

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6390-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin Flash Microcontrollers with LCD Driver and nanoWatt Technology

LCD Driver Module Features:

- · Direct Driving of LCD Panel
- · Up to 48 Segments: Software Selectable
- · Programmable LCD Timing module:
 - Multiple LCD timing sources available
 - Up to 4 commons: Static, 1/2, 1/3 or 1/4 multiplex
 - Static, 1/2 or 1/3 bias configuration
- Can drive LCD Panel while in Sleep mode

Power-Managed Modes:

- Run: CPU On, Peripherals On
- Idle: CPU Off, Peripherals On
- · Sleep: CPU Off, Peripherals Off
- Run mode Currents Down to 14.0 μA Typical
- Idle mode Currents Down to 5.8 μA Typical
- Sleep Current Down to 0.1 μA Typical
- Timer1 Oscillator: 1.8 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Four Crystal modes:
 - LP: up to 200 kHz
 - XT: up to 4 MHz
 - HS: up to 40 MHz
- HSPLL: 4-10 MHz (16-40 MHz internal)
- 4x Phase Lock Loop (available for crystal and internal oscillators)
- Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - Provides a complete range of clock speeds from 31 kHz to 32 MHz when used with PLL
 User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor:
- Allows for safe shut down of device if primary or secondary clock fails

Peripheral Highlights:

- High-Current Sink/Source 25 mA/25 mA
- Four External Interrupts
- Four Input Change Interrupts
- Four 8-Bit/16-Bit Timer/Counter modules
- · Real-Time Clock (RTC) Software module:
 - Configurable 24-hour clock, calendar, automatic 100-year or 12800-year, day-of-week calculator
 Uses Timer1
- Up to 2 Capture/Compare/PWM (CCP) modules
- Master Synchronous Serial Port (MSSP) module supporting 3-Wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- Addressable USART module:
- Supports RS-485 and RS-232
- Enhanced Addressable USART module: - Supports RS-485, RS-232 and LIN 1.2
- Auto-wake-up on Start bit
- Auto-Baud Detect
- 10-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter module:
 - Auto-acquisition capability
 - Conversion available during Sleep
- Dual Analog Comparators with Input Multiplexing

Special Microcontroller Features:

- C Compiler Optimized Architecture:
 - Optional extended instruction set designed to optimize re-entrant code
- 1000 Erase/Write Cycle Flash Program Memory Typical
- Flash Retention: 100 Years Typical
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 132s
 2% stability over VDD and temperature
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V

Device	Program Memory		Data Memory	I/O	LCD	10-Bit	ССР	MSSP		ART/ ART	Compositors	Timers
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	1/0	(pixel)	A/D (ch)	(PWM)	SPI	Master I ² C™	EUS/ AUS	Comparators	8/16-Bit
PIC18F6390	8K	4096	768	50	128	12	2	Y	Y	1/1	2	1/3
PIC18F6490	16K	8192	768	50	128	12	2	Y	Y	1/1	2	1/3
PIC18F8390	8K	4096	768	66	192	12	2	Y	Y	1/1	2	1/3
PIC18F8490	16K	8192	768	66	192	12	2	Y	Y	1/1	2	1/3

Table of Contents

1.0	Device Overview	7
2.0	Oscillator Configurations	
3.0	Power-Managed Modes	
4.0	Reset	
5.0	Memory Organization	
6.0	Flash Program Memory	
7.0	8 x 8 Hardware Multiplier	
8.0	Interrupts	
9.0	I/O Ports	
10.0	Timer0 Module	
11.0	Timer1 Module	
12.0	Timer2 Module	
13.0	Timer3 Module	
14.0	Capture/Compare/PWM (CCP) Modules	
	Master Synchronous Serial Port (MSSP) Module	
16.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
17.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	
18.0	10-Bit Analog-to-Digital Converter (A/D) Module	
19.0	Comparator Module	
20.0	Comparator Voltage Reference Module	
21.0	High/Low-Voltage Detect (HLVD)	
22.0	Liquid Crystal Display (LCD) Driver Module	
23.0	Special Features of the CPU	
24.0	Instruction Set Summary	
25.0	Development Support	
	Electrical Characteristics	
	DC and AC Characteristics Graphs and Tables	
28.0	Packaging Information	
Appe	endix A: Revision History	
Appe	endix B: Device Differences	
Appe	endix C: Conversion Considerations	
Appe	endix D: Migration from Baseline to Enhanced Devices	
Appe	endix E: migration from Mid-Range to Enhanced Devices	
	endix F: Migration from High-End to Enhanced Devices	
Index	<	
The I	Microchip Web Site	
	omer Change Notification Service	
Cust	omer Support	
	ler Response	
PIC1	8F6390/6490/8390/8490 Product Identification System	

