

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6390-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Name	Pin Number		Buffer	Description				
T III Naille	TQFP	Туре	Туре	Description				
				PORTC is a bidirectional I/O port.				
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.				
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽¹⁾	29	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.				
RC2/CCP1/SEG13 RC2 CCP1 SEG13	33	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.				
RC3/SCK/SCL RC3 SCK SCL	34	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.				
RC4/SDI/SDA RC4 SDI SDA	35	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.				
RC5/SDO/SEG12 RC5 SDO SEG12	36	I/O O O	ST — Analog	Digital I/O. SPI data out. SEG12 output for LCD.				
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).				
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).				
Legend: TTL = TTL co ST = Schmi I = Input P = Power	tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)				

TABLE 1-2: PIC18F6X90 PINOUT I/O DESCRI	PTIONS (CONTINUED)
---	--------------------

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number	Pin	Buffer	Description				
Fill Naille	TQFP	Туре	Туре	Description				
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.				
RB0/INT0 RB0 INT0	58	I/O I	TTL ST	Digital I/O. External interrupt 0.				
RB1/INT1/SEG8 RB1 INT1 SEG8	57	I/O I O	TTL ST Analog	Digital I/O. External interrupt 1. SEG8 output for LCD.				
RB2/INT2/SEG9 RB2 INT2 SEG9	56	I/O I O	TTL ST Analog	Digital I/O. External interrupt 2. SEG9 output for LCD.				
RB3/INT3/SEG10 RB3 INT3 SEG10	55	I/O I O	TTL ST Analog	Digital I/O. External interrupt 3. SEG10 output for LCD.				
RB4/KBI0/SEG11 RB4 KBI0 SEG11	54	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.				
RB5/KBI1 RB5 KBI1	53	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.				
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.				
RB7/KBI3/PGD RB7 KBI3 PGD	47	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.				
I = Input P = Power	tt Trigger input			O = Output OD = Open-Drain (no P diode to VDD)				
Note 1: Default assignment	nent for CCP2	when (Configura	tion bit, CCP2MX, is set.				

TABLE 1-3: PIC18F8X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
SPBRGH1	EUSART1 Ba	aud Rate Gene	erator Register	r High Byte					0000 0000	62, 201
BAUDCON1	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	62, 200
LCDDATA23(6)	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	XXXX XXXX	63, 261
LCDDATA22(6)	S39C3	S38C3	S37C3	S36C3	S35C3	S34C3	S33C3	S32C3	XXXX XXXX	63, 261
LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	XXXX XXXX	63, 261
LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	XXXX XXXX	63, 261
LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	XXXX XXXX	63, 261
LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	XXXX XXXX	63, 261
LCDDATA17 ⁽⁶⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	XXXX XXXX	63, 261
LCDDATA16 ⁽⁶⁾	S39C2	S38C2	S37C2	S36C2	S35C2	S34C2	S33C2	S32C2	XXXX XXXX	63, 261
LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	XXXX XXXX	63, 261
LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	XXXX XXXX	63, 261
LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	XXXX XXXX	63, 261
LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	XXXX XXXX	63, 261
LCDDATA11 ⁽⁶⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	XXXX XXXX	63, 261
SPBRG2	AUSART2 Ba	aud Rate Gene	erator Register	r					0000 0000	63, 220
RCREG2	AUSART2 Re	eceive Registe	er -						0000 0000	63, 224
TXREG2	AUSART2 Tr	ansmit Registe	er						0000 0000	63, 222
TXSTA2	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	63, 218
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	63, 219
LCDDATA10 ⁽⁶⁾	S39C1	S38C1	S37C1	S36C1	S35C1	S34C1	S33C1	S32C1	XXXX XXXX	63, 261
LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	XXXX XXXX	63, 261
LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	XXXX XXXX	63, 261
LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	XXXX XXXX	63, 261
LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	XXXX XXXX	63, 261
LCDDATA5 ⁽⁶⁾	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	XXXX XXXX	63, 261
LCDDATA4 ⁽⁶⁾	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	XXXX XXXX	63, 261
LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	XXXX XXXX	63, 261
LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	XXXX XXXX	63, 261
LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	XXXX XXXX	63, 261
LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	XXXX XXXX	63, 261
LCDSE5 ⁽²⁾	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	0000 0000	64, 261
LCDSE4 ⁽²⁾	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	0000 0000	64, 260
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	0000 0000	64, 260
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	64, 260
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	64, 260
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	64, 260
LCDCON	LCDEN	SLPEN	WERR	_	CS1	CS0	LMUX1	LMUX0	000- 0000	64, 258
LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	0000 0000	64, 259

