

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6390t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description			
Fill Name	TQFP	Туре	Туре	Description			
				PORTD is a bidirectional I/O port.			
RD0/SEG0 RD0 SEG0	72	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.			
RD1/SEG1 RD1 SEG1	69	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.			
RD2/SEG2 RD2 SEG2	68	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.			
RD3/SEG3 RD3 SEG3	67	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.			
RD4/SEG4 RD4 SEG4	66	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.			
RD5/SEG5 RD5 SEG5	65	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.			
RD6/SEG6 RD6 SEG6	64	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.			
RD7/SEG7 RD7 SEG7	63	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.			
	ompatible input itt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output els Analog = Analog input O = Output			

TABLE 1-3: PIC18F8X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

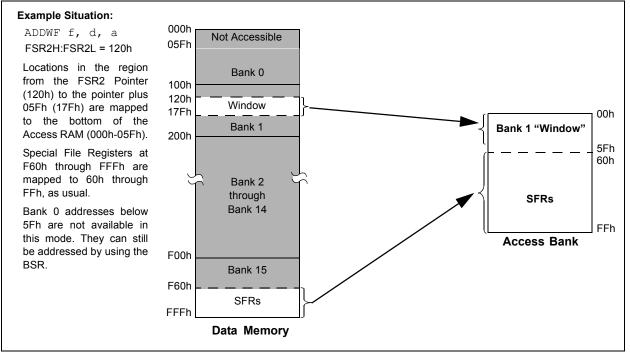
Ρ = Power

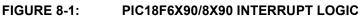
OD = Open-Drain (no P diode to VDD)

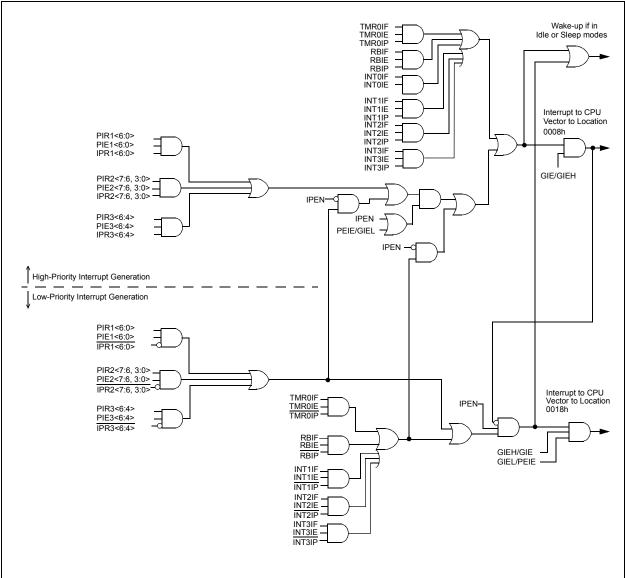
Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

5.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE


The use of Indexed Literal Offset Addressing mode effectively changes how the lower part of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom part of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.3.2 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 5-9.


Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before. Any indirect or indexed operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard Indirect Addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use Direct Addressing and the normal Access Bank map.


5.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct Addressing, using the BSR to select the data memory bank, operates in the same manner as previously described.

FIGURE 5-9: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

TABLE 9-4: SU	IMMARY OF REGISTERS ASSOCIATED WITH PORTB
---------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	62	
LATB	LATB Data Output Register									
TRISB	PORTB Dat	a Direction R	Register						62	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59	
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	59	
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	59	
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	64	

Legend: Shaded cells are not used by PORTB.

9.4 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are
	configured as digital inputs.

PORTD is also multiplexed with LCD segment drives controlled by the LCDSE0 register. I/O port functions are only available when the segments are disabled.

