

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6490-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (Low) input. SEG16 output for LCD.
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (High) input. SEG17 output for LCD.
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST/OD ST Analog	Digital I/O. Open-drain when configured as output. Timer0 external clock input. SEG14 output for LCD.
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 4. Low-Voltage Detect input. SEG15 output for LCD.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	ompatible input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-2:	PIC18F6X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Dia Marra	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTG is a bidirectional I/O port.		
RG0/SEG30 RG0 SEG30	3	I/O O	ST Analog	Digital I/O. SEG30 output for LCD.		
RG1/TX2/CK2/SEG29 RG1 TX2 CK2 SEG29	4	I/O O I/O O	ST — ST Analog	Digital I/O. AUSART2 asynchronous transmit. AUSART2 synchronous clock (see related RX2/DT2). SEG29 output for LCD.		
RG2/RX2/DT2/SEG28 RG2 RX2 DT2 SEG28	5	I/O I I/O O	ST ST ST Analog	Digital I/O. AUSART2 asynchronous receive. AUSART2 synchronous data (see related TX2/CK2). SEG28 output for LCD.		
RG3/SEG27 RG3 SEG27	6	I/O O	ST Analog	Digital I/O. SEG27 output for LCD.		
RG4/SEG26 RG4 SEG26	8	I/O O	ST Analog	Digital I/O. SEG26 output for LCD.		
RG5				See MCLR/VPP/RG5 pin.		
Vss	9, 25, 41, 56	Р	—	Ground reference for logic and I/O pins.		
Vdd	10, 26, 38, 57	Р	—	Positive supply for logic and I/O pins.		
AVss	20	Р		Ground reference for analog modules.		
AVdd	19	Р		Positive supply for analog modules.		
Legend: TTL = TTL co ST = Schmi I = Input P = Power	ompatible input tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)		

TABLE 1-2:	PIC18F6X90 PINOUT I/O DESCRIPTIONS (

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 2-2) controls several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

The System Clock Select bits, SCS1:SCS0, select the clock source. The available clock sources are the primary clock (defined by the FOSC:FOSC0 Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared on all forms of Reset.

The Internal Oscillator Frequency Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source, the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC postscaler (31.25 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output.

When an output frequency of 31 kHz is selected (IRCF2:IRCF0 = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source by enabling the divide-by-256 output of the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer has timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock, or the internal oscillator block has just started and is not yet stable. The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 3.0** "Power-Managed Modes".

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction, or a very long delay may occur while the Timer1 oscillator starts.

2.7.2 OSCILLATOR TRANSITIONS

PIC18F6390/6490/8390/8490 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then set SCS1:SCS0 to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled, but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set after the INTOSC output becomes stable after an interval of TIOBST (parameter 39, Table 26-10). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled; the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

Register	Applicable Devices		Applicable Devices		Applicable Power-on Reset, Devices Brown-out Reset		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
LCDSE5	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน				
LCDSE4	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน				
LCDSE3	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน				
LCDSE2	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน				
LCDSE1	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน				
LCDSE0	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน				
LCDCON	6X90	8X90	000- 0000	0000 0000	uuu- uuuu				
LCDPS	6X90	8X90	0000 0000	0000 0000	นนนน นนนน				

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: These registers are cleared on POR and unchanged on BOR.

5.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontroller devices:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in **Section 6.0 "Flash Program Memory"**.

5.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18FX390 have 8 Kbytes of Flash memory and can store up to 4,096 single-word instructions and the PIC18FX490 have 16 Kbytes of Flash memory and can store up to 8,192 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for PIC18F6390/6490/8390/8490 devices are shown in Figure 5-1.

FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F6390/6490/8390/8490 DEVICES

EXAMPLE	6-1: I	READING A FLASH PF	ROGRAM MEMORY WORD
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the word
	MOVLW	CODE ADDR HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE ADDR LOW	
	MOVWF	TBLPTRL	
READ_WORD			
	TBLRD*+	-	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD EVEN	
	TBLRD*+	. –	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD_ODD	

TABLE 6-2:	REGISTERS ASSOCIATED WITH READING PROGRAM FLASH MEMORY								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TBLPTRU	—	—	bit 21	Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)				59	
TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)						59		
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)					59			
TABLAT	Program M	Program Memory Table Latch					59		

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash access.

PIC18F6390/6490/8390/8490

8.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- **Note 1:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 8-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Converter Interrupt Flag bit
	 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete
bit 5	RC1IF: EUSART Receive Interrupt Flag bit
	 1 = The EUSART receive buffer, RCREG1, is full (cleared when RCREG1 is read) 0 = The EUSART receive buffer is empty
bit 4	TX1IF: EUSART Transmit Interrupt Flag bit
	 1 = The EUSART transmit buffer, TXREG1, is empty (cleared when TXREG1 is written) 0 = The EUSART transmit buffer is full
bit 3	SSPIF: Master Synchronous Serial Port Interrupt Flag bit
	 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	<u>Capture mode:</u> 1 = A TMR1/TMR3 register capture occurred (must be cleared in software) 0 = No TMR1/TMR3 register capture occurred
	<u>Compare mode:</u> 1 = A TMR1/TMR3 register compare match occurred (must be cleared in software) 0 = No TMR1/TMR3 register compare match occurred <u>PWM mode:</u> Unused in this mode.
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	1 = TMR2 to PR2 match occurred (must be cleared in software)0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow

TABLE 9-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	62
LATB	LATB Data Output Register								62
TRISB	PORTB Data Direction Register								62
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	59
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	59
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	64

Legend: Shaded cells are not used by PORTB.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	62
LATD	LATD Data Output Register								62
TRISD	PORTD Data Direction Register								62
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	64

TABLE 9-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

15.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 15-15).