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 64-pin devices; read as '0'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: The RG5 bit is only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: These registers are implemented but unused in 64-pin devices and may be used as general-purpose data RAM if required.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
bit 7							bit C
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 7	RBPU : PORT	B Pull-up Enat	ole bit				
		B pull-ups are bull-ups are		dual port latch v	alues		
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Selec	t bit			
		on rising edge on falling edge					
bit 5		tternal Interrupt		t hit			
		on rising edge					
		on falling edge					
bit 4		ternal Interrupt	2 Edge Selec	t bit			
		on rising edge on falling edge					
bit 3	•	ternal Interrupt		t bit			
		on rising edge	·				
	•	on falling edge					
bit 2	1 = High prio	R0 Overflow Int	errupt Priority	bit			
	0 = Low prior	•					
bit 1	INT3IP: INT3	External Interr	upt Priority bit				
	1 = High prio						
1.11.0	0 = Low prior	•					
bit 0	1 = High prio	rt Change Inter	rupt Priority bit				
	0 = Low prior	•					
Note:	Interrupt flag bits enable bit or the g are clear prior to	global interrupt	enable bit. Use	er software sho	uld ensure the	appropriate int	

REGISTER 8-2: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 8-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	R/W-0	R-0	R-0	U-0	U-0	U-0	U-0
	LCDIE	RC2IE	TX2IE	_			_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	ented bit, reac	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own
bit 6	1 = Enabled	·	bit (valid wher	n Type-B wavefo	orm with Non-S	tatic mode is se	lected)
	0 = Disabled						
bit 5		ART Receive Int	errupt Enable	bit			
bit 5 bit 4	RC2IE: AUSA 1 = Enabled 0 = Disabled	ART Receive Int	·				

© 2007 Microchip Technology Inc.

15.4.4 CLOCK STRETCHING

Both 7 and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

15.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 15-13).

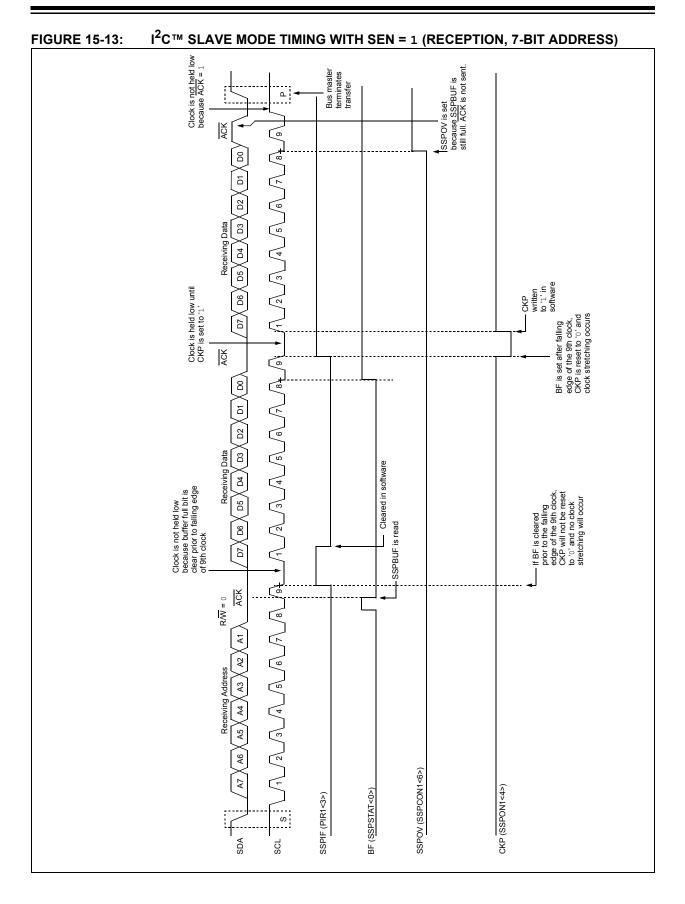
- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

