

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	2560
Number of I/O	202
Number of Gates	54000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	256-BFCQFP with Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx36-1cq256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.4.11	Boundary Scan Description Language (BSDL) File
3.5	Develo	oment Tool Support
3.6	Related	I Documents
	3.6.1	Application Notes
	3.6.2	User Guides and Manuals
	3.6.3	Miscellaneous
3.7	5.0 V O	perating Conditions
	3.7.1	5 V TTL Electrical Specifications
3.8	3.3 V O	perating Conditions
	3.8.1	3.3 V LVTTL Electrical Specifications
3.9	Mixed 5	5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only)
	3.9.1	Mixed 5.0V/3.3V Electrical Specifications
	3.9.2	Output Drive Characteristics for 5.0 V PCI Signaling
	3.9.3	Output Drive Characteristics for 3.3 V PCI Signaling
	3.9.4	Junction Temperature (T _J)
	3.9.5	Package Thermal Characteristics
3.10	Timing	Models
	3.10.1	Parameter Measurement
	3.10.2	Sequential Module Timing Characteristics
	3.10.3	Sequential Timing Characteristics
	3.10.4	Decode Module Timing
	3.10.5	SRAM Liming Characteristics
	3.10.6	Dual-Port SRAM Timing Waveforms
0.44	3.10.7	
3.11	Timing	
	3.11.1	
	3.11.Z	Long Tracks
	2 11 /	Temperature and Voltage Derating Eactors
	3 11 5	PCI System Timing Specification 40
	3 11 6	PCI Models 40
3 1 2	Pin Deg	acrintions 83
0.12	i ili Des	Jonpiono
Packa	age Pin	Assignments

4

Figures

Figure 1	Ordering Information
Figure 2	42MX C-Module Implementation
Figure 3	42MX C-Module Implementation
Figure 4	42MX S-Module Implementation
Figure 5	A42MX24 and A42MX36 D-Module Implementation
Figure 6	A42MX36 Dual-Port SRAM Block
Figure 7	MX Routing Structure
Figure 8	Clock Networks of 42MX Devices
Figure 9	Quadrant Clock Network of A42MX36 Devices
Figure 10	42MX I/O Module
Figure 11	PCI Output Structure of A42MX24 and A42MX36 Devices
Figure 12	Silicon Explorer II Setup with 40MX
Figure 13	Silicon Explorer II Setup with 42MX
Figure 14	42MX IEEE 1149.1 Boundary Scan Circuitry
Figure 15	Device Selection Wizard
Figure 16	Typical Output Drive Characteristics (Based Upon Measured Data)
Figure 17	40MX Timing Model*
Figure 18	42MX Timing Model
Figure 19	42MX Timing Model (Logic Functions Using Quadrant Clocks)
Figure 20	42MX Timing Model (SRAM Functions)
Figure 21	Output Buffer Delays
Figure 22	AC Test Loads
Figure 23	Input Buffer Delays
Figure 24	Module Delays
Figure 25	Flip-Flops and Latches 34
Figure 26	Input Buffer Latches 34
Figure 27	Output Buffer Latches 35
Figure 28	Decode Module Timing 35
Figure 29	SRAM Timing Characteristics 35
Figure 30	42MX SRAM Write Operation 36
Figure 31	42MX SRAM Synchronous Read Operation 36
Figure 32	42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)
Figure 33	42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)
Figure 34	42MX Junction Temperature and Voltage Derating Curves
i iguio o i	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 5.0 V) 38
Figure 35	40MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$, VCC = 5.0 V) 39
Figure 36	42MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 3.3 V) 39
Figure 37	40MX Junction Temperature and Voltage Derating Curves
i iguio or	(Normalized to $T_{L} = 25^{\circ}C$ VCC = 3.3 V) 40
Figure 38	PI 44
Figure 39	PI 68 88
Figure 40	PI 84 90
Figure 41	PQ100 93
Figure 42	PO144 97
Figure 43	PQ160 102
Figure 44	PQ208 107
Figure 45	PQ240 113
Figure 46	VQ80 120
Figure 47	VQ100 123
Figure 18	ΤΟ176
Figure 49	CO208 131
Figure 50	CQ256
99.0000	

Figure 2 • 42MX C-Module Implementation

The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). The following figure illustrates the combinatorial logic module. The S-module, shown in Figure 4, page 8, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic.

