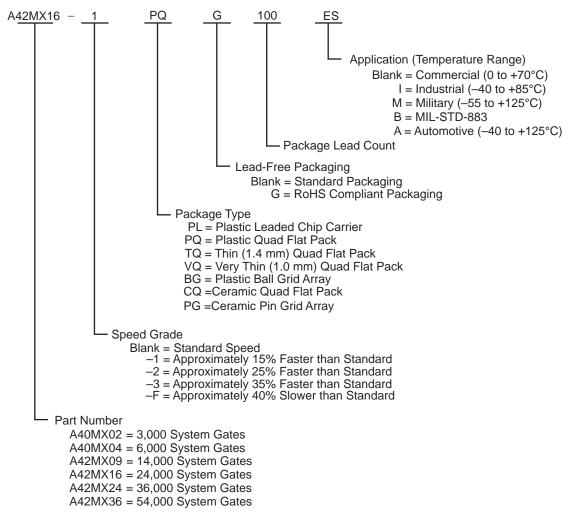
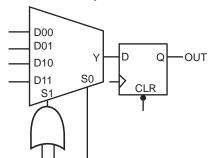
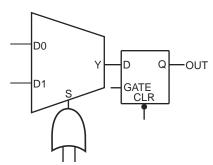
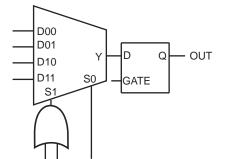





Figure 4 • 42MX S-Module Implementation



Up to 7-Input Function Plus D-Type Flip-Flop with Clear

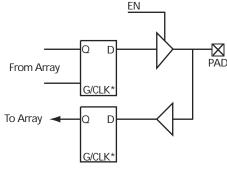
Up to 7-Input Function Plus Latch

Up to 4-Input Function Plus Latch with Clear

Up to 8-Input Function (Same as C-Module)

A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 9). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic.

3.2.2 Dual-Port SRAM Modules


The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 9.

The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks.

The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design.

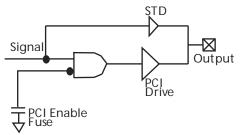

Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs.

Figure 10 • 42MX I/O Module

Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module)

Figure 11 • PCI Output Structure of A42MX24 and A42MX36 Devices

3.3 Other Architectural Features

The following sections cover other architectural features of 40MX and 42MX FPGAs.

3.3.1 Performance

MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-to-market. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance.

3.3.2 User Security

Microsemi FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and protect against unauthorized users attempting to access the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Microsemi antifuse FPGAs protected with the highest level of security available from both invasive and noninvasive attacks.

Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device.

3.3.3 Programming

Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor is designed to allow concurrent programming of multiple units from the same PC.

3.4.9 JTAG Mode Activation

The JTAG test logic circuit is activated in the Designer software by selecting **Tools > Device Selection**. This brings up the Device Selection dialog box as shown in the following figure. The JTAG test logic circuit can be enabled by clicking the "Reserve JTAG Pins" check box. The following table explains the pins' behavior in either mode.

Figure 15 • Device Selection Wizard

Table 11 • Boundary Scan Pin Configuration and Functionality

Reserve JTAG	Checked	Unchecked
ТСК	BST input; must be terminated to logical HIGH or LOW to avoid floating	User I/O
TDI, TMS	BST input; may float or be tied to HIGH	User I/O
TDO	BST output; may float or be connected to TDI of another device	User I/O

3.4.10 TRST Pin and TAP Controller Reset

An active reset (TRST) pin is not supported; however, MX devices contain power-on circuitry that resets the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles.

3.4.11 Boundary Scan Description Language (BSDL) File

Conforming to the IEEE Standard 1149.1 requires that the operation of the various JTAG components be documented. The BSDL file provides the standard format to describe the JTAG components that can be used by automatic test equipment software. The file includes the instructions that are supported, instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files, see the *BSDL Files Format Description* application note.

BSDL files are grouped into two categories - generic and device-specific. The generic files assign all user I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts.

Generic files for MX devices are available on the Microsemi SoC Product Group's website:

http://www.microsemi.com/soc/techdocs/models/bsdl.html.

3.5 Development Tool Support

The MX family of FPGAs is fully supported by Libero[®] Integrated Design Environment (IDE). Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes SynplifyPro from Synopsys, ModelSim[®] HDL Simulator from Mentor Graphics[®] and Viewdraw.