Din Nama	Pin Number	Pin	Buffer	Deceritien
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5/SEG18 RF0 AN5 SEG18	18	I/O I O	ST Analog Analog	Digital I/O. Analog input 5. SEG18 output for LCD.
RF1/AN6/C2OUT/SEG19 RF1 AN6 C2OUT SEG19	17	I/O I O O	ST Analog — Analog	Digital I/O. Analog input 6. Comparator 2 output. SEG19 output for LCD.
RF2/AN7/C1OUT/SEG20 RF2 AN7 C1OUT SEG20	16	I/O I O O	ST Analog — Analog	Digital I/O. Analog input 7. Comparator 1 output. SEG20 output for LCD.
RF3/AN8/SEG21 RF3 AN8 SEG21	15	I/O I O	ST Analog Analog	Digital I/O. Analog input 8. SEG21 output for LCD.
RF4/AN9/SEG22 RF4 AN9 SEG22	14	I/O I O	ST Analog Analog	Digital I/O. Analog input 9. SEG22 output for LCD.
RF5/AN10/CVREF/SEG23 RF5 AN10 CVREF SEG23	13	I/O I O O	ST Analog Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output. SEG23 output for LCD.
RF6/AN11/SEG2412I/OSTDigital I/O.RF6I/OSTDigital I/O.AN11IAnalogAnalog input 11.SEG24OAnalogSEG24 output for LCD.		Analog input 11.		
RF7/ SS /SEG25 RF7 SS SEG25	11	I/O I O	ST TTL Analog	Digital I/O. SPI slave select input. SEG25 output for LCD.
	mpatible input t Trigger input v	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-2: PIC18F6X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number	Pin		Description
Fin Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	36	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽¹⁾	35	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
RC2/CCP1/SEG13 RC2 CCP1 SEG13	43	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.
RC3/SCK/SCL RC3 SCK SCL	44	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI/SDA RC4 SDI SDA	45	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO/SEG12 RC5 SDO SEG12	46	I/O O O	ST — Analog	Digital I/O. SPI data out. SEG12 output for LCD.
RC6/TX1/CK1 RC6 TX1 CK1	37	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).
RC7/RX1/DT1 RC7 RX1 DT1	38	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).
		with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F8X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then set SCS1:SCS0 to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled, but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set after the INTOSC output becomes stable after an interval of TIOBST (parameter 39, Table 26-10). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled; the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes" through Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle or Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 8.0 "Interrupts").

A fixed delay of interval, TCSD, following the wake event, is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 3.2 "Run Modes" and Section 3.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 23.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, losing a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

3.5.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 3-2.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 23.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 23.4 "Fail-Safe Clock Monitor"**) is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready, or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped; and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval, TCSD, following the wake event, is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

REGISTER 8-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	R/W-0	R-0	R-0	U-0	U-0	U-0	U-0	
	LCDIE	RC2IE	TX2IE	_			_	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimplem	ented bit, reac	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							own	
 Dit 7 Unimplemented: Read as '0' LCDIE: LCD Interrupt Enable bit (valid when Type-B waveform with Non-Static mode is selected) 1 = Enabled 0 = Disabled 								
bit 5		ART Receive Int	errupt Enable	bit				
bit 5 bit 4	RC2IE: AUSA 1 = Enabled 0 = Disabled	ART Receive Int	·					

© 2007 Microchip Technology Inc.

