

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	
Total RAM Bits	2560
Number of I/O	202
Number of Gates	54000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	272-BBGA
Supplier Device Package	272-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx36-1bgg272i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Figure 5 • A42MX24 and A42MX36 D-Module Implementation

Figure 6 • A42MX36 Dual-Port SRAM Block

3.2.3 Routing Structure

The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be continuous or split into segments. Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses.

3.2.3.1 Horizontal Routing

Horizontal routing tracks span the whole row length or are divided into multiple segments and are located in between the rows of modules. Any segment that spans more than one-third of the row length is considered a long horizontal segment. A typical channel is shown in Figure 7, page 10. Within horizontal routing, dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-dedicated tracks are used for signal nets.

3.2.3.2 Vertical Routing

Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long. Long tracks span the column length of the module, and can be divided into multiple segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing.

Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 7, page 10.

3.3.7 Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

3.4 **Power Dissipation**

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation.

3.4.1 General Power Equation

P = [ICCstandby + ICCactive]*VCCI + IOL*VOL*N + IOH*(VCCI - VOH)*M

EQ 1

where:

- ICCstandby is the current flowing when no inputs or outputs are changing.
- ICCactive is the current flowing due to CMOS switching.
- IOL, IOH are TTL sink/source currents.
- VOL, VOH are TTL level output voltages.
- N equals the number of outputs driving TTL loads to VOL.
- M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

3.4.2 Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

3.4.3 Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

$$Power(\mu W) = C_{EO}^* VCCA2^* F(1)$$

where:

C_{EQ} = Equivalent capacitance expressed in picofarads (pF)

EQ 2

Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 14 • 42MX IEEE 1149.1 Boundary Scan Circuitry

Table 9 • Test Access Port Descriptions

Port	Description
TMS (Test Mode Select)	Serial input for the test logic control bits. Data is captured on the rising edge of the test logic clock (TCK).
TCK (Test Clock Input)	Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency for TCK is 20 MHz.
TDI (Test Data Input)	Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock.
TDO (Test Data Output)	Serial output for test instruction and data from the test logic. TDO is set to an Inactive Drive state (high impedance) when data scanning is not in progress.

Table 10 • Supported BST Public Instructions

Instruction	IR Code (IR2.IR0)	Instruction Type	Description
EXTEST	000	Mandatory	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
SAMPLE/PRELOAD	001	Mandatory	Allows a snapshot of the signals at the device pins to be captured and examined during operation
HIGH Z	101	Optional	Tristates all I/Os to allow external signals to drive pins. See the IEEE Standard 1149.1 specification.
CLAMP	110	Optional	Allows state of signals driven from component pins to be determined from the Boundary-Scan Register. See the IEEE Standard 1149.1 specification for details.
BYPASS	111	Mandatory	Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain.

3.3 V LVTTL Electrical Specifications 3.8.1

Table 19 • 3.3V LVTTL Electrical Specifications

		Commercial		Com	nercial -F	Industrial		Military		_	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
VOH ¹	IOH = -4 mA	2.15		2.15		2.4		2.4		V	
VOL ¹	IOL = 6 mA		0.4		0.4		0.48		0.48	V	
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V	
VIH (40MX)		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V	
VIH (42MX)		2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	V	
IIL			-10		-10		-10		-10	μΑ	
IIH			-10		-10		-10		-10	μΑ	
Input Transition Time, ${\rm T_R}$ and ${\rm T_F}$			500		500		500		500	ns	
C _{IO} I/O Capacitance			10		10		10		10	pF	
Standby Current, ICC ²	A40MX02, A40MX04		3		25		10		25	mA	
	A42MX09		5		25		25		25	mA	
	A42MX16		6		25		25		25	mA	
	A42MX24, A42MX36		15		25		25		25	mA	
Low-Power Mode Standby Current	42MX devices only		0.5		ICC - 5.0		ICC - 5.0		ICC - 5.0	mA	
IIO, I/O source	Can be derive	ed from	the IBIS mo	<i>del</i> (htt	p://www.micr	osemi.	com/soc/tech	ndocs/n	nodels/ibis.ht	ml)	

sink current

Only one output tested at a time. VCC/VCCI = min. 1.

All outputs unloaded. All inputs = VCC/VCCI or GND. 2.

Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX 3.9 **Devices Only)**

Table 20 • Absolute Maximum Ratings*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	–0.5 to +7.0	V
VCCA	DC Supply Voltage for Array	–0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCCA +0.5	V
VO	Output Voltage	-0.5 to VCCI + 0.5	V
t _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device

Figure 22 • AC Test Loads

To the output under test

Load 2 (Used to measure rising/falling edges)

Figure 23 • Input Buffer Delays

t_{INYH}

Figure 24 • Module Delays

t_{INYL}

Table 34 •A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C)

			-3 Sp	beed	–2 Sp	beed	–1 Sp	beed	Std S	peed	–F Sp	eed	
Parame	eter / Description	-	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input N	Iodule Propagation	Delays											
t _{INYH}	Pad-to-Y HIGH			0.7		0.8		0.9		1.1		1.5	ns
t _{INYL}	Pad-to-Y LOW			0.6		0.7		0.8		1.0		1.3	ns
Input N	Iodule Predicted Ro	outing Dela	ys ¹										
t _{IRD1}	FO = 1 Routing De	lay		2.1		2.4		2.2		3.2		4.5	ns
t _{IRD2}	FO = 2 Routing De	lay		2.6		3.0		3.4		4.0		5.6	ns
t _{IRD3}	FO = 3 Routing De	lay		3.1		3.6		4.1		4.8		6.7	ns
t _{IRD4}	FO = 4 Routing De	lay		3.6		4.2		4.8		5.6		7.8	ns
t _{IRD8}	FO = 8 Routing De	lay		5.7		6.6		7.5		8.8		12.4	ns
Global	Clock Network												
t _{CKH}	Input Low to HIGH	FO = 16 FO = 128		4.6 4.6		5.3 5.3		6.0 6.0		7.0 7.0		9.8 9.8	ns
t _{CKL}	Input High to LOW	FO = 16 FO = 128		4.8 4.8		5.6 5.6		6.3 6.3		7.4 7.4		10.4 10.4	ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 16 FO = 128	2.2 2.4		2.6 2.7		2.9 3.1		3.4 3.6		4.8 5.1		ns
t _{PWL}	Minimum Pulse Width LOW	FO = 16 FO = 128	2.2 2.4		2.6 2.7		2.9 3.01		3.4 3.6		4.8 5.1		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		0.4 0.5		0.5 0.6		0.5 0.7		0.6 0.8		0.8 1.2	ns
t _P	Minimum Period	FO = 16 FO = 128	4.7 4.8		5.4 5.6		6.1 6.3		7.2 7.5		10.0 10.4		ns
f _{MAX}	Maximum Frequency	FO = 16 FO = 128		188 181		175 168		160 154		139 134		83 80	MHz

Table 36 • A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C)

		-3 Speed		–2 Sp	beed	-1 Speed		Std Speed		–F Speed		
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS	Output Module Timing ¹											
t _{DLH}	Data-to-Pad HIGH		3.9		4.5		5.1		6.05		8.5	ns
t _{DHL}	Data-to-Pad LOW		3.4		3.9		4.4		5.2		7.3	ns
t _{ENZH}	Enable Pad Z to HIGH		3.4		3.9		4.4		5.2		7.3	ns
t _{ENZL}	Enable Pad Z to LOW		4.9		5.6		6.4		7.5		10.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.9		9.1		10.4		12.2		17.0	ns
t _{ENLZ}	Enable Pad LOW to Z		5.9		6.8		7.7		9.0		12.6	ns
d_{TLH}	Delta LOW to HIGH		0.03		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Delta HIGH to LOW		0.02		0.02		0.03		0.03		0.04	ns/pF

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold time for this macro.

4. Delays based on 35 pF loading

Table 37 •A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions,
VCC = 3.0 V, T_J = 70°C)