EXAMP	LE 9-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by
		; clearing output ; data latches
CLRF	LATD	; Alternate method
		; to clear output : data latches
MOVLW	OCFh	; Value used to
		; initialize data
NOUTUE	BDTOD	; direction
MOVWF	TRISD	; Set RD<3:0> as inputs ; RD<5:4> as outputs
		; RD<7:6> as inputs

TABLE 9-7:	PORTD FUNCTIONS
-------------------	-----------------

IABLE 9-7:	PORTD FUNCTIONS									
Pin Name	Function	TRIS Setting	I/O	Buffer	Description					
RD0/SEG0	RD0	0	0 O DIG LAT		LATD<0> data output; disabled when LCD segment enabled.					
		1	I	ST	PORTD<0> data input.					
	SEG0	х	0	ANA	Segment 0 analog output for LCD.					
RD1/SEG1	RD1	0	0	DIG	LATD<1> data output; disabled when LCD segment enabled.					
		1	I	ST	PORTD<1> data input.					
	SEG1	х	0	ANA	Segment 1 analog output for LCD.					
RD2/SEG2	RD2	0	0	DIG	LATD<2> data output; disabled when LCD segment enabled.					
		1	Ι	ST	PORTD<2> data input.					
	SEG2	SEG2 x O ANA Segment 2 analog output for LCD.		Segment 2 analog output for LCD.						
RD3/SEG3	RD3	0	0	DIG	LATD<3> data output; disabled when LCD segment enabled.					
		1	Ι	ST	PORTD<3> data input.					
	SEG3	х	0	ANA	Segment 3 analog output for LCD.					
RD4/SEG4	RD4	0	0	DIG	LATD<4> data output; disabled when LCD segment enabled.					
		1	Ι	ST	PORTD<4> data input.					
	SEG4	х	0	ANA	Segment 4 analog output for LCD module.					
RD5/SEG5	RD5	0	0	DIG	LATD<5> data output; disabled when LCD segment enabled.					
		1	Ι	ST	PORTD<5> data input.					
	SEG5	х	0	ANA	Segment 5 analog output for LCD.					
RD6/SEG6	RD6	0	0	DIG	LATD<6> data output; disabled when LCD segment enabled.					
		1	Ι	ST	PORTD<6> data input.					
	SEG6	х	0	ANA	Segment 6 analog output for LCD.					
RD7/SEG7	RD7	0	0	DIG	LATD<7> data output; disabled when LCD segment enabled.					
		1	Ι	ST	PORTD<7> data input.					
	SEG7	х	0	ANA	Segment 7 analog output for LCD.					

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,

 $\rm x$ = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 9-13: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page		
TRISF	F PORTF Data Direction Register										
PORTF	Read POR		62								
LATF	LATF Data		62								
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	61		
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	61		
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	61		
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	64		
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	64		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTF.

Pin Name	Function	TRIS Setting	I/O	Buffer	Description
RJ0/SEG32	RJ0	0	0 O DIG LATJ<0> data outpu		LATJ<0> data output; disabled when LCD segment enabled.
		1	I	ST	PORTJ<0> data input.
	SEG32	х	0	ANA	Segment 32 analog output for LCD.
RJ1/SEG33	RJ1	0	0	DIG	LATJ<1> data output; disabled when LCD segment enabled.
		1	Ι	ST	PORTJ<1> data input.
	SEG33	х	0	ANA	Segment 33 analog output for LCD.
RJ2/SEG34	RJ2	0	0	DIG	LATJ<2> data output; disabled when LCD segment enabled.
		1	-	ST	PORTJ<2> data input.
	SEG34 x O ANA Segment 34 analog output for LCD.		Segment 34 analog output for LCD.		
RJ3/SEG35	RJ3	0	0	DIG	LATJ<3> data output; disabled when LCD segment enabled.
		1	I	ST	PORTJ<3> data input.
	SEG35	х	0	ANA	Segment 35 analog output for LCD.
RJ4/SEG39	RJ4	0	0	DIG	LATJ<4> data output; disabled when LCD segment enabled.
		1	I	ST	PORTJ<4> data input.
	SEG39	х	0	ANA	Segment 39 analog output for LCD.
RJ5/SEG38	RJ5	0	0	DIG	LATJ<5> data output; disabled when LCD segment enabled.
		1	I	ST	PORTJ<5> data input.
	SEG38	х	0	ANA	Segment 38 analog output for LCD.
RJ6/SEG37	RJ6	0	0	DIG	LATJ<6> data output; disabled when LCD segment enabled.
		1	I	ST	PORTJ<6> data input.
	SEG37	х	0	ANA	Segment 37 analog output for LCD.
RJ7/SEG36	RJ7	0	0	DIG	LATJ<7> data output; disabled when LCD segment enabled.
		1	I	ST	PORTJ<7> data input.
	SEG36	х	0	ANA	Segment 36 analog output for LCD.