TADLE 9-1.	PURIA	1		1	
Pin Name	Function	TRIS Setting	I/O	Buffer	Description
RA0/AN0	RA0	0	0	DIG	LATA<0> data output. Not affected by analog pin setting.
		1	Ι	TTL	PORTA<0> data input. Reads '0' on POR.
	AN0	1	Ι	ANA	A/D input channel 0. Default configuration on POR.
RA1/AN1	RA1	0	0	DIG	LATA<1> data output. Not affected by analog pin setting.
		1	Ι	TTL	PORTA<1> data input. Reads '0' on POR.
	AN1	1	Ι	ANA	A/D input channel 1. Default configuration on POR.
RA2/AN2/VREF-/ SEG16	RA2	0	0	DIG	LATA<2> data output. Not affected by analog pin setting; disabled when LCD segment enabled.
		1	-	TTL	PORTA<2> data input. Reads '0' on POR.
	AN2	1	-	ANA	A/D input channel 2. Default configuration on POR.
	VREF-	1	Ι	ANA	A/D low reference voltage input.
	SEG16	х	0	ANA	Segment 16 analog output for LCD.
RA3/AN3/VREF+/ SEG17	RA3	0	0	DIG	LATA<3> data output. Output is unaffected by analog pin setting; disabled when LCD segment enabled.
		1	Ι	TTL	PORTA<3> data input. Reads '0' on POR.
	AN3	1	Ι	ANA	A/D input channel 3. Default configuration on POR.
	VREF+	1	Ι	ANA	A/D high reference voltage input.
	SEG17	х	0	ANA	Segment 17 analog output for LCD. Disables all other digital outputs.
RA4/T0CKI/	RA4	0	0	DIG	LATA<4> data output; disabled when LCD segment enabled.
SEG14		1	Ι	ST	PORTA<4> data input.
	TOCKI		-	ST	Timer0 clock input.
	SEG14	х	0	ANA	Segment 14 analog output for LCD.
RA5/AN4/ HLVDIN/SEG15	RA5	0	0	DIG	LATA<5> data output. Not affected by analog pin setting; disabled when LCD segment enabled.
		1	Ι	TTL	PORTA<5> data input. Reads '0' on POR.
	AN4	1	Ι	ANA	A/D input channel 5. Default configuration on POR.
	HLVDIN	1	Ι	ANA	High/Low-Voltage Detect external trip point input.
	SEG15	х	0	ANA	Segment 15 analog output for LCD.
OSC2/CLKO/RA6	OSC2	x	0	ANA	Main oscillator feedback output connection (XT, HS and LP modes).
	CLKO	х	0	DIG	System cycle clock output (Fosc/4) in all oscillator modes except RCIO, INTIO2 and ECIO.
	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.
		1	Ι	TTL	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.
OSC1/CLKI/RA7	OSC1	х		ANA	Main oscillator input connection, all modes except INTIO.
	CLKI	х	I	ANA	Main clock input connection, all modes except INTIO.
	RA7	0	0	DIG	LATA<7> data output. Available only in INTIO modes; otherwise reads as '0'.
		1	Ι	TTL	PORTA<7> data input. Available only in INTIO modes; otherwise reads as '0'.

TABLE 9-1:PORTA FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

13.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

13.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in **Section 11.0** "Timer1 Module".

13.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

13.5 Resetting Timer3 Using the CCP Special Event Trigger

If either of the CCP modules is configured in Compare mode to generate a Special Event Trigger (CCP1M3:CCP1M0 or CCP2M3:CCP2M0 = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 14.3.4 "Special Event Trigger"** for more information.).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR2H:CCPR2L register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

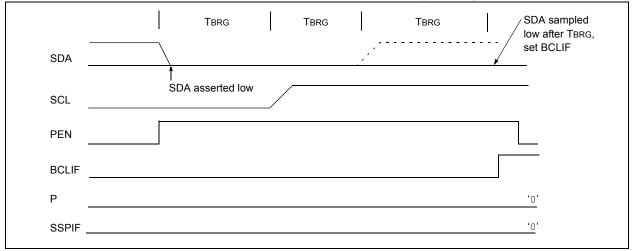
In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Note: The Special Event Triggers from the CCP2 module will not set the TMR3IF interrupt flag bit (PIR2<1>).