		–3 SI	peed	–2 S	beed	–1 Sp	eed	Std S	Speed	–F Sj	peed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	dule Propagation Delays											
t _{PD1}	Single Module		1.7		2.0		2.3		2.7		3.7	ns
t _{PD2}	Dual-Module Macros		3.7		4.3		4.9		5.7		8.0	ns
t _{CO}	Sequential Clock-to-Q		1.7		2.0		2.3		2.7		3.7	ns
t _{GO}	Latch G-to-Q		1.7		2.0		2.3		2.7		3.7	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.7		2.0		2.3		2.7		3.7	ns
Logic Mo	odule Predicted Routing Delays ¹											
t _{RD1}	FO = 1 Routing Delay		1.9		2.2		2.5		3.0		4.2	ns
t _{RD2}	FO = 2 Routing Delay		2.7		3.1		3.5		4.1		5.7	ns
t _{RD3}	FO = 3 Routing Delay		3.4		3.9		4.4		5.2		7.3	ns
t _{RD4}	FO = 4 Routing Delay		4.1		4.8		5.4		6.3		8.9	ns
t _{RD8}	FO = 8 Routing Delay		7.1		8.1		9.2		10.9		15.2	ns
Logic Mo	odule Sequential Timing ²											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	4.3		5.0		5.6		6.6		9.2		ns
t _{HD} ³	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	4.3		5.0		5.6		6.6		9.2		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 Speed		–2 Sp	beed	-1 Speed		Std Speed		-F Speed		
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		4.9		5.6		6.6		9.2		ns
t _A	Flip-Flop Clock Input Period	3.5		3.8		4.3		5.1		7.1		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set-Up	0.3		0.3		0.4		0.4		0.6		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch Set-Up	0.3		0.3		0.4		0.4		0.6		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency	у	268		244		224		195		117	MHz

Table 41 •A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

		-3 Speed		-2 Speed		-1 Speed		Std Speed		-F Speed		
Paramet	Parameter / Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{ACO}	Array Clock-to-Out (Pad-to-Pad),64 Clock Loading		11.3		12.5		14.2		16.7		23.3	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing ansalysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G inputs subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	ed –1 Speed Sto		Std S	d Speed		–F Speed	
Paramete	r / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mod	dule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.2		1.3		1.5		1.8		2.5	ns
t _{PDD}	Internal Decode Module Delay		1.4		1.6		1.8		2.1		3.0	ns
Logic Mod	dule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.8		0.9		1.0		1.2		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.0		1.2		1.3		1.5		2.1	ns
t _{RD3}	FO = 3 Routing Delay		1.3		1.4		1.6		1.9		2.6	ns
t _{RD4}	FO = 4 Routing Delay		1.5		1.7		1.9		2.2		3.1	ns
t _{RD5}	FO = 8 Routing Delay		2.4		2.7		3.0		3.6		5.0	ns
Logic Mod	dule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.2		1.3		1.5		1.8		2.5	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.4		1.6		1.8		2.1		2.9	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.4		0.5		0.5		0.6		0.8		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.3		6.5		9.0		ns

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 Speed –2 Speed			-1 Speed Std Speed			–F Speed				
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	dule Propagation Delays											
t _{INPY}	Input Data Pad-to-Y		1.0		1.1		1.3		1.5		2.1	ns
t _{INGO}	Input Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.6	ns
t _{INH}	Input Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{ILA}	Latch Active Pulse Width	4.7		5.2		5.9		6.9		9.7		ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	peed	–F Sp	eed	
Paramet	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 635	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 635	2.8 3.3		3.2 3.7		3.6 4.2		4.2 4.9		5.9 6.9		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 635	5.5 6.0		6.1 6.6		6.6 7.2		7.6 8.3		12.7 13.8		ns ns
f _{MAX}	Maximum Datapath Frequency	FO = 32 FO = 635		180 166		164 151		151 139		131 121		79 73	MHz MHz
TTL Out	put Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			2.6		2.8		3.2		3.8		5.3	ns
t _{DHL}	Data-to-Pad LOW			3.0		3.3		3.7		4.4		6.2	ns
t _{ENZH}	Enable Pad Z to HIG	Н		2.7		3.0		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOV	V		3.0		3.3		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to	Z		5.3		5.8		6.6		7.8		10.9	ns

4 Package Pin Assignments

The following figures and tables give the details of the package pin assignments.

Figure 38 • PL44

Table 47 • PL44

PL44		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	I/O	I/O
3	VCC	VCC
4	I/O	I/O
5	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	I/O	I/O
10	GND	GND
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	VCC	VCC
15	I/O	I/O
16	VCC	VCC
17	I/O	I/O
18	I/O	I/O
19	I/O	I/O
20	I/O	I/O

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
93	VCC	VCC	I/O	I/O
94	VCC	VCC	PRB, I/O	PRB, I/O
95	NC	I/O	I/O	I/O
96	NC	I/O	GND	GND
97	NC	I/O	I/O	I/O
98	SDI, I/O	SDI, I/O	I/O	I/O
99	DCLK, I/O	DCLK, I/O	I/O	I/O
100	PRA, I/O	PRA, I/O	I/O	I/O