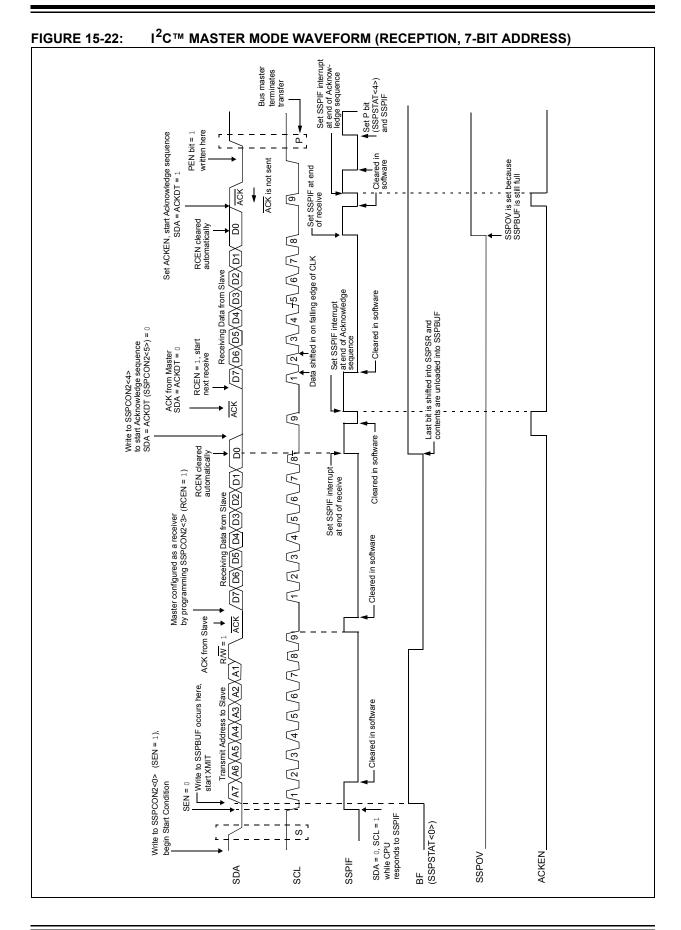
15.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

15.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode


7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

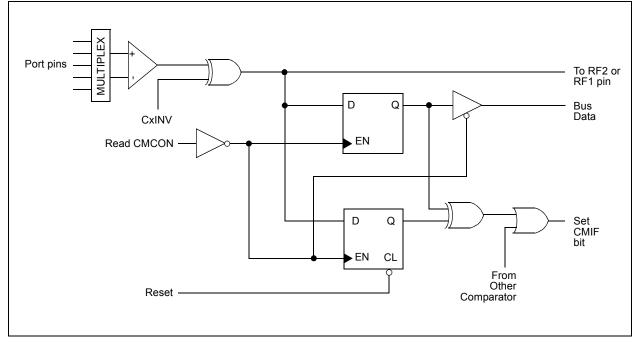

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 15-9).

Note 1:	If the user loads the contents of SSPBUF,							
	setting the BF bit before the falling edge of							
	the ninth clock, the CKP bit will not be							
	cleared and clock stretching will not occur.							
2:	The CKP bit can be set in software							
	regardless of the state of the BF bit.							

15.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the highorder bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 15-11).

19.0 COMPARATOR MODULE


The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RF3 through RF6, as well as the on-chip voltage reference (see Section 20.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register.

The CMCON register (Register 19-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 19-1.