Libero IDE includes place-and-route and provides a comprehensive suite of backend support tools for FPGA development, including timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor.

3. All outputs unloaded. All inputs = VCC/VCCI or GND

3.8 3.3 V Operating Conditions

The following table shows 3.3 V operating conditions.

Table 16 • Absolute Maximum Ratings for 40MX Devices*

Symbol	Parameter	Limits	Units		
VCC	DC Supply Voltage	-0.5 to +7.0	V		
VI	Input Voltage	-0.5 to VCC + 0.5	V		
VO	Output Voltage	-0.5 to VCC + 0.5	V		
t _{STG}	Storage Temperature	-65 to + 150	°C		

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

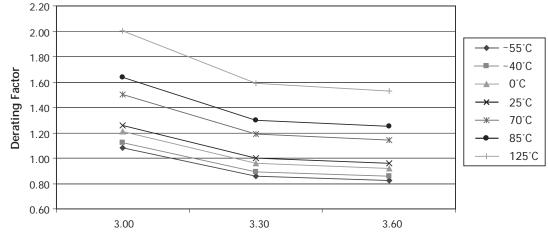
Table 17 • Absolute Maximum Ratings for 42MX Devices*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.5 to +7.0	V
VCCA	DC Supply Voltage for Array	-0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCCI+0.5	V
VO	Output Voltage	-0.5 to VCCI+0.5	V
t _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 18 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCC (40MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCA (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCI (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V


Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

All the following tables show various specifications and operating conditions of 40MX and 42MX FPGAs.

	Temperat	ure					
40MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C
3.60	0.83	0.85	0.92	0.96	1.14	1.25	1.53

Table 31 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3 V)

Figure 37 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to T_J = 25°C, VCC = 3.3 V)

Voltage (V)

Note: This derating factor applies to all routing and propagation delays

3.11.5 PCI System Timing Specification

The following tables list the critical PCI timing parameters and the corresponding timing parameters for the MX PCI-compliant devices.

3.11.6 PCI Models

Microsemi provides synthesizable VHDL and Verilog-HDL models for a PCI Target interface, a PCI Target and Target+DMA Master interface. Contact the Microsemi sales representative for more details.

Table 32 • Clock Specification for 33 MHz PCI

		PCI A42MX24			24	A42MX		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{CYC}	CLK Cycle Time	30	-	4.0	-	4.0	-	ns
t _{HIGH}	CLK High Time	11	-	1.9	-	1.9	-	ns
t _{LOW}	CLK Low Time	11	-	1.9	-	1.9	-	ns

Table 33 • Timing Parameters for 33 MHz PCI

		PCI	A42MX24		A42MX36			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{VAL}	CLK to Signal Valid—Bused Signals	2	11	2.0	9.0	2.0	9.0	ns
t _{VAL(PTP)}	CLK to Signal Valid—Point-to-Point	2 ²	12	2.0	9.0	2.0	9.0	ns
t _{ON}	Float to Active	2	_	2.0	4.0	2.0	4.0	ns
t _{OFF}	Active to Float	_	28	-	8.3 ¹	_	8.3 ¹	ns
t _{SU}	Input Set-Up Time to CLK—Bused Signals	7	_	1.5	-	1.5	-	ns