Device Type	r1 routed_Clk1	r2 routed_Clk2
A40MX02	41.4	N/A
A40MX04	68.6	N/A
A42MX09	118	118
A42MX16	165	165
A42MX24	185	185
A42MX36	220	220

Fixed Capacitance Values for MX FPGAs (pF)

 f_{a2} = Average second routed array clock rate in MHz)

Table 7 •

3.4.6 Test Circuitry and Silicon Explorer II Probe

MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allow users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH.

Figure 12, page 16 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 13, page 17 illustrates the interconnection between Silicon Explorer II and 42MX devices

To allow for probing capabilities, the security fuses must not be programmed. (See User Security, page 12 for the security fuses of 40MX and 42MX devices). Table 8, page 17 summarizes the possible device configurations for probing.

PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins.

Figure 12 • Silicon Explorer II Setup with 40MX

3. All outputs unloaded. All inputs = VCC/VCCI or GND

3.8 3.3 V Operating Conditions

The following table shows 3.3 V operating conditions.

Table 16 • Absolute Maximum Ratings for 40MX Devices*

Symbol	Parameter	Limits	Units
VCC	DC Supply Voltage	–0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCC + 0.5	V
VO	Output Voltage	-0.5 to VCC + 0.5	V
t _{STG}	Storage Temperature	–65 to + 150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 17 • Absolute Maximum Ratings for 42MX Devices*

Symbol	Parameter	Limits	Units	
VCCI	DC Supply Voltage for I/Os	-0.5 to +7.0	V	
VCCA	DC Supply Voltage for Array	-0.5 to +7.0	V	
VI	Input Voltage	-0.5 to VCCI+0.5	V	
VO	Output Voltage	-0.5 to VCCI+0.5	V	
t _{STG}	Storage Temperature	-65 to +150	°C	

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 18 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCC (40MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCA (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCI (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

All the following tables show various specifications and operating conditions of 40MX and 42MX FPGAs.

3.9.1 Mixed 5.0V/3.3V Electrical Specifications

		Commercial		Com	mercial –F	Indu	strial	Milita		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	IOH = -10 mA	2.4		2.4						V
	IOH = -4 mA					2.4		2.4		V
VOL ¹	IOL = 10 mA		0.5		0.5					V
	IOL = 6 mA						0.4		0.4	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH ²		2.0	VCCA + 0.3	2.0	VCCA + 0.3	2.0	VCCA + 0.3	2.0	VCCA + 0.3	V
IL	VIN = 0.5 V		-10		-10		-10		-10	μA
IH	VIN = 2.7 V		-10		-10		-10		-10	μA
Input Transition Time, T_R and T_F			500		500		500		500	ns
C _{IO} I/O Capacitance			10		10		10		10	pF
Standby Current,	A42MX09		5		25		25		25	mA
ICC ³	A42MX16		6		25		25		25	mA
	A42MX24, A42MX36		20		25		25		25	mA
Low Power Mode Standby Current			0.5		ICC – 5.0		ICC – 5.0		ICC – 5.0	mA

Table 22 • Mixed 5.0V/3.3V Electrical Specifications

IIO I/O source sink Can be derived from the *IBIS model* (http://www.microsemi.com/soc/techdocs/models/ibis.html) current

1. Only one output tested at a time. VCCI = min.

2. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

3. All outputs unloaded. All inputs = VCCI or GND

3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling

MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 16, page 28 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification.

Table 23 • DC Specification (5.0 V PCI Signaling)¹

			PCI		MX		
Symbol	Parameter	Condition	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage for I/Os		4.75	5.25	4.75	5.25 ²	V
VIH ³	Input High Voltage		2.0	VCC + 0.5	2.0	VCCI + 0.3	V
VIL	Input Low Voltage		-0.5	0.8	-0.3	0.8	V
IIH	Input High Leakage Current	VIN = 2.7 V		70	_	10	μA
IIL	Input Low Leakage Current	VIN=0.5 V		-70	_	-10	μA
VOH	Output High Voltage	IOUT = -2 mA IOUT = -6 mA	2.4		3.84		V
VOL	Output Low Voltage	IOUT = 3 mA, 6 mA		0.55	_	0.33	V