REGISTER 19-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 7	C2OUT: Corr	parator 2 Outp	ut bit				
	When C2INV	• •					
	1 = C2 VIN+ 2						
	0 = C2 VIN+ ·	< C2 VIN-					
	When C2INV						
	1 = C2 VIN+ ·						
	0 = C2 VIN+ :						
bit 6		parator 1 Outp	ut bit				
	$\frac{\text{When C1INV}}{1 = C1 \text{VIN} + 3}$						
	1 = C1 VIN+2 0 = C1 VIN+2	• • • • • •					
	When C1INV						
	1 = C1 VIN+						
	0 = C1 VIN+ 3	> C1 VIN-					
bit 5	C2INV: Com	parator 2 Outpu	It Inversion bit				
	1 = C2 outpu						
	0 = C2 outpu	t not inverted					
bit 4	C1INV: Com	parator 1 Outpu	It Inversion bit				
	1 = C1 Outpu						
		ut not inverted					
bit 3	CIS: Compar	ator Input Swite	ch bit				
	When CM2:C						
		connects to RF					
		connects to RF3					
		connects to RF					
bit 2-0		comparator Mod					
		•	parator modes				

FIGURE 19-3: COMPARATOR OUTPUT BLOCK DIAGRAM

19.6 Comparator Interrupts

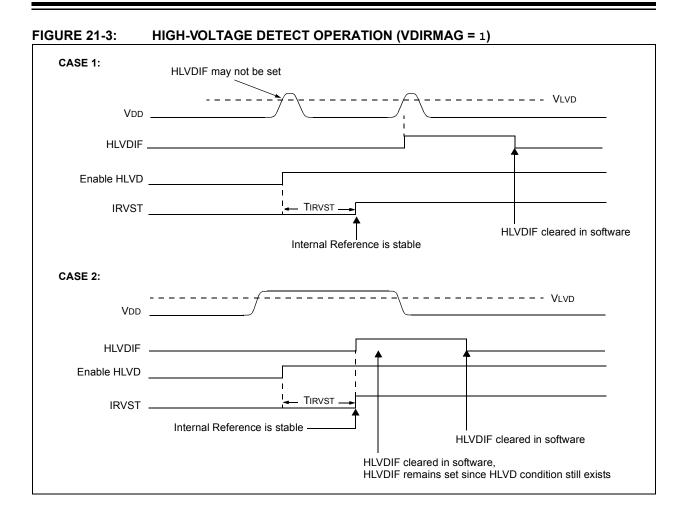
The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	lf a	change	in	the	CMCON	register				
	(C1OUT or C2OUT) should occur when a									
	read operation is being executed (start of									
	the Q2 cycle), then the CMIF (PIR2<6>)									
		upt flag m								

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

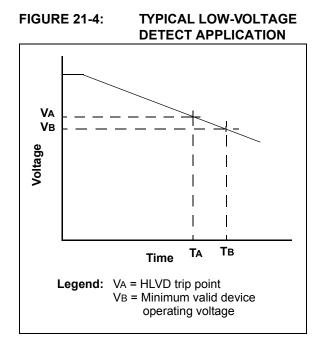
- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit, CMIF.


A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

19.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM2:CM0 = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

19.8 Effects of a Reset


A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode (CM2:CM0 = 000). This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators are powered down during the Reset interval.

21.5 Applications

In many applications, the ability to detect a drop below, or rise above a particular threshold, is desirable. For example, the HLVD module could be periodically enabled to detect USB attach or detach. This assumes the device is powered by a lower voltage source than the Universal Serial Bus when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 21-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

22.1 LCD Registers

The LCD driver module has 32 registers:

- LCD Control Register (LCDCON)
- LCD Phase Register (LCDPS)
- Six LCD Segment Enable Registers (LCDSE5:LCDSE0)
- 24 LCD Data Registers (LCDDATA23:LCDDATA0)

-n = Value at POR

The LCDCON register, shown in Register 22-1, controls the overall operation of the module. Once the module is configured, the LCDEN (LCDCON<7>) bit is

used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN (LCDCON<6>) bit.