			–3 S	peed	–2 Sp	eed	–1 Sj	beed	Std S	Speed	–F Sp	beed	
Paramete	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Sequential Timi	ng ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up		0.5		0.5		0.6		0.7		0.9		ns
t _{HD}	Flip-Flop (Latch) Data	a Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Ena	ble Set-Up	1.0		1.1		1.2		1.4		2.0		ns
t _{HENA}	Flip-Flop (Latch) Ena	ble Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse W	/idth	4.8		5.3		6.0		7.1		9.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse	Width	6.2		6.9		7.9		9.2		12.9		ns
t _A	Flip-Flop Clock Input	Period	9.5		10.6		12.0		14.1		19.8		ns
t _{INH}	Input Buffer Latch Ho	old	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Se	et-Up	0.7		0.8		0.9		1.01		1.4		ns
t _{оитн}	Output Buffer Latch H	Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch S	Set-Up	0.7		0.8		0.89		1.01		1.4		ns
f _{MAX}	Flip-Flop (Latch) Cloo Frequency	ck		129		117		108		94		56	MHz
Input Mo	dule Propagation Del	ays											
t _{INYH}	Pad-to-Y HIGH			1.5		1.6		1.9		2.2		3.1	ns
t _{INYL}	Pad-to-Y LOW			1.1		1.3		1.4		1.7		2.4	ns
t _{INGH}	G to Y HIGH			2.0		2.2		2.5		2.9		4.1	ns
t _{INGL}	G to Y LOW			2.0		2.2		2.5		2.9		4.1	ns
Input Mo	dule Predicted Routir	ng Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.6		2.9		3.2		3.8		5.3	ns
t _{IRD2}	FO = 2 Routing Delay			2.9		3.2		3.7		4.3		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			3.3		3.6		4.1		4.9		6.8	ns
t _{IRD4}	FO = 4 Routing Delay			3.6		4.0		4.6		5.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			5.1		5.6		6.4		7.5		10.5	ns
Global C	lock Network												
t _{CKH}	Input LOW to HIGH	FO = 32 FO = 384		4.4 4.8		4.8 5.3		5.5 6.0		6.5 7.1		9.0 9.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 384		5.3 6.2		5.9 6.9		6.7 7.9		7.8 9.2		11.0 12.9	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 384	5.7 6.6		6.3 7.4		7.1 8.3		8.4 9.8		11.8 13.7		ns ns

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

			–3 S	peed	–2 Sp	beed	–1 S	peed	Std S	Speed	–F Sp	beed	_
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 384	5.3 6.2		5.9 6.9		6.7 7.9		7.8 9.2		11.0 12.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 384		0.5 2.2		0.5 2.4		0.6 2.7		0.7 3.2		1.0 4.5	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 384	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 384	3.9 4.5		4.3 4.9		4.9 5.6		5.7 6.6		8.0 9.2		ns ns
t _P	Minimum Period	FO = 32 FO = 384	7.0 7.7		7.8 8.6		8.4 9.3		9.7 10.7		16.2 17.8		ns ns
f _{MAX}	Maximum Frequency	FO = 32 FO = 384		142 129		129 117		119 108		103 94		62 56	MHz MHz
TTL Out	put Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			3.5		3.9		4.4		5.2		7.3	ns
t _{DHL}	Data-to-Pad LOW			4.1		4.6		5.2		6.1		8.6	ns
t _{ENZH}	Enable Pad Z to HIG	4		3.8		4.2		4.8		5.6		7.8	ns
t _{ENZL}	Enable Pad Z to LOW	1		4.2		4.6		5.3		6.2		8.7	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		7.6		8.4		9.5		11.2		15.7	ns
t _{ENLZ}	Enable Pad LOW to Z			7.0		7.8		8.8		10.4		14.5	ns
t _{GLH}	G-to-Pad HIGH			4.8		5.3		6.0		7.2		10.0	ns
t _{GHL}	G-to-Pad LOW			4.8		5.3		6.0		7.2		10.0	ns
t _{LCO}	I/O Latch Clock-to-Ou (Pad-to-Pad), 64 Cloc			8.0		8.9		10.1		11.9		16.7	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Cloc	k Loading		11.3		12.5		14.2		16.7		23.3	ns
d _{TLH}	Capacitive Loading, L HIGH	OW to		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacitive Loading, H LOW	HGH to		0.05		0.05		0.06		0.07		0.10	ns/pF
CMOS C	Output Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			4.5		5.0		5.6		6.6		9.3	ns
t _{DHL}	Data-to-Pad LOW			3.4		3.8		4.3		5.1		7.1	ns
t _{ENZH}	Enable Pad Z to HIG	1		3.8		4.2		4.8		5.6		7.8	ns
t _{ENZL}	Enable Pad Z to LOW	1		4.2		4.6		5.3		6.2		8.7	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		7.6		8.4		9.5		11.2		15.7	ns
t _{ENLZ}	Enable Pad LOW to 2	7		7.0		7.8		8.8		10.4		14.5	ns
t _{GLH}	G-to-Pad HIGH			7.1		7.9		8.9		10.5		14.7	ns
t _{GHL}	G-to-Pad LOW			7.1		7.9		8.9		10.5		14.7	ns
t _{LCO}	I/O Latch Clock-to-Ou (Pad-to-Pad), 64 Cloc			8.0		8.9		10.1		11.9		16.7	ns

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDI, I/OTest Data In

Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDO, I/OTest Data Out

Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TMS, I/OTest Mode Select

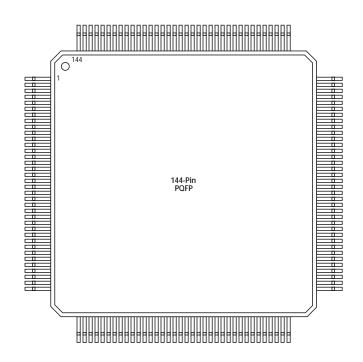
The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a $10k\Omega$ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices.