Figure 22 • AC Test Loads

t_{INYH}

Figure 24 • Module Delays

t_{INYL}

		–3 Sp	beed	–2 Sp	Speed –1 Speed		Std Speed		-F Speed			
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Ou	tput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		3.3		3.8		4.3		5.1		7.2	ns
t _{DHL}	Data-to-Pad LOW		4.0		4.6		5.2		6.1		8.6	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.3		4.9		5.8		8.0	ns
t _{ENZL}	Enable Pad Z to LOW		4.7		5.4		6.1		7.2		10.1	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.9		9.1		10.4		12.2		17.1	ns
t _{ENLZ}	Enable Pad LOW to Z		5.9		6.8		7.7		9.0		12.6	ns
d _{TLH}	Delta LOW to HIGH		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF
CMOS	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		3.9		4.5		5.1		6.05		8.5	ns
t _{DHL}	Data-to-Pad LOW		3.4		3.9		4.4		5.2		7.3	ns
t _{ENZH}	Enable Pad Z to HIGH		3.4		3.9		4.4		5.2		7.3	ns
t _{ENZL}	Enable Pad Z to LOW		4.9		5.6		6.4		7.5		10.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.9		9.1		10.4		12.2		17.0	ns
t _{ENLZ}	Enable Pad LOW to Z		5.9		6.8		7.7		9.0		12.6	ns
d _{TLH}	Delta LOW to HIGH		0.03		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Delta HIGH to LOW		0.02		0.02		0.03		0.03		0.04	ns/pF

Table 34 •A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C)

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check

the hold time for this macro.

4. Delays based on 35pF loading

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

		-3 Speed		-2 Speed		-1 Speed		Std Speed		-F Speed		
Parameter / Description			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Propagation Delays											
t _{PD1}	Single Module		1.7		2.0		2.3		2.7		3.7	ns
t _{PD2}	Dual-Module Macros		3.7		4.3		4.9		5.7		8.0	ns
t _{CO}	Sequential Clock-to-Q		1.7		2.0		2.3		2.7		3.7	ns
t _{GO}	Latch G-to-Q		1.7		2.0		2.3		2.7		3.7	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.7		2.0		2.3		2.7		3.7	ns
Logic Mo	Logic Module Predicted Routing Delays ¹											

			–3 S	peed	–2 S	peed	–1 Sp	eed	Std Speed		-F Speed		
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	odule Predicted Routir	ng Delays1											
t _{IRD1}	FO = 1 Routing Delay	,		2.9		3.3		3.8		4.5		6.3	ns
t _{IRD2}	FO = 2 Routing Delay	,		3.6		4.2		4.8		5.6		7.8	ns
t _{IRD3}	FO = 3 Routing Delay	,		4.4		5.0		5.7		6.7		9.4	ns
t _{IRD4}	FO = 4 Routing Delay	,		5.1		5.9		6.7		7.8		11.0	ns
t _{IRD8}	FO = 8 Routing Delay			8.0		9.3		10.5		12.4		17.2	ns
Global C	lock Network												
t _{СКН}	Input LOW to HIGH	FO = 16 FO = 128		6.4 6.4		7.4 7.4		8.4 8.4		9.9 9.9		13.8 13.8	ns
t _{CKL}	Input HIGH to LOW	FO = 16 FO = 128		6.8 6.8		7.8 7.8		8.9 8.9		10.4 10.4		14.6 14.6	ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 16 FO = 128	3.1 3.3		3.6 3.8		4.1 4.3		4.8 5.1		6.7 7.1		ns
t _{PWL}	Minimum Pulse Width LOW	FO = 16 FO = 128	3.1 3.3		3.6 3.8		4.1 4.3		4.8 5.1		6.7 7.1		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		0.6 0.8		0.6 0.9		0.7 1.0		0.8 1.2		1.2 1.6	ns
t _P	Minimum Period	FO = 16 FO = 128	6.5 6.8		7.5 7.8		8.5 8.9		10.1 10.4		14.1 14.6		ns
f _{MAX}	Maximum Frequency	FO = 16 FO = 128		113 109		105 101		96 92		83 80		50 48	MHz
TTL Out	put Module Timing ⁴												
t _{DLH}	Data-to-Pad HIGH			4.7		5.4		6.1		7.2		10.0	ns
t _{DHL}	Data-to-Pad LOW			5.6		6.4		7.3		8.6		12.0	ns
t _{ENZH}	Enable Pad Z to HIG	4		5.2		6.0		6.9		8.1		11.3	ns
t _{ENZL}	Enable Pad Z to LOW	1		6.6		7.6		8.6		10.1		14.1	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z	-		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH			0.03		0.03		0.04		0.04		0.06	ns/pF
d _{THL}	Delta HIGH to LOW			0.04		0.04		0.05		0.06		0.08	ns/pF