TABLE 9-18: PORTJ FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 9-19: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
PORTJ	Read PO		62						
LATJ	LATJ Dat		62						
TRISJ	PORTJ D	62							
LCDSE4	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	64

11.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 11-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 11-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 11-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

Legend:								
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr				
bit 7	RD16 : 16	6-Bit Read/Write Mode Enab	le bit					
		oles register read/write of TIr oles register read/write of Tin	•					
bit 6	T1RUN:	Timer1 System Clock Status	bit					
	-	ce clock is derived from Time ce clock is derived from and						
bit 5-4	T1CKPS	1:T1CKPS0: Timer1 Input C	lock Prescale Select bits					
		Prescale value						
		Prescale value Prescale value						
		Prescale value						
bit 3	T10SCE	N: Timer1 Oscillator Enable	bit					
		= Timer1 oscillator is enabled						
		r1 oscillator is shut off	opiator are turned off to aliming	to nowor drain				
bit 2		: Timer1 External Clock Inpu	esistor are turned off to elimina	ate power urain.				
			t oynemonization ocicet bit					
		ot synchronize external clock	(input					
		hronize external clock input						
	-	When TMR1CS = 0:						
		-	ternal clock when TMR1CS =	0.				
bit 1		: Timer1 Clock Source Selec		-)				
		nal clock (Fosc/4)	SO/T13CKI (on the rising edge	e)				
bit 0		I: Timer1 On bit						
		bles Timer1						
	0 = Stop							

15.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The MSSP consists of a Transmit/Receive Shift register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 15-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

15.3.6 SLAVE MODE

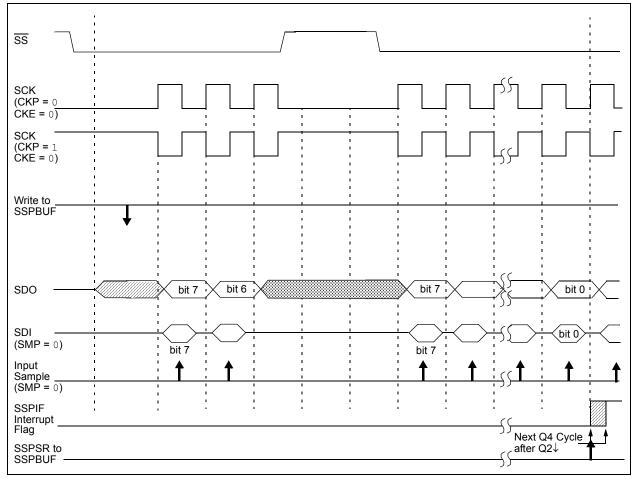
In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

15.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven,


even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

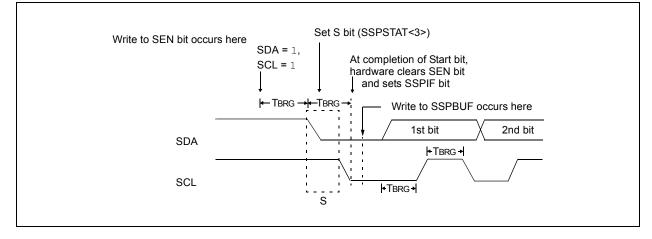
- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