VCC, Supply Voltage

Input supply voltage for 40MX devices

VCCA, Supply Voltage

Supply voltage for array in 42MX devices


VCCI, Supply Voltage

Supply voltage for I/Os in 42MX devices

WD, I/OWide Decode Output

When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins.

Figure 42 • PQ144

Table 51 • PQ144

PQ144							
Pin Number	A42MX09 Function						
1	I/O						
2	MODE						
3	I/O						
4	I/O						
5	I/O						

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
132	VCCI	VCCI	VCCI
133	VCCA	VCCA	VCCA
134	I/O	I/O	I/O
135	I/O	I/O	I/O
136	VCCA	VCCA	VCCA
137	I/O	I/O	I/O
138	I/O	I/O	I/O
139	I/O	I/O	I/O
140	I/O	I/O	I/O
141	NC	I/O	I/O
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	I/O	I/O	I/O
146	NC	I/O	I/O
147	NC	I/O	I/O
148	NC	I/O	I/O
149	NC	I/O	I/O
150	GND	GND	GND
151	I/O	I/O	I/O
152	I/O	I/O	I/O
153	I/O	I/O	I/O
154	I/O	I/O	I/O
155	I/O	I/O	I/O
156	I/O	I/O	I/O
157	GND	GND	GND
158	I/O	I/O	I/O
159	SDI, I/O	SDI, I/O	SDI, I/O
160	I/O	I/O	I/O
161	I/O	WD, I/O	WD, I/O
162	I/O	WD, I/O	WD, I/O
163	I/O	I/O	I/O
164	VCCI	VCCI	VCCI
165	NC	I/O	I/O
166	NC	I/O	I/O
167	I/O	I/O	I/O
168	I/O	WD, I/O	WD, I/O

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
13	VCC	VCC
4	I/O	I/O
5	I/O	I/O
16	I/O	I/O
17	NC	I/O
18	NC	I/O
19	NC	I/O
20	VCC	VCC
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	GND	GND
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
2	I/O	I/O
3	VCC	VCC
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	I/O	I/O
39	I/O	I/O
10	I/O	I/O
11	NC	I/O
12	NC	I/O
13	NC	I/O
14	I/O	I/O
15	I/O	I/O
16	I/O	I/O
47	GND	GND

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
57	I/O	I/O
58	I/O	I/O
59	I/O	I/O
60	I/O	I/O
61	I/O	I/O
62	LP	LP
63	VCCA	VCCA
64	VCCI	VCCI
65	VCCA	VCCA
66	I/O	I/O
67	I/O	I/O
68	I/O	I/O
69	I/O	I/O
70	GND	GND
71	I/O	I/O
72	I/O	I/O
73	I/O	I/O
74	I/O	I/O
75	I/O	I/O
76	I/O	I/O
77	SDI, I/O	SDI, I/O
78	I/O	I/O
79	I/O	I/O
80	I/O	I/O
81	I/O	I/O
82	GND	GND
83	I/O	I/O
84	I/O	I/O
85	PRA, I/O	PRA, I/O
86	I/O	I/O
87	CLKA, I/O	CLKA, I/O
88	VCCA	VCCA
89	I/O	I/O
90	CLKB, I/O	CLKB, I/O
91	I/O	I/O
92	PRB, I/O	PRB, I/O