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

		–3 S	peed	–2 Sj	beed	–1 S	peed	Std S	Speed	–F S	peed	
Paramet	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	put Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		2.4		2.7		3.1		3.6		5.1	ns
t _{DHL}	Data-to-Pad LOW		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZH}	Enable Pad Z to HIGH		2.5		2.8		3.2		3.8		5.3	ns
t _{ENZL}	Enable Pad Z to LOW		2.8		3.1		3.5		4.2		5.9	ns
t _{ENHZ}	Enable Pad HIGH to Z		5.2		5.7		6.5		7.6		10.7	ns
t _{ENLZ}	Enable Pad LOW to Z		4.8		5.3		6.0		7.1		9.9	ns
t _{GLH}	G-to-Pad HIGH		2.9		3.2		3.6		4.3		6.0	ns
t _{GHL}	G-to-Pad LOW		2.9		3.2		3.6		4.3		6.0	ns
t _{LSU}	I/O Latch Output Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Output Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.6		6.1		6.9		8.1		11.4	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		10.6		11.8		13.4		15.7		22.0	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF

Table 42 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDI, I/OTest Data In

Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDO, I/OTest Data Out

Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TMS, I/OTest Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a $10k\Omega$ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices.

VCC, Supply Voltage

Input supply voltage for 40MX devices

VCCA, Supply Voltage

Supply voltage for array in 42MX devices

VCCI, Supply Voltage

Supply voltage for I/Os in 42MX devices

WD, I/OWide Decode Output

When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins.

Table 49 • PL84

A42MX24 Function WD, I/O I/O GND WD, I/O WD, I/O SDO, TDO, I/O I/O
WD, I/O I/O GND WD, I/O WD, I/O SDO, TDO, I/O I/O
I/O GND WD, I/O WD, I/O SDO, TDO, I/O I/O
GND WD, I/O WD, I/O SDO, TDO, I/O I/O
WD, I/O WD, I/O SDO, TDO, I/O I/O
WD, I/O SDO, TDO, I/O I/O
SDO, TDO, I/O
I/O
I/O
TCK, I/O
LP
VCCA
VCCI
I/O
I/O
I/O
I/O
GND
I/O
SDI, I/O
I/O
WD, I/O
WD, I/O
vvD, 1/O
PRA, I/O
PRA, I/O I/O

PQ144	
Pin Number	A42MX09 Function
43	I/O
44	GNDQ
45	GNDI
46	NC
47	I/O
48	I/O
49	I/O
50	I/O
51	I/O
52	I/O
53	I/O
54	VCC
55	VCCI
56	NC
57	I/O
58	I/O
59	I/O
60	I/O
61	I/O
62	I/O
63	I/O
64	GND
65	GNDI
66	I/O
67	I/O
68	I/O
69	I/O
70	I/O
71	SDO
72	I/O
73	I/O
74	I/O
75	I/O
76	I/O
77	I/O
78	I/O
79	GNDQ

Table 51 • PQ144

PQ144	
Pin Number	A42MX09 Function
80	GNDI
81	NC
82	I/O
83	I/O
84	I/O
85	I/O
86	I/O
87	I/O
88	VKS
89	VPP
90	VCC
91	VCCI
92	NC
93	VSV
94	I/O
95	I/O
96	I/O
97	I/O
98	I/O
99	I/O
100	GND
101	GNDI
102	NC
103	I/O
104	I/O
105	I/O
106	I/O
107	I/O
108	I/O
109	I/O
110	SDI
111	I/O
112	I/O
113	I/O
114	I/O
115	I/O
116	GNDQ