The LCDPS register, shown in Register 22-2, configures the LCD clock source prescaler and the type of waveform, Type-A or Type-B. Details on these features are provided in Section 22.2 "LCD Clock Source Selection", Section 22.3 "LCD Bias Types" and Section 22.8 "LCD Waveform Generation".

x = Bit is unknown

REGISTER 22-1: LCDCON: LCD CONTROL REGISTER

'1' = Bit is set

R = Readable bit W = Writable bit			U = Unimplem				
Legend:	C = Clearable Only bit						
bit 7							bit 0
LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0
R/W-0	R/W-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

bit 7	I CDEN: I CD Driver Enchle hit

Dit 7	LCDEN: LCD Driver Enable bit
	1 = LCD driver module is enabled
	0 = LCD driver module is disabled
bit 6	SLPEN: LCD Driver Enable in Sleep mode bit
	1 = LCD driver module is disabled in Sleep mode
	0 = LCD driver module is enabled in Sleep mode
bit 5	WERR: LCD Write Failed Error bit
	1 = LCDDATAx register written while LCDPS <wa> = 0 (must be cleared in software)</wa>
	0 = No LCD write error
bit 4	Unimplemented: Read as '0'
bit 3-2	CS1:CS0: Clock Source Select bits
	00 = (Fosc/4)/8192
	01 = T13CKI (Timer1)/32
	1x = INTRC (31.25 kHz)/32
hit 1 0	I MUX1: I MUX0: Commons Select hits

bit 1-0 LMUX1:LMUX0: Commons Select bits

LMUX1:LMUX0	Multiplex	Maximum Number of Pixels (PIC18F6X90)	Maximum Number of Pixels (PIC18F8X90)	Bias
00	Static (COM0)	32	48	Static
01	1/2 (COM1:COM0)	64	96	1/2 or 1/3
10	1/3 (COM2:COM0)	96	144	1/2 or 1/3
11	1/4 (COM3:COM0)	128	192	1/3

NOTES:

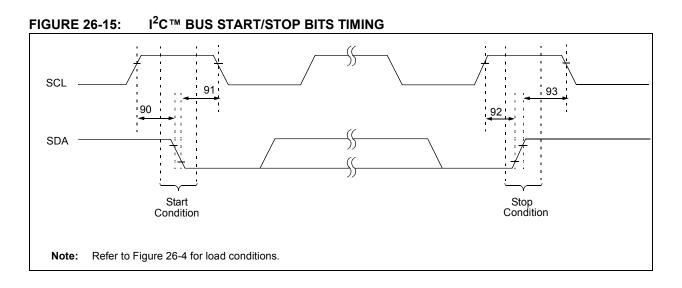
BNC	V	Branch if	Not Overflo	w	BNZ	Br
Synta	ax:	BNOV n			Syntax:	BN
Oper	ands:	-128 ≤ n ≤ 1	127		Operands:	-12
Oper	ation:	if Overflow (PC) + 2 + 2	,		Operation:	if Z (P0
Statu	s Affected:	None			Status Affected:	No
Enco	oding:	1110	0101 nn:	nn nnnn	Encoding:	
Desc	ription:	program wil The 2's con added to the incremente instruction,	nplement num e PC. Since th d to fetch the i the new addre n. This instruct	ber '2n' is e PC will have next ess will be	Description:	If th will The add inc ins PC two
Word	ls:	1			Words:	1
Cycle	es:	1(2)			Cycles:	1(2
Q C If Ju	ycle Activity: Imp:				Q Cycle Activity: If Jump:	
	Q1	Q2	Q3	Q4	Q1	
	Decode	Read literal 'n'	Process Data	Write to PC	Decode	Read
	No	No	No	No	No	
16 5 1	operation	operation	operation	operation	operation	оре
If No	o Jump:	02	00	04	If No Jump:	
	Q1 Decode	Q2 Read literal	Q3 Process	Q4 No	Q1 Decode	Read
	Decode	'n'	Data	operation	Decode	Read
	nple: Before Instruct PC After Instruction If Overflot PC If Overflot PC	= adv on ow = 0; = adv ow = 1;	BNOV Jump dress (HERE dress (Jump dress (HERE)	Example: Before Instruc PC After Instructi If Zero PC If Zero PC PC	on

