E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	2560
Number of I/O	176
Number of Gates	54000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx36-3pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

- The Transient Current, page 13 is new (SAR 36930).
- Package names were revised according to standards established in *Package Mechanical Drawings* (SAR 34774)

1.7 Revision 9.0

The following is a summary of the changes in revision 9.0 of this document

In Table 20, page 23, the limits in VI were changed from -0.5 to VCCI + 0.5 to -0.5 to VCCA + 0.5

In Table 22, page 25, V_{OH} was changed from 3.7 to 2.4 for the min in industrial and military. V_{IH} had V_{CCI} and that was changed to VCCA

1.8 Revision 6.0

The following is a summary of the changes in revision 6.0 of this document.

- The Ease of Integration, page 1 was updated
- The Temperature Grade Offerings, page 5 is new
- The Speed Grade Offerings, page 5 is new
- The General Description, page 6 was updated
- The MultiPlex I/O Modules, page 11 was updated
- The User Security, page 12 was updated
- Table 6, page 13 was updated
- The Power Dissipation, page 14 was updated.
- The Static Power Component, page 14 was updated
- The Equivalent Capacitance, page 15 was updated
- Figure 13, page 17 was updated
- Table 10, page 18 was updated.
- Figure 14, page 18 was updated.
- Table 11, page 19 was updated.

2.3 Ordering Information

The following figure shows ordering information.All the following tables show plastic and ceramic device resources, temperature and speed grade offerings.

Figure 1 • Ordering Information

reliability. Devices should not be operated outside the recommended operating conditions.

Table 21 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCCA	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCI	3.14 to 3.47	3.0 to 3.6	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

Figure 16 • Typical Output Drive Characteristics (Based Upon Measured Data)

3.9.4 Junction Temperature (T_J)

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. The following equation can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

EQ 4

where:

- T_a = Ambient Temperature
- ΔT = Temperature gradient between junction (silicon) and ambient
- $\Delta T = \theta_{ia} * P(2)$
- P = Power
- θ_{ia} = Junction to ambient of package. θ_{ia} numbers are located in Table 27, page 29.

3.9.5 Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150°C.

Maximum power dissipation for commercial- and industrial-grade devices is a function of θ_{ia} .

Note: Values are shown for A42MX36 –3 at 5.0 V worst-case commercial conditions.

3.10.1 Parameter Measurement

The following figures show parameter measurement details.

Figure 21 • Output Buffer Delays

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

		-3 S	peed	–2 Sj	beed	–1 S	peed	Std S	Speed	–F Sj	peed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RD4}	FO = 4 Routing Delay		1.9		2.1		2.4		2.9		4.0	ns
t _{RD8}	FO = 8 Routing Delay		3.2		3.6		4.1		4.8		6.7	ns
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	0.5		0.5		0.6		0.7		0.9		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.6		0.6		0.7		0.8		1.2		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.7		5.3		6.0		7.0		9.8		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	6.2		6.9		7.8		9.2		12.9		ns
t _A	Flip-Flop Clock Input Period	5.0		5.6		6.2		7.1		9.9		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set-Up	0.3		0.3		0.3		0.4		0.6		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch Set-Up	0.3		0.3		0.3		0.4		0.6		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		161		146		135		117		70	MHz

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

-		–3 S	speed	–2 S	peed	–1 S	peed	Std S	Speed	–F S	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	tput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		4.3		5.1		7.1	ns
t _{DHL}	Data-to-Pad LOW		4.0		4.5		5.1		6.1		8.3	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad),64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.00		0.00		0.00		0.10		0.01	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.09		0.10		0.10		0.10		0.10	ns/pF

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 S	peed	Std S	peed	–F S	peed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	dule Propagation Delays											
t _{INPY}	Input Data Pad-to-Y		1.0		1.1		1.3		1.5		2.1	ns
t _{INGO}	Input Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.6	ns
t _{INH}	Input Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{ILA}	Latch Active Pulse Width	4.7		5.2		5.9		6.9		9.7		ns