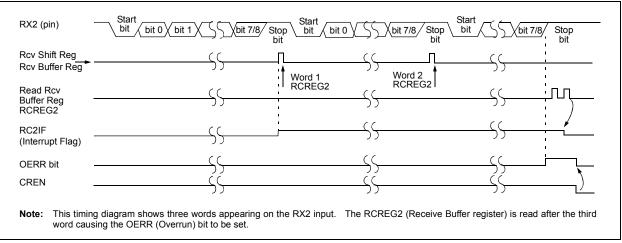
FIGURE 15-4: SLAVE SYNCHRONIZATION WAVEFORM

15.4.8 I²C MASTER MODE START CONDITION TIMING


To initiate a Start condition, the user sets the Start Condition Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

15.4.8.1 WCOL Status Flag


If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 15-19: FIRST START BIT TIMING

TABLE 17-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR3	—	LCDIF	RC2IF	TX2IF	_	_	—	_	61
PIE3	—	LCDIE	RC2IE	TX2IE	_	_	—	_	61
IPR3	—	LCDIP	RC2IP	TX2IP	_	_		_	61
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	63
RCREG2	AUSART2	Receive Re	gister						63
TXSTA2	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	63
SPBRG2	AUSART2	Baud Rate (Generator R	legister					63

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

21.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

21.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
HLVDCON	VDIRMAG		IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	60
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR2	OSCFIF	CMIF	_	_	BCLIF	HLVDIF	TMR3IF	CCP2IF	61
PIE2	OSCFIE	CMIE	—	—	BCLIE	HLVDIE	TMR3IE	CCP2IE	61
IPR2	OSCFIP	CMIP	—	—	BCLIP	HLVDIP	TMR3IP	CCP2IP	61

TABLE 21-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

The LCDSE5:LCDSE0 registers configure the functions of the port pins. Setting the segment enable bit for a particular segment configures that pin as an LCD driver. There are six LCD Segment Enable registers listed in Table 22-1. The prototype LCDSEx register is shown in Register 22-3.

TABLE 22-1:LCDSE REGISTERS AND
ASSOCIATED SEGMENTS

Register	Segments
LCDSE0	7:0
LCDSE1	15:8
LCDSE2	23:16
LCDSE3	31:24
LCDSE4	39:32
LCDSE5	47:40

Note:	The LCDSE5:LCDSE4 registers are not
	implemented in PIC18F6X90 devices.

Once the module is initialized for the LCD panel, the individual bits of the LCDDATA23:LCDDATA0 registers are cleared or set to represent a clear or dark pixel, respectively. Specific sets of LCDDATA registers are used with specific segments and common signals. Each bit represents a unique combination of a specific segment connected to a specific common. Individual LCDDATA bits are named by the convention "SxxCy", with "xx" as the segment number and "y" as the common number. The relationship is summarized in Table 22-2. The prototype LCDDATAx register is shown in Register 22-4.

Note: Writing into the registers, LCDDATA4, LCDDATA5, LCDDATA10, LCDDATA11, LCDDATA16, LCDDATA17, LCDDATA22 and LCDDATA23, in PIC18F6X90 devices will not affect the status of any pixel and these registers can be used as General Purpose Registers.

REGISTER 22-3: LCDSEx: LCD SEGMENTX ENABLE REGISTER

R/W-0	R/W-0						
SE(n + 7)	SE(n + 6)	SE(n + 5)	SE(n + 4)	SE(n + 3)	SE(n + 2)	SE(n + 1)	SE(n)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SE(n + 7):SE(n):** Segment Enable bits

•	'	• •	0
For LC	DSE): n =	0
For LC	DSE	1: n =	8
For LC	DSE	2: n =	16
For LC	DSE	3: n =	24
For LC	DSE4	4: n =	32
For LC	DSE	5: n =	40
1 - 50	amor	t fund	tion