BNZ	BNZ Branch if Not Zero						
Synta	ax:	BNZ n					
Oper	ands:	-128 ≤ n ≤ ′	127				
Oper	ation:		if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC				
Statu	is Affected:	None					
Enco	oding:	1110	0001	nnnn	nnnn		
Desc	ription:	If the Zero I will branch.	bit is '0',	then the p	brogram		
		The 2's con added to the incremente instruction, PC + 2 + 2r two-cycle ir	e PC. Sir d to fetch the new n. This in	nce the PO the next address v struction	C will have will be		
Word	ls:	1					
Cycle	es:	1(2)	1(2)				
Q C If Ju	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proce Data		ite to PC		
	No operation	No operation	No operat	ion o	No peration		
lf No	o Jump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proce Data		No peration		
Exan	Before Instruc			Jump			
	PC After Instructio		dress (H	ERE)			

0; address (Jump)

1; address (HERE + 2)

= = =


After Instruction W =

тоти	FSZ	Test f, Ski	ip if 0			
Synta	IX:	TSTFSZ f {,	.a}			
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$				
Opera	ation:	skip if f = 0				
Statu	s Affected:	None				
Enco	ding:	0110	011a fff	f ffff		
Encoding: Description:		during the c is discarded making this If 'a' is '0', th If 'a' is '1', th GPR bank. If 'a' is '0' an set is enable in Indexed I mode when	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See			
		Bit-Oriente	2.3 "Byte-Ori d Instruction et Mode" for	s in Indexed		
Word	s:	1				
Cycle	es:	•	rcles if skip and a 2-word instru			
Q C	cle Activity:					
,	Q1	Q2	Q3	Q4		
[Decode	Read	Process	No		
		register 'f'	Data	operation		
lf ski	p:					
Г	Q1	Q2	Q3	Q4		
	No operation	No operation	No operation	No operation		
lf ski		d by 2-word ins		oporation		
	Q1	Q2	Q3	Q4		
[No	No	No	No		
	operation	operation	operation	operation		
	No	No	No	No		
L	operation	operation	operation	operation		
Example: HERE TSTFSZ CNT, 1 NZERO : ZERO :				, 1		
	Before Instruc PC After Instructic	= Ad	dress (HERE))		
	If CNT PC If CNT	= 001	dress (ZERO))		
	PC		dress (NZERO))		

XORLW	Exclusiv	/e OR Li	teral wi	th W
Syntax:	XORLW	k		
Operands:	$0 \le k \le 25$	5		
Operation:	(W) .XOR	$k \rightarrow W$		
Status Affected:	N, Z			
Encoding:	0000	1010	kkkk	kkkk
Description:	The conte the 8-bit li in W.			
Words:	1			
0	1			
Cycles:	1			
Cycles: Q Cycle Activity:	I			
•	۲ Q2	Q3		Q4
Q Cycle Activity:		Q3 Proce Data		Q4 rite to W
Q Cycle Activity:	Q2 Read	Proce		

1Ah

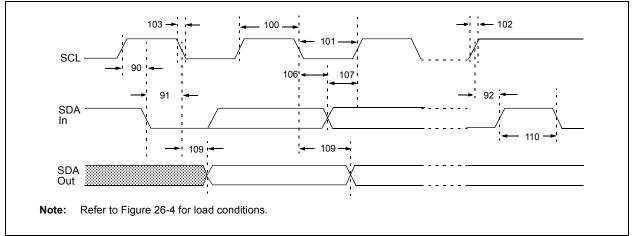

© 2007 Microchip Technology Inc.

TABLE 26-17: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold Time	400 kHz mode	600	—		clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold Time	400 kHz mode	600	_		

FIGURE 26-16: I²C[™] BUS DATA TIMING

APPENDIX A: REVISION HISTORY

Revision A (July 2004)

Original data sheet for PIC18F6390/6490/8390/8490 devices.