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
121	NC	NC	I/O
122	I/O	I/O	I/O
123	I/O	I/O	I/O
124	NC	I/O	I/O
125	NC	I/O	I/O
126	NC	NC	I/O
127	I/O	I/O	I/O
128	I/O	I/O	I/O
129	I/O	I/O	I/O
130	I/O	I/O	I/O
131	I/O	I/O	I/O
132	I/O	I/O	I/O
133	GND	GND	GND
134	I/O	I/O	I/O
135	SDI, I/O	SDI, I/O	SDI, I/O
136	NC	I/O	I/O
137	I/O	I/O	WD, I/O
138	I/O	I/O	WD, I/O
139	I/O	I/O	I/O
140	NC	VCCI	VCCI
141	I/O	I/O	I/O
142	I/O	I/O	I/O
143	NC	I/O	I/O
144	NC	I/O	WD, I/O
145	NC	NC	WD, I/O
146	I/O	I/O	I/O
147	NC	I/O	I/O
148	I/O	I/O	I/O
149	I/O	I/O	I/O
150	I/O	I/O	WD, I/O
151	NC	I/O	WD, I/O
152	PRA, I/O	PRA, I/O	PRA, I/O
153	I/O	I/O	I/O
154	CLKA, I/O	CLKA, I/O	CLKA, I/O
155	VCCA	VCCA	VCCA
156	GND	GND	GND
157	I/O	I/O	I/O

CQ208	
Pin Number	A42MX36 Function
1	GND
2	VCCA
3	MODE
4	I/O
5	I/O
6	I/O
7	I/O
8	I/O
9	I/O
10	I/O
11	I/O
12	I/O
13	I/O
14	I/O
15	I/O
16	I/O
17	VCCA
18	I/O
19	I/O
20	I/O
21	I/O
22	GND
23	I/O
24	I/O
25	I/O
26	I/O
27	GND
28	VCCI
29	VCCA
30	I/O
31	I/O
32	VCCA
33	I/O
34	I/O
35	I/O
36	I/O

CQ208	
Pin Number	A42MX36 Function
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
42	I/O
43	I/O
44	I/O
15	I/O
46	I/O
47	I/O
48	I/O
19	I/O
50	I/O
51	I/O
52	GND
53	GND
54	TMS, I/O
55	TDI, I/O
56	I/O
57	WD, I/O
58	WD, I/O
59	I/O
60	VCCI
61	I/O
62	I/O
63	I/O
64	I/O
65	QCLKA, I/O
6	WD, I/O
67	WD, I/O
68	I/O
69	I/O
70	WD, I/O
71	WD, I/O
72	I/O
/3	I/O

Table 60 • BG272				
BG272				
Pin Numbe	r A42MX36 Function			
J9	GND			
J10	GND			
J11	GND			
J12	GND			
J17	VCCA			
J18	I/O			
J19	I/O			
J20	I/O			
K1	I/O			
K2	I/O			
K3	I/O			
K4	VCCI			
K9	GND			
K10	GND			
K11	GND			
K12	GND			
K17	I/O			
K18	VCCA			
K19	VCCA			
K20	LP			
L1	I/O			
L2	I/O			
L3	VCCA			
L4	VCCA			
L9	GND			
L10	GND			
L11	GND			
L12	GND			
L17	VCCI			
L18	I/O			
L19	I/O			
L20	TCK, I/O			
M1	I/O			
M2	I/O			
M3	I/O			
M4	VCCI			
M9	GND			

Table 60 • BG272				
BG272				
Pin Number	A42MX36 Function			
T19	I/O			
T20	I/O			
U1	I/O			
U2	I/O			
U3	I/O			
U4	I/O			
U5	VCCI			
U6	WD, I/O			
U7	I/O			
U8	I/O			
U9	WD, I/O			
U10	VCCA			
U11	VCCI			
U12	I/O			
U13	I/O			
U14	QCLKB, I/O			
U15	I/O			
U16	VCCI			
U17	I/O			
U18	GND			
U19	I/O			
U20	I/O			
V1	I/O			
V2	I/O			
V3	GND			
V4	GND			
V5	I/O			
V6	I/O			
V7	I/O			
V8	WD, I/O			
V9	I/O			
V10	I/O			
V11	I/O			
V12	I/O			
V13	WD, I/O			
V14	I/O			
V15	WD, I/O			

Table 62 • CQ172	
138	I/O
139	I/O
140	I/O
141	GND
142	I/O
143	I/O
144	I/O
145	I/O
146	I/O
147	I/O
148	PROBA
149	I/O
150	CLKA
151	VCC
152	GND
153	I/O
154	CLKB
155	I/O
156	PROBB
157	I/O
158	I/O
159	I/O
160	I/O
161	GND
162	I/O
163	I/O
164	I/O
165	I/O
166	VCCI
167	I/O
168	I/O
169	I/O
170	I/O
171	DCLK