1 = Segment function of the pin is enabled, digital I/O is disabled

0 = I/O function of the pin is enabled

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemo	onic,	Description	Qualas	16-E	Bit Instr	uction V	Vord	Status	Nataa
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED O	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff		1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff		Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)		11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1 ΄	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff		None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1 ΄	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff		
	3, u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1		110a	ffff		C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff		C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff		,
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff		Ć, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff		
SETF	f, a	Set f	1	0110	100a	ffff	ffff		1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff		C, DC, Z, OV, N	-, _
	, - ,	Borrow				-	_	, _, ,, _	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1.2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101		ffff		C, DC, Z, OV, N	, =
	·,, •	Borrow						,,,,,	
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a, a f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff		None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1		10da	ffff	ffff		·, -
	i, u, a			0001	roua			<u> </u>	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

					/	ruction	Word	Statuo	
Mnemo Opera		Description	Cycles	MSb			LSb	Status Affected	Notes
LITERAL (OPERAT	IONS		•					
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk		
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	/IORY ↔	PROGRAM MEMORY OPERATI	ONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	5
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	5
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	5
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	5

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

MO\	/FF	Move f to	f							
Synta	ax:	MOVFF f _s	MOVFF f _s ,f _d							
Oper	ands:		$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$							
Oper	ation:	$(f_{s}) \to f_{d}$								
Statu	is Affected:	None								
Enco	oding:									
	vord (source) word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d					
Desc	ription:	moved to d Location of in the 4096 FFFh) and can also be FFFh.	The contents of source register ' f_s ' are moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination ' f_d ' can also be anywhere from 000h to FFFh.							
		Either sour (a useful sp			can be w					
		MOVFF is p transferring peripheral r buffer or ar	oarticular a data n egister (s	ly useful nemory le such as t	ocation to a					
		The MOVFF PCL, TOSU destination	J, TOSH							
Word	ls:	2								
Cycle	es:	2 (3)								
QC	ycle Activity:									
	Q1	Q2	Q3	}	Q4					
	Decode	Read register 'f' (src)	Proce Data		No operation					
	Decode	No operation No dummy	No operat		Write egister 'f' (dest)					

$\begin{array}{ll} MOVLW & k \\ 0 \leq k \leq 255 \\ k \rightarrow BSR \\ None \end{array}$	-			
$k \rightarrow BSR$				
None				
0000	0001	kkkk	kkkk	
of BSR<7:4 regardless	4> always	s remains	'0',	
	03	1	Q4	
Read literal 'k'	Proce	ss Wi	rite litera to BSR	
MOVLB	5			
	The eight-t Bank Selec of BSR<7:4 regardless 1 1 1 Q2 Read literal 'k'	The eight-bit literal ' Bank Select Registe of BSR<7:4> always regardless of the va 1 1 2 Q2 Q3 Read Proce literal 'k' Data MOVLB 5	The eight-bit literal 'k' is loade Bank Select Register (BSR). of BSR<7:4> always remains regardless of the value of k ₇ :1 1 1 2 <u>Q2</u> <u>Q3</u> <u>Read</u> <u>Process</u> <u>Wi</u> <u>literal 'k'</u> <u>Data</u> 'k	

After Instruction BSR Register = 05h

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Before Instruction		
REG1	=	33h
REG2	=	11h
After Instruction		
REG1	=	33h
REG2	=	33h

25.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

25.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.2 DC Characteristics:

Power-Down and Supply Current PIC18F6390/6490/8390/8490 (Industrial) PIC18LF6390/6490/8390/8490 (Industrial) (Continued)