Revision B (August 2004)

Updated preliminary "electrical characteristics" data.

Revision C (November 2007)

Revised I^2C^{TM} Slave Mode Timing figure. Updated DC Power-Down and Supply Current table and package drawings.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F6390	PIC18F6490	PIC18F8390	PIC18F8490
Number of Pixels the LCD Driver can Drive	128 (4 x 32)	128 (4 x 32)	192 (4 x 48)	192 (4 x 48)
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Flash Program Memory	8 Kbytes	16 Kbytes	8 Kbytes	16 Kbytes
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

TABLE B-1: DEVICE DIFFERENCES

Interrupt Sources	281
A/D Conversion Complete	235
Capture Complete (CCP)	150
Compare Complete (CCP)	151
Interrupt-on-Change (RB7:RB4)	112
INTx Pin	108
PORTB, Interrupt-on-Change	108
TMR0	108
TMR0 Overflow	133
TMR1 Overflow	135
TMR2 to PR2 Match (PWM)	153
TMR3 Overflow14	3, 145
Interrupts	93
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)	112
INTOSC Frequency Drift	34
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	318
IORWF	318
IPR Registers	104

L

LCD	
Associated Registers	279
Bias Types	263
Clock Source Selection	262
Configuring the Module	278
Frame Frequency	264
Interrupts	276
LCDCON Register	258
LCDDATA Register	258
LCDPS Register	258
LCDSE Register	258
Multiplex Types	263
Operation During Sleep	277
Pixel Control	264
Prescaler	262
Segment Enables	263
Waveform Generation	264
LCDCON Register	258
LCDDATA Register	258
LCDPS Register	258
LP3:LP0 Bits	262
LCDSE Register	258
LFSR	319
Liquid Crystal Display (LCD) Driver	257
Look-up Tables	68

Μ

Master Clear (MCLR)	53
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	65
Data Memory	71
Program Memory	65
Memory Programming Requirements	364
Microchip Internet Web Site	409
Migration from Baseline to Enhanced Devices	396
Migration from High-End to Enhanced Devices	397
Migration from Mid-Range to Enhanced Devices	397
MOVF	319
MOVFF	320
MOVLB	320
MOVLW	321
MOVSF	339
MOVSS	340

MOVWF	321
MPLAB ASM30 Assembler, Linker, Librarian	346
MPLAB ICD 2 In-Circuit Debugger	347
MPLAB ICE 2000 High-Performance	
Universal In-Circuit Emulator	347
MPLAB Integrated Development	
Environment Software	345
MPLAB PM3 Device Programmer	347
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	346
MSSP	
ACK Pulse	171
Control Registers (general)	
I ² C Mode. See I ² C Mode.	
Module Overview	157
SPI Master/Slave Connection	161
SPI Mode. See SPI Mode.	
SSPBUF	162
SSPSR	162
MULLW	322
MULWF	322
N	

N

NEGF	. 323
NOP	. 323

0

Opcode Field Descriptions	296
Oscillator Configuration	
EC	
ECIO	
HS	
HSPLL	
Internal Oscillator Block	
INTIO1	
INTIO2	
LP	
RC	
RCIO	
XT	
Oscillator Selection	
Oscillator Start-up Timer (OST)	
Oscillator Switching	
Oscillator Transitions	
Oscillator, Timer1	135, 145
Oscillator, Timer3	
•	

Ρ

Packaging	389
Details	390
Marking	389
PICSTART Plus Development Programmer	348
PIE Registers	
Pin Functions	
AVDD	29
AVDD	19
AVss	29
AVss	19
COM0	17, 25
LCDBIAS1	17, 25
LCDBIAS2	17, 25
LCDBIAS3	17, 25
MCLR/VPP/RG5	12, 20
OSC1/CLKI/RA7	12, 20
OSC2/CLKO/RA6	12, 20
RA0/AN0	13, 21

© 2007 Microchip Technology Inc.