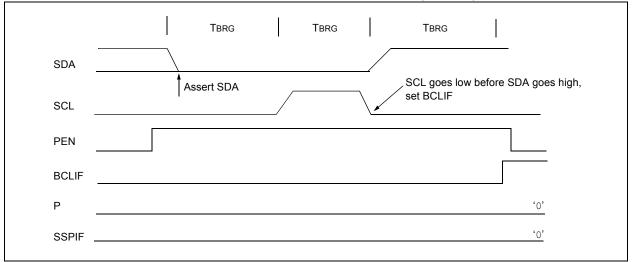
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values
									on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR2	OSCFIF	CMIF	_	_	BCLIF	HLVDIF	TMR3IF	CCP2IF	61
PIE2	OSCFIE	CMIE	_	_	BCLIE	HLVDIE	TMR3IE	CCP2IE	61
IPR2	OSCFIP	CMIP	_	_	BCLIP	HLVDIP	TMR3IP	CCP2IP	61
TMR3L	Timer3 Reg	gister Low B	yte						61
TMR3H	Timer3 Reg	gister High B	yte						61
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	60
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	61

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.


15.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 15-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 15-32).

FIGURE 15-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 15-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

18.8 Use of the CCP2 Trigger

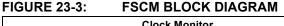
An A/D conversion can be started by the "Special Event Trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the "Special Event Trigger" sets the GO/DONE bit (starts a conversion).

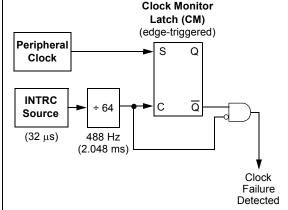
If the A/D module is not enabled (ADON is cleared), the "Special Event Trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59	
PIR1	_	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	61	
PIE1	_	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	61	
IPR1		ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	61	
PIR2	OSCFIF	CMIF		_	BCLIF	HLVDIF	TMR3IF	CCP2IF	61	
PIE2	OSCFIE	CMIE		_	BCLIE	HLVDIE	TMR3IE	CCP2IE	61	
IPR2	OSCFIP	OSCFIP CMIP — — BCLIP HLVDIP TMR3IP CCP2IP								
ADRESH	A/D Result	Register Hig	gh Byte						61	
ADRESL	A/D Result	Register Lov	w Byte						61	
ADCON0		_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	61	
ADCON1		_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	61	
ADCON2	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	61	
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	62	
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction I	Register				62	
PORTF	Read PORTF pins, Write LATF Latch									
TRISF	PORTF Dat	a Direction F	Register						62	
LATF	LATF Data	Output Regis	ster						62	

 TABLE 18-2:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.


Note 1: These pins may be configured as port pins depending on the oscillator mode selected.


NOTES:

23.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 23-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 23-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition); and
- · the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 3.1.2 "Entering Power-Managed Modes" and Section 23.3.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF2:IRCF0, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:IRCF0 bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

23.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF2:IRCF0 bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing them to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

23.4.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

ADDWFC	ADD W a	nd Carry bit	to f	AN	DLW	AND Lite	ral with W		
Syntax:	ADDWFC	f {,d {,a}}		Syn	tax:	ANDLW	k		
Operands:	$0 \leq f \leq 255$			Оре	rands:	$0 \le k \le 255$			
	d ∈ [0,1]			Ope	ration:	(W) .AND.	$k \rightarrow W$		
Operation	a ∈ [0,1]	(C) deat		Stat	us Affected:	N, Z			
Operation: Status Affected:	. , .,	$(C) \rightarrow dest$		Enc	oding:	0000	1011 k	kkk	kkkk
Encoding:				Des	cription:		ts of W are 'k'. The resu		
Description:	,	, 0	I data memory	Wor	ds:	1			
		If 'd' is '0', the V. If 'd' is '1', tł		Сус	es:	1			
	, placed in d	ata memory		Q	Cycle Activity:				
	location 'f'.		ali in a classia d		Q1	Q2	Q3		Q4
	lf 'a' is '1', t	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			Decode	Read literal 'k'	Process Data	Wi	rite to W
	set is enab in Indexed mode when Section 24 Bit-Oriente				mple: Before Instru W After Instruct W	= A3h			
Words:	1								
Cycles:	1								
Q Cycle Activity	:								
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write to destination						
Example:	ADDWFC	REG, 0,	1						
Before Instr Carry I REG W After Instruc	bit = 1 = 02h = 4Dh								
Carry REG W									