PIC18LF6 (Indus	6 390/6490/8390/8490 trial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F63 (Indus	90/6490/8390/8490 trial)			rating C	g Conditions (unless otherwise stated) ure $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial		
Param No.	Device	Тур	Max	Units	Conditions		
	Supply Current (IDD) ⁽²⁾						
	PIC18LF6390/6490/8390/8490	0.6	1.7	mA	-40°C		
		0.6	1.6	mA	+25°C	VDD = 2.0V	
		0.6	1.5	mA	+85°C		
	PIC18LF6390/6490/8390/8490	1.0	2.4	mA	-40°C		Fosc = 4 MHz (RC_RUN mode, INTOSC source)
		1.0	2.4	mA	+25°C	VDD = 3.0V	
		1.0	2.4	mA	+85°C		
	All devices	2.0	4.2	mA	-40°C		
		2.0	4	mA	+25°C	VDD = 5.0V	
		2.0	3.8	mA	+85°C		
	PIC18LF6390/6490/8390/8490	2.3	6.4	μA	-40°C	_	
		2.5	6.4	μA	+25°C	VDD = 2.0V	
		2.9	8.8	μA	+85°C		
	PIC18LF6390/6490/8390/8490	3.6	8.8	μA	-40°C	VDD = 3.0V (RC_IDLE	Fosc = 31 kHz
		3.8	8.8	μA	+25°C		(RC_IDLE mode,
		4.6	12	μA	+85°C		INTRC source)
	All devices	7.4	16	μA	-40°C	-	
		7.8	16	μA	+25°C	VDD = 5.0V	
		9.1	29	μA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Low-power Timer1 oscillator selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

and Multiple Sleep Commands42
Effects on Clock Sources 39
Entering41
Exiting Idle and Sleep Modes
by Reset
by WDT Time-out
Without a Start-up Delay
Exiting Idle or Sleep Modes
by Interrupt
Idle Modes
PRI_IDLE
Run Modes
RC_RUN
SEC_RUN
Selecting
Summary (table)
Power-on Reset (POR)
Oscillator Start-up Timer (OST)
Power-up Timer (PWRT)
Time-out Sequence
Power-up Delays
Power-up Timer (PWRT)
Prosecaler, Capture
Prescaler, Capture
Assignment (PSA Bit)
Rate Select (T0PS2:T0PS0 Bits)
Switching Between Timer0 and WDT
Prescaler, Timer2
Program Counter
PCL, PCH and PCU Registers
PCLATH and PCLATU Registers
Program Memory
and Extended Instruction Set
Instructions 70
Instructions
Two-Word70
Two-Word70 Interrupt Vector65
Two-Word
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 295
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 924
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 905 PUSH 324 PUSH and POP Instructions 67
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 324 PUSH 324 PUSH and POP Instructions 67 PUSHL 340 PWM (CCP Module) 340
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 905 PUSH 324 PUSH and POP Instructions 67 PUSHL 340 PWM (CCP Module) 340 PUSH (CCP Module) 340 Associated Registers 155 Duty Cycle 154
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).294PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)340PWM (CCP Module)155
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 905 PUSH 324 PUSH and POP Instructions 67 PUSHL 340 PWM (CCP Module) 340 PWM (CCP Module) 155 Duty Cycle 154 Example Frequencies/Resolutions 154 Period 153
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 294 PUSH 324 PUSH and POP Instructions 67 PUSHL 340 PWM (CCP Module) 340 PWM (CCP Module) 155 Duty Cycle 154 Example Frequencies/Resolutions 154
Two-Word 70 Interrupt Vector 65 Map and Stack (diagram) 65 Reset Vector 65 Program Verification and Code Protection 292 Associated Registers 292 Programming, Device Instructions 295 Pulse-Width Modulation. See PWM (CCP Module). 905 PUSH 324 PUSH and POP Instructions 67 PUSHL 340 PWM (CCP Module) 340 PWM (CCP Module) 155 Duty Cycle 154 Example Frequencies/Resolutions 154 Period 153
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions154Period153Setup for PWM Operation155TMR2 to PR2 Match153
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).24PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)340PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions154Period153Setup for PWM Operation155TMR2 to PR2 Match153Q154
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions154Period153Setup for PWM Operation155TMR2 to PR2 Match153
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).24PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)340PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions154Period153Setup for PWM Operation155TMR2 to PR2 Match153Q154
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)430PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions153Setup for PWM Operation153TMR2 to PR2 Match153QQ Clock154R154
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)430PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions153Setup for PWM Operation153TMR2 to PR2 Match153QQ Clock154RRAM. See Data Memory.
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).295PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)340PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions153Setup for PWM Operation153TMR2 to PR2 Match153QQ Clock154RRAM. See Data Memory.33
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)430PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions153Setup for PWM Operation153TMR2 to PR2 Match153QQ Clock154RRAM. See Data Memory.RCIO Oscillator33RCIO Oscillator Mode33
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)400Associated Registers155Duty Cycle154Example Frequencies/Resolutions153Setup for PWM Operation153TMR2 to PR2 Match153QQ Clock154RRAM. See Data Memory.RCIO Oscillator33RCALL325
Two-Word70Interrupt Vector65Map and Stack (diagram)65Reset Vector65Program Verification and Code Protection292Associated Registers292Programming, Device Instructions295Pulse-Width Modulation. See PWM (CCP Module).905PUSH324PUSH and POP Instructions67PUSHL340PWM (CCP Module)430PWM (CCP Module)155Duty Cycle154Example Frequencies/Resolutions153Setup for PWM Operation153TMR2 to PR2 Match153QQ Clock154RRAM. See Data Memory.RCIO Oscillator33RCIO Oscillator Mode33