Table 51 • PQ144

Table 58 • CQ2	08
CQ208	
Pin Number	A42MX36 Function
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
12	I/O
13	I/O
44	I/O
15	I/O
46	I/O
47	I/O
48	I/O
49	I/O
50	I/O
51	I/O
52	GND
53	GND
54	TMS, I/O
55	TDI, I/O
56	I/O
57	WD, I/O
58	WD, I/O
59	I/O
60	VCCI
61	I/O
62	I/O
63	I/O
64	I/O
65	QCLKA, I/O
66	WD, I/O
67	WD, I/O
58	I/O
69	I/O
70	WD, I/O
71	WD, I/O
72	I/O
73	I/O

CQ208	
Pin Number	A42MX36 Function
74	I/O
75	I/O
76	I/O
77	I/O
78	GND
79	VCCA
80	VCCI
81	I/O
82	I/O
83	I/O
84	I/O
85	WD, I/O
86	WD, I/O
87	I/O
88	I/O
89	I/O
90	I/O
91	QCLKB, I/O
92	I/O
93	WD, I/O
94	WD, I/O
95	I/O
96	I/O
97	I/O
98	VCCI
99	I/O
100	WD, I/O
101	WD, I/O
102	I/O
103	TDO, I/O
104	I/O
105	GND
106	VCCA
107	I/O
108	I/O
109	I/O
110	I/O

CQ256		
Pin Number	A42MX36 Function	
133	I/O	
134	I/O	
135	I/O	
136	I/O	
137	I/O	
138	I/O	
139	GND	
140	I/O	
141	I/O	
142	I/O	
143	I/O	
144	I/O	
145	I/O	
146	I/O	
147	I/O	
148	I/O	
149	I/O	
150	I/O	
151	I/O	
152	I/O	
153	I/O	
154	I/O	
155	VCCA	
156	I/O	
157	I/O	
158	VCCA	
159	VCCI	
160	GND	
161	I/O	
162	I/O	
163	I/O	
164	I/O	
165	GND	
166	I/O	
167	I/O	
168	I/O	
169	I/O	

Table 60 • BG272		
BG272		
Pin Number	A42MX36 Function	
V16	I/O	
V17	I/O	
V18	SDO, TDO, I/O	
V19	I/O	
V20	I/O	
W1	GND	
W2	GND	
W3	I/O	
W4	TMS, I/O	
W5	I/O	
W6	I/O	
W7	I/O	
W8	WD, I/O	
W9	WD, I/O	
W10	I/O	
W11	I/O	
W12	I/O	
W13	WD, I/O	
W14	I/O	
W15	I/O	
W16	WD, I/O	
W17	I/O	
W18	WD, I/O	
W19	GND	
W20	GND	
Y1	GND	
Y2	GND	
Y3	I/O	
Y4	TDI, I/O	
Y5	WD, I/O	
Y6	I/O	
Y7	QCLKA, I/O	
Y8	I/O	
Y9	I/O	
Y10	I/O	
Y11	I/O	
Y12	I/O	

Table 60 • BG272 BG272		
Y13	I/O	
Y14	I/O	
Y15	I/O	
Y16	I/O	
Y17	I/O	
Y18	WD, I/O	
Y19	GND	
Y20	GND	

Figure 52 • PG132

Orientation Pin

Table 61 • PG132

PG132		
Pin Number	A42MX09 Function	
_	PMPOUT	
B2	I/O	
A1	MODE	
B1	I/O	
D3	I/O	
C2	I/O	
C1	I/O	
D2	I/O	
D1	I/O	
E2	I/O	
E1	I/O	
F3	I/O	

Table 61 • PG132		
PG132		
Pin Number	A42MX09 Function	
G12	VSV	
F13	I/O	
F12	I/O	
F11	I/O	
F10	I/O	
E13	I/O	
D13	I/O	
D12	I/O	
C13	I/O	
B13	I/O	
D11	I/O	
C12	I/O	
A13	I/O	
C11	I/O	
B12	SDI	
B11	I/O	
C10	I/O	
A12	I/O	
A11	I/O	
B10	I/O	
D8	I/O	
A10	I/O	
C8	I/O	
A9	I/O	
B8	PRBA	
A8	I/O	
B7	CLKA	
A7	I/O	
B6	CLKB	
A6	I/O	
C6	PRBB	
A5	I/O	
D6	I/O	
A4	I/O	
B4	I/O	
A3	I/O	
C4	I/O	