T	able	54	•	PQ240	
	abic	UT			

PQ240		·
Pin Number	A42MX36 Function	
237	GND	
238	MODE	
239	VCCA	
240	GND	

Figure 46 • VQ80

Table 55 • VQ80

VQ80			
Pin Number	A40MX02 Function	A40MX04 Function	
1	I/O	I/O	
2	NC	I/O	
3	NC	I/O	
4	NC	I/O	
5	I/O	I/O	
6	I/O	I/O	
7	GND	GND	
8	I/O	I/O	
9	I/O	I/O	
10	I/O	I/O	
11	I/O	I/O	
12	I/O	I/O	

CQ256		
Pin Number	A42MX36 Function	
207	I/O	
208	I/O	
209	QCLKC, I/O	
210	I/O	
211	WD, I/O	
212	WD, I/O	
213	I/O	
214	I/O	
215	WD, I/O	
216	WD, I/O	
217	I/O	
218	PRB, I/O	
219	I/O	
220	CLKB, I/O	
221	I/O	
222	GND	
223	GND	
224	VCCA	
225	VCCI	
226	I/O	
227	CLKA, I/O	
228	I/O	
229	PRA, I/O	
230	I/O	
231	I/O	
232	WD, I/O	
233	WD, I/O	
234	I/O	
235	I/O	
236	I/O	
237	I/O	
238	I/O	
239	I/O	
240	QCLKD, I/O	
241	I/O	
242	WD, I/O	
243	GND	

Table 60 • BG272				
BG272				
Pin Number	A42MX36 Function			
J9	GND			
J10	GND			
J11	GND			
J12	GND			
J17	VCCA			
J18	I/O			
J19	I/O			
J20	I/O			
K1	I/O			
K2	I/O			
K3	I/O			
K4	VCCI			
K9	GND			
K10	GND			
K11	GND			
K12	GND			
K17	I/O			
K18	VCCA			
K19	VCCA			
K20	LP			
L1	I/O			
L2	I/O			
L3	VCCA			
L4	VCCA			
L9	GND			
L10	GND			
L11	GND			
L12	GND			
L17	VCCI			
L18	I/O			
L19	I/O			
L20	TCK, I/O			
M1	I/O			
M2	I/O			
M3	I/O			
M4	VCCI			
M9	GND			

Table 60 • BG272				
BG272				
Pin Number	A42MX36 Function			
T19	I/O			
T20	I/O			
U1	I/O			
U2	I/O			
U3	I/O			
U4	I/O			
U5	VCCI			
U6	WD, I/O			
U7	I/O			
U8	I/O			
U9	WD, I/O			
U10	VCCA			
U11	VCCI			
U12	I/O			
U13	I/O			
U14	QCLKB, I/O			
U15	I/O			
U16	VCCI			
U17	I/O			
U18	GND			
U19	I/O			
U20	I/O			
V1	I/O			
V2	I/O			
V3	GND			
V4	GND			
V5	I/O			
V6	I/O			
V7	I/O			
V8	WD, I/O			
V9	I/O			
V10	I/O			
V11	I/O			
V12	I/O			
V13	WD, I/O			
V14	I/O			
V15	WD, I/O			

Table 61 • PG132			
PG132			
Pin Number	A42MX09 Function		
N10	I/O		
M10	I/O		
N11	I/O		
L10	I/O		
M11	I/O		
N12	SDO		
M12	I/O		
L11	I/O		
N13	I/O		
M13	I/O		
K11	I/O		
L12	I/O		
L13	I/O		
K13	I/O		
H10	I/O		
J12	I/O		
J13	I/O		
H11	I/O		
H12	I/O		
H13	VKS		
G13	VPP		

Table 61 • PG132				
PG132				
Pin Number	A42MX09 Function			
B3	I/O			
A2	I/O			
C3	DCLK			
B5	GNDA			
E12	GNDA			
J2	GNDA			
M9	GNDA			
B9	GNDI			
C5	GNDI			
E11	GNDI			
F4	GNDI			
J3	GNDI			
J11	GNDI			
L5	GNDI			
L9	GNDI			
C9	GNDQ			
E3	GNDQ			
K12	GNDQ			
D7	VCCA			
G3	VCCA			
G10	VCCA			
L7	VCCA			
C7	VCCI			
G2	VCCI			
G11	VCCI			
K7	VCCI			