Reader Response
Register File
Register File Summary
Registers
ADCON0 (A/D Control 0) 231
ADCON1 (A/D Control 1)
ADCON2 (A/D Control 2)
BAUDCON1 (Baud Rate Control 1) 200
CCPxCON (CCPx Control) 147
CMCON (Comparator Control) 241
CONFIG1H (Configuration 1 High) 282
CONFIG2H (Configuration 2 High) 284
CONFIG2L (Configuration 2 Low) 283
CONFIG3H (Configuration 3 High) 284
CONFIG4L (Configuration 4 Low) 285
CONFIG5L (Configuration 5 Low) 285
CVRCON (Comparator Voltage
Reference Control) 247
DEVID1 (Device ID 1)
DEVID2 (Device ID 2)
HLVDCON (High/Low-Voltage
Detect Control)
INTCON (Interrupt Control)
INTCON2 (Interrupt Control 2)
INTCON3 (Interrupt Control 3)
IPR1 (Peripheral Interrupt Priority 1) 104
IPR2 (Peripheral Interrupt Priority 2) 105
IPR3 (Peripheral Interrupt Priority 3) 106
LCDCON (LCD Control)
LCDDATAx (LCD Datax)
LCDPS (LCD Phase)
LCDSEx (LCD Segmentx Enable)
OSCCON (Oscillator Control)
OSCTUNE (Oscillator Tuning) 35
PIE1 (Peripheral Interrupt Enable 1) 101
PIE2 (Peripheral Interrupt Enable 2)
PIE3 (Peripheral Interrupt Enable 3) 103
PIR1 (Peripheral Interrupt Request (Flag) 1)
PIR2 (Peripheral Interrupt Request (Flag) 2)
PIR3 (Peripheral Interrupt Request (Flag) 3) 100
RCON (Reset Control) 52, 107
RCSTA1 (EUSART Receive
Status and Control) 199
RCSTA2 (AUSART Receive
Status and Control) 219
SSPCON1 (MSSP Control 1, I ² C Mode) 168
SSPCON1 (MSSP Control 1, SPI Mode) 159
SSPCON2 (MSSP Control 2,
I ² C Master Mode) 169
SSPSTAT (MSSP Status, I ² C Mode) 167
SSPSTAT (MSSP Status, SPI Mode) 158
STATUS
STKPTR (Stack Pointer)67
T0CON (Timer0 Control) 131
T1CON (Timer1 Control) 135
T2CON (Timer2 Control) 141
T3CON (Timer3 Control)
TXSTA1 (EUSART Transmit
Status and Control) 198
TXSTA2 (AUSART Transmit
Status and Control)
WDTCON (Watchdog Timer Control)
RESET