E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	2560
Number of I/O	176
Number of Gates	54000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx36-1pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

2.4 Plastic Device Resources

Table 2 • Plastic Device Resources

	User I/Os												
Device	PLCC 44-Pin	PLCC 68-Pin	PLCC 84-Pin	PQFP 100-Pin	PQFP 144- Pin	PQFP 160-Pin	PQFP 208- Pin	PQFP 240-Pin	VQFP 80-Pin	VQFP 100- Pin	TQFP 176- Pin	PBGA 272- Pin	
A40MX02	34	57	-	57	_	_	_	_	57	-	_	_	
A40MX04	34	57	69	69	-	_	-	_	69	-	-	_	
A42MX09	-	-	72	83	95	101	-	_	-	83	104	_	
A42MX16	-	-	72	83	-	125	140	_	-	83	140	_	
A42MX24	-	-	72	_	-	125	176	_	-	-	150	_	
A42MX36	-	-	-	_	-	_	176	202	-	-	-	202	

Note: Package Definitions: PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array

2.5 Ceramic Device Resources

Table 3 • Ceramic Device Resources

	User I/Os										
Device	CPGA 132-Pin	CQFP 172-Pin	CQFP 208-Pin	CQFP 256-Pin							
A42MX09	95										
A42MX16		131									
A42MX36			176	202							

Note: Package Definitions: CQFP = Ceramic Quad Flat Pack

2.6 Temperature Grade Offerings

Table 4 • Temperature Grade Offerings

Package	A40MX02	A40MX04	A42MX09	A42MX16	A42MX24	A42MX36
PLCC 44	C, I, M	C, I, M				
PLCC 68	C, I, A, M	C, I, M				
PLCC 84		C, I, A, M	C, I, A, M	C, I, M	C, I, M	
PQFP 100	C, I, A, M	C, I, A, M	C, I, A, M	C, I, M		
PQFP 144			С			
PQFP 160			C, I, A, M	C, I, M	C, I, A, M	
PQFP 208				C, I, A, M	C, I, A, M	C, I, A, M
PQFP 240						C, I, A, M
VQFP 80	C, I, A, M	C, I, A, M				
VQFP 100			C, I, A, M	C, I, A, M		
TQFP 176			C, I, A, M	C, I, A, M	C, I, A, M	
PBGA 272						C, I, M
CQFP 172				С, М, В		
CQFP 208						С, М, В
CQFP 256						С, М, В
CPGA 132			С, М, В			

Note: C = Commercial

I = Industrial

A = Automotive

M = Military

B = MIL-STD-883 Class B

2.7 Speed Grade Offerings

Table 5 • Speed Grade Offerings

	– F	Std	-1	-2	-3
С	Р	Р	Р	Р	Р
I		Р	Р	Р	Р
А		Р			
М		Р	Р		
В		Р	Р		

Note: See the 40MX and 42MX Automotive Family FPGAs datasheet for details on automotive-grade MX offerings.

Contact your local *Microsemi Sales representative* for device availability.

Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs.

Figure 10 • 42MX I/O Module

Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module)

Figure 11 • PCI Output Structure of A42MX24 and A42MX36 Devices

3.3 Other Architectural Features

The following sections cover other architectural features of 40MX and 42MX FPGAs.

3.3.1 Performance

MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-to-market. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance.

3.3.2 User Security

Microsemi FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and protect against unauthorized users attempting to access the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Microsemi antifuse FPGAs protected with the highest level of security available from both invasive and noninvasive attacks.

Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device.

3.3.3 Programming

Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor is designed to allow concurrent programming of multiple units from the same PC.

 $f_{\alpha 2}$ = Average second routed array clock rate in MHz)

Device Type	r1 routed_Clk1	r2 routed_Clk2
A40MX02	41.4	N/A
A40MX04	68.6	N/A
A42MX09	118	118
A42MX16	165	165
A42MX24	185	185
A42MX36	220	220

 Table 7 •
 Fixed Capacitance Values for MX FPGAs (pF)

3.4.6 Test Circuitry and Silicon Explorer II Probe

MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allow users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH.