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

			-3 S	peed	–2 Sp	beed	–1 S	peed	Std S	peed	–F S	peed	
Parameter	r / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mod	ule Predicted Routing	Delays ²											
t _{IRD1}	FO = 1 Routing Delay			1.8		2.0		2.3		2.7		3.8	ns
t _{IRD2}	FO = 2 Routing Delay			2.1		2.3		2.6		3.1		4.3	ns
t _{IRD3}	FO = 3 Routing Delay			2.3		2.5		2.9		3.4		4.8	ns
t _{IRD4}	FO = 4 Routing Delay			2.5		2.8		3.2		3.7		5.2	ns
t _{IRD8}	FO = 8 Routing Delay			3.4		3.8		4.3		5.1		7.1	ns
Global Clo	ock Network												
t _{CKH}	Input LOW to HIGH	FO = 32 FO = 486		2.6 2.9		2.9 3.2		3.3 3.6		3.9 4.3		5.4 5.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 486		3.7 4.3		4.1 4.7		4.6 5.4		5.4 6.3		7.6 8.8	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 486		0.5 0.5		0.6 0.6		0.7 0.7		0.8 0.8		1.1 1.1	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 486	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 486	2.8 3.3		3.1 3.7		3.5 4.2		4.1 4.9		5.7 6.9		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 486	4.7 5.1		5.2 5.7		5.7 6.2		6.5 7.1		10.9 11.9		ns ns

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued)(Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 Sj	peed	Std S	speed	–F S	peed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	put Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		2.4		2.7		3.1		3.6		5.1	ns
t _{DHL}	Data-to-Pad LOW		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZH}	Enable Pad Z to HIGH		2.5		2.8		3.2		3.8		5.3	ns
t _{ENZL}	Enable Pad Z to LOW		2.8		3.1		3.5		4.2		5.9	ns
t _{ENHZ}	Enable Pad HIGH to Z		5.2		5.7		6.5		7.6		10.7	ns
t _{ENLZ}	Enable Pad LOW to Z		4.8		5.3		6.0		7.1		9.9	ns
t _{GLH}	G-to-Pad HIGH		2.9		3.2		3.6		4.3		6.0	ns
t _{GHL}	G-to-Pad LOW		2.9		3.2		3.6		4.3		6.0	ns
t _{LSU}	I/O Latch Output Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Output Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.6		6.1		6.9		8.1		11.4	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		10.6		11.8		13.4		15.7		22.0	ns
d_{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF

Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDI, I/OTest Data In

Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDO, I/OTest Data Out

Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TMS, I/OTest Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a $10k\Omega$ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices.

VCC, Supply Voltage

Input supply voltage for 40MX devices

VCCA, Supply Voltage

Supply voltage for array in 42MX devices

VCCI, Supply Voltage

Supply voltage for I/Os in 42MX devices

WD, I/OWide Decode Output

When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins.

Table 49 • PL84

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
1	NC	NC	I/O	I/O
2	NC	NC	DCLK, I/O	DCLK, I/O
3	NC	NC	I/O	I/O
4	NC	NC	MODE	MODE
5	NC	NC	I/O	I/O
6	PRB, I/O	PRB, I/O	I/O	I/O
7	I/O	I/O	I/O	I/O
8	I/O	I/O	I/O	I/O
9	I/O	I/O	GND	GND
10	I/O	I/O	I/O	I/O
11	I/O	I/O	I/O	I/O
12	I/O	I/O	I/O	I/O
13	GND	GND	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	VCCA	VCCA
17	I/O	I/O	VCCI	VCCA
18	I/O	I/O	I/O	I/O

Figure 44 • PQ208

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
1	GND	GND	GND
2	NC	VCCA	VCCA
3	MODE	MODE	MODE
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	NC	I/O	I/O
10	NC	I/O	I/O
11	NC	I/O	I/O
12	I/O	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	NC	I/O	I/O
17	VCCA	VCCA	VCCA
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	I/O	I/O

Table 54 • PQ2	40	
PQ240		
Pin Number	A42MX36 Function	
200	I/O	
201	I/O	
202	I/O	
203	I/O	
204	I/O	
205	I/O	
206	VCCA	
207	I/O	
208	I/O	
209	VCCA	
210	VCCI	
211	I/O	
212	I/O	
213	I/O	
214	I/O	
215	I/O	
216	I/O	
217	I/O	
218	I/O	
219	VCCA	
220	I/O	
221	I/O	
222	I/O	
223	I/O	
224	I/O	
225	I/O	
226	I/O	
227	VCCI	
228	I/O	
229	I/O	
230	I/O	
231	I/O	
232	Ι/Ο	
233	I/O	
234	Ι/Ο	
235	Ι/Ο	
236	I/O	