15.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmit
- Repeated Start

© 2007 Microchip Technology Inc.

15.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 15-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 15-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 15-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 15-3: I²C[™] CLOCK RATE w/BRG

Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
10 MHz	20 MHz	19h	400 kHz ⁽¹⁾
10 MHz	20 MHz	20h	312.5 kHz
10 MHz	20 MHz	3Fh	100 kHz
4 MHz	8 MHz	0Ah	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Dh	308 kHz
4 MHz	8 MHz	28h	100 kHz
1 MHz	2 MHz	03h	333 kHz ⁽¹⁾
1 MHz	2 MHz	0Ah	100 kHz
1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

PIC18F6390/6490/8390/8490

REGISTER	16-2: RCS	A1: EUSAR	RECEIVE S	STATUS AND	CONTROL	REGISTER	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit. rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	SPEN: Serial 1 = Serial pc 0 = Serial pc	Port Enable bi rt enabled (cor rt disabled (he	it nfigures RX1/D ld in Reset))T1 and TX1/CK	(1 pins as seri	al port pins)	
bit 6	RX9: 9-Bit Re	eceive Enable I	oit				
	1 = Selects 9 0 = Selects 8	-bit reception -bit reception					
bit 5	SREN: Single	e Receive Enal	ole bit				
	<u>Asynchronou</u> Don't care.	<u>s mode</u> :					
	Synchronous 1 = Enables 0 = Disables This bit is cle Synchronous Don't care.	<u>mode – Maste</u> single receive single receive ared after rece <u>mode – Slave</u>	<u>r:</u> ption is comple	ete.			
bit 4	CREN: Conti	nuous Receive	Enable bit				
	Asynchronou 1 = Enables 0 = Disables Synchronous 1 = Enables 0 = Disables	s mode: receiver receiver <u>mode:</u> continuous rec continuous rec	eive until enat	ole bit, CREN, is	cleared (CRE	N overrides SR	EN)
bit 3	ADDEN: Add	ress Detect Er	able bit				
	Asynchronou 1 = Enables 0 = Disables Asynchronou Don't care.	<u>s mode 9-Bit (F</u> address detect address detect <u>s mode 9-Bit (F</u>	<u>RX9 = 1</u>): ion, enables ir tion, all bytes a <u>RX9 = 0)</u> :	nterrupt and load are received and	ds the receive d ninth bit can	buffer when RS be used as pari	R<8> is set ty bit
bit 2	FERR: Frami	na Error bit					
	1 = Framing 0 = No frami	error (can be ι ng error	pdated by rea	ding RCREG1 r	egister and re	ceiving next vali	d byte)
bit 1	OERR: Over	un Error bit					
	1 = Overrun 0 = No overr	error (can be c un error	leared by clea	ring bit, CREN)			
bit 0	RX9D: 9th bi This can be a	t of Received D ddress/data bi	oata t or a parity bit	and must be ca	lculated by us	er firmware.	

17.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is very similar in function to the Enhanced USART module, discussed in the previous chapter. It is provided as an additional channel for serial communication, with external devices, for those situations that do not require Auto-Baud Detection or LIN bus support.

The AUSART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

The pins of the AUSART module are multiplexed with the functions of PORTG (RG1/TX2/CK2/SEG29 and RG2/RX2/DT2/SEG28, respectively). In order to configure these pins as an AUSART:

- SPEN bit (RCSTA2<7>) must be set (= 1)
- TRISG<2> bit must be set (= 1)
- TRISG<1> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
- TRISG<1> bit must be set (= 1) for Synchronous Slave mode

Note: The AUSART control will automatically reconfigure the pin from input to output as needed.

The operation of the Addressable USART module is controlled through two registers, TXSTA2 and RXSTA2. These are detailed in Register 17-1 and Register 17-2 respectively.

19.2 Comparator Operation

A single comparator is shown in Figure 19-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 19-2 represent the uncertainty, due to input offsets and response time.

19.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 19-2).

FIGURE 19-2: SINGLE COMPARATOR

19.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same, or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

19.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 20.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM2:CM0 = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

19.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (see Section 26.0 "Electrical Characteristics").

19.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RF2 and RF1 I/O pins. When enabled, multiplexers in the output path of the RF2 and RF1 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 19-3 shows the comparator output block diagram.