Figure 12, page 16 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 13, page 17 illustrates the interconnection between Silicon Explorer II and 42MX devices

To allow for probing capabilities, the security fuses must not be programmed. (See User Security, page 12 for the security fuses of 40MX and 42MX devices). Table 8, page 17 summarizes the possible device configurations for probing.

PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins.

Figure 12 • Silicon Explorer II Setup with 40MX

Figure 19 • 42MX Timing Model (Logic Functions Using Quadrant Clocks)

Note: 1. Load-dependent

Note: 2. Values are shown for A42MX36 -3 at 5.0 V worst-case commercial conditions

Power Matters."

Figure 33 • 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)

3.10.7 Predictable Performance: Tight Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks.

The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 μ m lithography, offer nominal levels of 100 Ω resistance and 7.0 fF capacitance per antifuse.

MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses.

3.11 Timing Characteristics

Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays.

3.11.1 Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Microsemi's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical.

3.11.2 Long Tracks

Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add

Figure 35 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCC = 5.0 V)

Note: This derating factor applies to all routing and propagation delays

	Temperature										
42MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C				
3.00	0.97	1.00	1.10	1.15	1.32	1.36	1.45				
3.30	0.84	0.87	0.96	1.00	1.15	1.18	1.26				
3.60	0.81	0.84	0.92	0.96	1.10	1.13	1.21				

Figure 36 • 42MX Junction Temperature and Voltage Derating Curves

(Normalized to $TJ = 25^{\circ}C$, VCCA = 3.3 V)

Note: This derating factor applies to all routing and propagation delays

Table 31 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3 V)

	Temperat	Temperature										
40MX Voltage	–55°C	-40°C	0°C	25°C	70°C	85°C	125°C					
3.00	1.08	1.12	1.21	1.26	1.50	1.64	2.00					
3.30	0.86	0.89	0.96	1.00	1.19	1.30	1.59					

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		-3 Speed	-2 Speed	-1 Speed	Std Speed	–F Speed	
Parame	eter / Description	Min. Max.	Units				
CMOS	Output Module Timing ⁵						
t _{DLH}	Data-to-Pad HIGH	3.2	3.6	4.0	4.7	6.6	ns
t _{DHL}	Data-to-Pad LOW	2.5	2.7	3.1	3.6	5.1	ns
t _{ENZH}	Enable Pad Z to HIGH	2.7	3.0	3.4	4.0	5.6	ns
t _{ENZL}	Enable Pad Z to LOW	3.0	3.3	3.8	4.4	6.2	ns
t _{ENHZ}	Enable Pad HIGH to Z	5.4	6.0	6.8	8.0	11.2	ns
t _{ENLZ}	Enable Pad LOW to Z	5.0	5.6	6.3	7.4	10.4	ns
t _{GLH}	G-to-Pad HIGH	5.1	5.6	6.4	7.5	10.5	ns
t _{GHL}	G-to-Pad LOW	5.1	5.6	6.4	7.5	10.5	ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading	5.7	6.3	7.1	8.4	11.9	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading	8.0	8.9	10.1	11.9	16.7	ns
d _{TLH}	Capacitive Loading, LOW to HIGH	0.03	0.03	0.03	0.04	0.06	ns/pF

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, point and position whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading

Table 41 •	A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions,
	VCCA = 3.0 V, T _J = 70°C)

			-3 Speed		-2 Speed		peed	Std Speed		-F Speed		
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Me	odule Propagation Delays ¹											
t _{PD1}	Single Module		1.9		2.1		2.4		2.8		4.0	ns
t _{CO}	Sequential Clock-to-Q		2.0		2.2		2.5		3.0		4.2	ns
t _{GO}	Latch G-to-Q		1.9		2.1		2.4		2.8		4.0	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		2.2		2.4		2.8		3.3		4.6	ns
Logic Mo	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		1.1		1.2		1.4		1.6		2.3	ns
t _{RD2}	FO = 2 Routing Delay		1.5		1.6		1.8		2.1		3.0	ns
t _{RD3}	FO = 3 Routing Delay		1.8		2.0		2.3		2.7		3.8	ns
t _{RD4}	FO = 4 Routing Delay		2.2		2.4		2.7		3.2		4.5	ns
t _{RD8}	FO = 8 Routing Delay		3.6		4.0		4.5		5.3		7.5	ns