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
84	I/O	I/O	WD, I/O
85	I/O	I/O	WD, I/O
86	NC	I/O	I/O
87	SDO, I/O	SDO, I/O	SDO, TDO, I/O
88	I/O	I/O	I/O
89	GND	GND	GND
90	I/O	I/O	I/O
91	I/O	I/O	I/O
92	I/O	I/O	I/O
93	I/O	I/O	I/O
94	I/O	I/O	I/O
95	I/O	I/O	I/O
96	NC	I/O	I/O
97	NC	I/O	I/O
98	I/O	I/O	I/O
99	I/O	I/O	I/O
100	I/O	I/O	I/O
101	NC	NC	I/O
102	I/O	I/O	I/O
103	NC	I/O	I/O
104	I/O	I/O	I/O
105	I/O	I/O	I/O
106	GND	GND	GND
107	NC	I/O	I/O
108	NC	I/O	TCK, I/O
109	LP	LP	LP
110	VCCA	VCCA	VCCA
111	GND	GND	GND
112	VCCI	VCCI	VCCI
113	VCCA	VCCA	VCCA
114	NC	I/O	I/O
115	NC	I/O	I/O
116	NC	VCCA	VCCA
117	I/O	I/O	I/O
118	I/O	I/O	I/O
119	I/O	I/O	I/O
120	I/O	I/O	I/O

CQ256	
Pin Number	A42MX36 Function
96	VCCA
97	GND
98	GND
99	I/O
100	I/O
101	I/O
102	I/O
103	I/O
104	I/O
105	WD, I/O
106	WD, I/O
107	I/O
108	I/O
109	WD, I/O
110	WD, I/O
111	I/O
112	QCLKA, I/O
113	I/O
114	GND
115	I/O
116	I/O
117	I/O
118	I/O
119	VCCI
120	I/O
121	WD, I/O
122	WD, I/O
123	I/O
124	I/O
125	I/O
126	I/O
127	GND
128	NC
129	NC
130	NC
131	GND
132	I/O

CQ256	
Pin Number	A42MX36 Function
207	I/O
208	I/O
209	QCLKC, I/O
210	I/O
211	WD, I/O
212	WD, I/O
213	I/O
214	I/O
215	WD, I/O
216	WD, I/O
217	I/O
218	PRB, I/O
219	I/O
220	CLKB, I/O
221	I/O
222	GND
223	GND
224	VCCA
225	VCCI
226	I/O
227	CLKA, I/O
228	I/O
229	PRA, I/O
230	I/O
231	I/O
232	WD, I/O
233	WD, I/O
234	I/O
235	I/O
236	I/O
237	I/O
238	I/O
239	I/O
240	QCLKD, I/O
241	I/O
242	WD, I/O
243	GND

Table 60 • BG272 BG272		
T19	I/O	
T20	I/O	
U1	I/O	
U2	I/O	
U3	I/O	
U4	I/O	
U5	VCCI	
U6	WD, I/O	
U7	I/O	
U8	I/O	
U9	WD, I/O	
U10	VCCA	
U11	VCCI	
U12	I/O	
U13	I/O	
U14	QCLKB, I/O	
U15	I/O	
U16	VCCI	
U17	I/O	
U18	GND	
U19	I/O	
U20	I/O	
V1	I/O	
V2	I/O	
V3	GND	
V4	GND	
V5	I/O	
V6	I/O	
V7	I/O	
V8	WD, I/O	
V9	I/O	
V10	I/O	
V11	I/O	
V12	I/O	
V13	WD, I/O	
V14	I/O	
V15	WD, I/O	

Table 61 • PG132 PG132		
G12	VSV	
F13	I/O	
F12	I/O	
F11	I/O	
F10	I/O	
E13	I/O	
D13	I/O	
D12	I/O	
C13	I/O	
B13	I/O	
D11	I/O	
C12	I/O	
A13	I/O	
C11	I/O	
B12	SDI	
B11	I/O	
C10	I/O	
A12	I/O	
A11	I/O	
B10	I/O	
D8	I/O	
A10	I/O	
C8	I/O	
A9	I/O	
B8	PRBA	
A8	I/O	
B7	CLKA	
A7	I/O	
B6	CLKB	
A6	I/O	
C6	PRBB	
A5	I/O	
D6	I/O	
A4	I/O	
B4	I/O	
A3	I/O	
C4	I/O	