26.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

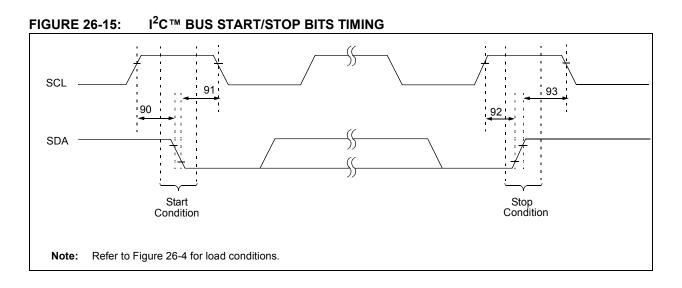
- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - **2:** Voltage spikes below Vss at the MCLR/VPP/RG5 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RG5 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (Lock Time)	_	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%	

TABLE 26-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.


TABLE 26-8:AC CHARACTERISTICS: INTERNAL RC ACCURACYPIC18LF6390/6490/8390/8490 (INDUSTRIAL)PIC18F6390/6490/8390/8490 (INDUSTRIAL)

PIC18LF6390/6490/8390/8490 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F6390/6490/8390/8490 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Device	Min	Тур	Max	Units	Conditions			
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾								
	PIC18LF6390/6490/8390/8490	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V		
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V		
		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F6390/6490/8390/8490	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V		
		-5	—	5	%	-10°C to +85°C	VDD = 4.5-5.5V		
		-10	+/-1	10	%	-40°C to +85°C	VDD = 4.5-5.5V		
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾								
	PIC18LF6390/6490/8390/8490	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F6390/6490/8390/8490	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

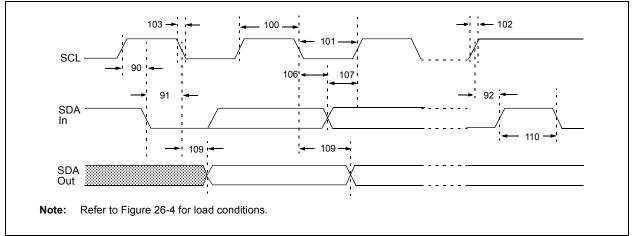

2: INTRC frequency after calibration.

TABLE 26-17: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

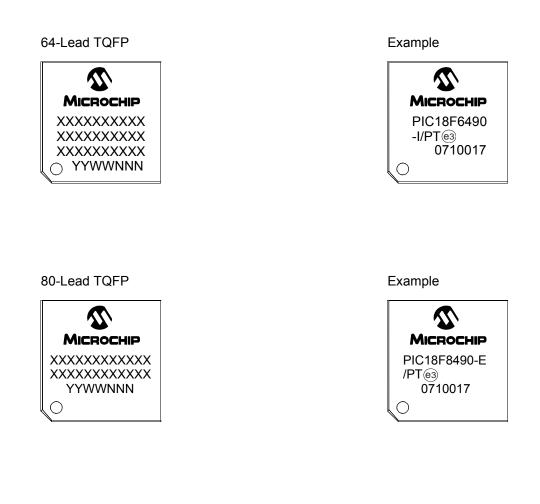

Param. No.	Symbol	Characte	Min	Max	Units	Conditions	
90 Tsu:sta		Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_		Start condition
91 The	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	600	—		
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold Time	400 kHz mode	600	_		

FIGURE 26-16: I²C[™] BUS DATA TIMING

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

Legend	: XXX Y YY WW NNN (@3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.			
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.				

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442." The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration." This Application Note is available as Literature Number DS00726.