Table 41 •A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

		-3 Speed		-2 Speed -		-1 Speed		Std Speed		-F Speed		
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{ACO}	Array Clock-to-Out (Pad-to-Pad),64 Clock Loading		11.3		12.5		14.2		16.7		23.3	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing ansalysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G inputs subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 S	peed	Std S	peed	–F S	peed	
Paramete	r / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mod	dule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.2		1.3		1.5		1.8		2.5	ns
t _{PDD}	Internal Decode Module Delay		1.4		1.6		1.8		2.1		3.0	ns
Logic Mod	dule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.8		0.9		1.0		1.2		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.0		1.2		1.3		1.5		2.1	ns
t _{RD3}	FO = 3 Routing Delay		1.3		1.4		1.6		1.9		2.6	ns
t _{RD4}	FO = 4 Routing Delay		1.5		1.7		1.9		2.2		3.1	ns
t _{RD5}	FO = 8 Routing Delay		2.4		2.7		3.0		3.6		5.0	ns
Logic Mod	dule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.2		1.3		1.5		1.8		2.5	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.4		1.6		1.8		2.1		2.9	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.4		0.5		0.5		0.6		0.8		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.3		6.5		9.0		ns

PL68		
Pin Number	A40MX02 Function	A40MX04 Function
24	I/O	I/O
25	VCC	VCC
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	VCC	VCC
39	I/O	I/O
40	I/O	I/O
41	I/O	I/O
42	I/O	I/O
43	I/O	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	I/O	I/O
48	I/O	I/O
49	GND	GND
50	I/O	I/O
51	I/O	I/O
52	CLK, I/O	CLK, I/O
53	I/O	I/O
54	MODE	MODE
55	VCC	VCC
56	SDI, I/O	SDI, I/O
57	DCLK, I/O	DCLK, I/O
58	PRA, I/O	PRA, I/O
59	PRB, I/O	PRB, I/O
60	I/O	1/0

Table 49 • PL84

PL84				
Pin Number	A40MX04 Function	A42MX09 Function	A42MX16 Function	A42MX24 Function
47	I/O	I/O	I/O	WD, I/O
48	I/O	I/O	I/O	I/O
49	I/O	GND	GND	GND
50	I/O	I/O	I/O	WD, I/O
51	I/O	I/O	I/O	WD, I/O
52	I/O	SDO, I/O	SDO, I/O	SDO, TDO, I/O
53	I/O	I/O	I/O	I/O
54	I/O	I/O	I/O	I/O
55	I/O	I/O	I/O	I/O
56	I/O	I/O	I/O	I/O
57	I/O	I/O	I/O	I/O
58	I/O	I/O	I/O	I/O
59	I/O	I/O	I/O	I/O
60	GND	I/O	I/O	I/O
61	GND	I/O	I/O	I/O
62	I/O	I/O	I/O	TCK, I/O
63	I/O	LP	LP	LP
64	CLK, I/O	VCCA	VCCA	VCCA
65	I/O	VCCI	VCCI	VCCI
66	MODE	I/O	I/O	I/O
67	VCC	I/O	I/O	I/O
68	VCC	I/O	I/O	I/O
69	I/O	I/O	I/O	I/O
70	I/O	GND	GND	GND
71	I/O	I/O	I/O	I/O
72	SDI, I/O	I/O	I/O	I/O
73	DCLK, I/O	I/O	I/O	I/O
74	PRA, I/O	I/O	I/O	I/O
75	PRB, I/O	I/O	I/O	I/O
76	I/O	SDI, I/O	SDI, I/O	SDI, I/O
77	I/O	I/O	I/O	I/O
78	I/O	I/O	I/O	WD, I/O
79	I/O	I/O	I/O	WD, I/O
80	I/O	I/O	I/O	WD, I/O
81	I/O	PRA, I/O	PRA, I/O	PRA, I/O
82	GND	I/O	I/O	I/O
83	I/O	CLKA, I/O	CLKA, I/O	CLKA, I/O