The TRISF bits will still function as an output enable/ disable for the RF2 and RF1 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

22.0 LIQUID CRYSTAL DISPLAY (LCD) DRIVER MODULE

The Liquid Crystal Display (LCD) driver module generates the timing control to drive a static or multiplexed LCD panel. In the 80-pin devices (PIC18F8390/8490), the module drives the panels of up to four commons and up to 48 segments and in the 64-pin devices (PIC18F6390/6490), the module drives the panels of up to four commons and up to 32 segments. It also provides control of the LCD pixel data.

The LCD driver module supports:

- Direct driving of LCD panel
- Three LCD clock sources with selectable prescaler
- Up to four commons:
 - Static
 - 1/2 multiplex
 - 1/3 multiplex
 - 1/4 multiplex
- Up to 48 (in 80-pin devices)/32 (in 64-pin devices) segments
- Static, 1/2 or 1/3 LCD bias

A simplified block diagram of the module is shown in Figure 22-1.

FIGURE 22-1: LCD DRIVER MODULE BLOCK DIAGRAM

22.1 LCD Registers

The LCD driver module has 32 registers:

- LCD Control Register (LCDCON)
- LCD Phase Register (LCDPS)
- Six LCD Segment Enable Registers (LCDSE5:LCDSE0)
- 24 LCD Data Registers (LCDDATA23:LCDDATA0)

-n = Value at POR

The LCDCON register, shown in Register 22-1, controls the overall operation of the module. Once the module is configured, the LCDEN (LCDCON<7>) bit is

used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN (LCDCON<6>) bit.

The LCDPS register, shown in Register 22-2, configures the LCD clock source prescaler and the type of waveform, Type-A or Type-B. Details on these features are provided in Section 22.2 "LCD Clock Source Selection", Section 22.3 "LCD Bias Types" and Section 22.8 "LCD Waveform Generation".

x = Bit is unknown

REGISTER 22-1: LCDCON: LCD CONTROL REGISTER

'1' = Bit is set

R = Readable bit W = Writable			oit	U = Unimplem	nented bit read	l as '0'	
Legend: C = Clearable Only bit			Only bit				
bit 7							bit 0
LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0
R/W-0	R/W-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

hit 7	I CDEN: I CD Driver Enable bit

	 1 = LCD driver module is enabled 0 = LCD driver module is disabled
bit 6	SLPEN: LCD Driver Enable in Sleep mode bit 1 = LCD driver module is disabled in Sleep mode 0 = LCD driver module is enabled in Sleep mode
bit 5	WERR: LCD Write Failed Error bit 1 = 1 CDDATAx register written while 1 CDPS <wa> = 0 (must be cleared in software)</wa>
	0 = No LCD write error
bit 4	Unimplemented: Read as '0'
bit 3-2	CS1:CS0: Clock Source Select bits 00 = (Fosc/4)/8192 01 = T13CKI (Timer1)/32 1x = INTRC (31.25 kHz)/32
h:+ 4 0	I MUX4.1 MUX0. Commons Colort hits

bit 1-0 LMUX1:LMUX0: Commons Select bits

LMUX1:LMUX0	Multiplex	Maximum Number of Pixels (PIC18F6X90)	Maximum Number of Pixels (PIC18F8X90)	Bias	
00	Static (COM0)	32	48	Static	
01	1/2 (COM1:COM0)	64	96	1/2 or 1/3	
10	1/3 (COM2:COM0)	96	144	1/2 or 1/3	
11	1/4 (COM3:COM0)	128	192	1/3	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR3		LCDIF	RC2IF	TX2IF					61
PIE3	_	LCDIE	RC2IE	TX2IE		_	_		61
IPR3	_	LCDIP	RC2IP	TX2IP		_	_		61
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	60
LCDDATA23 ⁽¹⁾	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	63
LCDDATA22 ⁽¹⁾	S39C3	S38C3	S37C3	S36C3	S35C3	S34C3	S33C3	S32C3	63
LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	63
LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	63
LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	63
LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	63
LCDDATA17 ⁽¹⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	63
LCDDATA16 ⁽¹⁾	S39C2	S38C2	S37C2	S36C2	S35C2	S34C2	S33C2	S32C2	63
LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	63
LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	63
LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	63
LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	63
LCDDATA11 ⁽¹⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	63
LCDDATA10 ⁽¹⁾	S39C1	S38C1	S37C1	S36C1	S35C1	S34C1	S33C1	S32C1	63
LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	63
LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	63
LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	63
LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	63
LCDDATA5 ⁽¹⁾	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	63
LCDDATA4 ⁽¹⁾	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	63
LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	63
LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	63
LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	63
LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	63
LCDSE5 ⁽²⁾	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	64
LCDSE4 ⁽²⁾	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	64
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	64
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	64
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	64
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	64
LCDCON	LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0	64
LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	64

TABLE 22-6: REGISTERS ASSOCIATED WITH LCD OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers are implemented but unused on 64-pin devices and may be used as general purpose data RAM.

2: These registers are unimplemented on 64-pin devices.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available