Table 51 • PQ144

PQ144	
Pin Number	A42MX09 Function
80	GNDI
81	NC
82	I/O
83	I/O
84	I/O
85	I/O
86	I/O
87	I/O
88	VKS
89	VPP
90	VCC
91	VCCI
92	NC
93	VSV
94	I/O
95	I/O
96	I/O
97	I/O
98	I/O
99	I/O
100	GND
101	GNDI
102	NC
103	I/O
104	I/O
105	I/O
106	I/O
107	I/O
108	I/O
109	I/O
110	SDI
111	I/O
112	I/O
113	I/O
114	I/O
115	I/O
116	GNDQ

Figure 44 • PQ208

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
1	GND	GND	GND
2	NC	VCCA	VCCA
3	MODE	MODE	MODE
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	NC	I/O	I/O
10	NC	I/O	I/O
11	NC	I/O	I/O
12	I/O	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	NC	I/O	I/O
17	VCCA	VCCA	VCCA
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	I/O	I/O

Figure 47 • VQ100

Table 56 • VQ100

A42MX09 Function	A42MX16 Function
I/O	I/O
MODE	MODE
I/O	I/O
GND	GND
I/O	I/O
VCCA	NC
VCCI	VCCI
I/O	I/O
GND	GND
	A42MX09 Function I/O MODE I/O I/O

Table	56•	VQ100

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
93	I/O	I/O
94	GND	GND
95	I/O	I/O
96	I/O	I/O
97	I/O	I/O
98	I/O	I/O
99	I/O	I/O
100	DCLK, I/O	DCLK, I/O

Figure 48 • TQ176

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
1	GND	GND	GND
2	MODE	MODE	MODE
3	I/O	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	NC	NC	I/O
9	I/O	I/O	I/O

Table 58 • CQ208	
CQ208	
Pin Number	A42MX36 Function
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
42	I/O
43	I/O
44	I/O
45	I/O
46	I/O
47	I/O
48	I/O
49	I/O
50	I/O
51	I/O
52	GND
53	GND
54	TMS, I/O
55	TDI, I/O
56	I/O
57	WD, I/O
58	WD, I/O
59	I/O
60	VCCI
61	I/O
62	I/O
63	I/O
64	I/O
65	QCLKA, I/O
66	WD, I/O
67	WD, I/O
68	Ι/Ο
69	Ι/Ο
70	WD, I/O
71	WD, I/O
72	I/O
73	I/O

Table 60 • BG272		
BG272		
Pin Number	A42MX36 Function	
V16	I/O	
V17	I/O	
V18	SDO, TDO, I/O	
V19	I/O	
V20	I/O	
W1	GND	
W2	GND	
W3	I/O	
W4	TMS, I/O	
W5	I/O	
W6	I/O	
W7	I/O	
W8	WD, I/O	
W9	WD, I/O	
W10	I/O	
W11	I/O	
W12	I/O	
W13	WD, I/O	
W14	I/O	
W15	I/O	
W16	WD, I/O	
W17	I/O	
W18	WD, I/O	
W19	GND	
W20	GND	
Y1	GND	
Y2	GND	
Y3	I/O	
Y4	TDI, I/O	
Y5	WD, I/O	
Y6	I/O	
Y7	QCLKA, I/O	
Y8	I/O	
Y9	I/O	
Y10	I/O	
Y11	I/O	
Y12	I/O	

A42MX09 Function
VSV
I/O
SDI
I/O
PRBA
I/O
CLKA
I/O
CLKB
I/O
PRBB
I/O

Table 62 •	CQ172	
99		I/O
100		I/O
101		I/O
102		I/O
103		GND
104		I/O
105		I/O
106		VKS
107		VPP
108		GND
109		VCCI
110		VSV
111		I/O
112		I/O
113		VCC
114		I/O
115		I/O
116		I/O
117		I/O
118		GND
119		I/O
120		I/O
121		I/O
122		I/O
123		GNDI
124		I/O
125		I/O
126		I/O
127		I/O
128		I/O
129		I/O
130		I/O
131		SDI
132		I/O
133		I/O
134		I/O
135		I/O
136		VCCI
137		I/O