

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

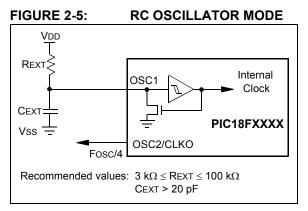
Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6490t-i-pt

Email: info@E-XFL.COM

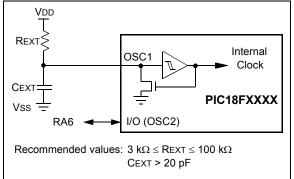
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 RC Oscillator


For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The actual oscillator frequency is a function of several factors:

- Supply voltage
- Values of the external resistor (REXT) and capacitor (CEXT)
- · Operating temperature

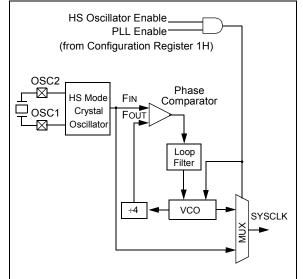
Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors such as:


- Normal manufacturing variation
- Difference in lead frame capacitance between package types (especially for low CEXT values)
- Variations within the tolerance of limits of $\ensuremath{\mathsf{REXT}}$ and $\ensuremath{\mathsf{CEXT}}$

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-5 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 2-6) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.5 PLL Frequency Multiplier


A Phase Locked Loop (PLL) circuit is provided as an option for users who want to use a lower frequency oscillator circuit, or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals, or users who require higher clock speeds from an internal oscillator.

2.5.1 HSPLL OSCILLATOR MODE

The HSPLL mode makes use of the HS mode oscillator for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz.

The PLL is only available to the crystal oscillator when the FOSC3:FOSC0 Configuration bits are programmed for HSPLL mode (= 0110).

FIGURE 2-7: PLL BLOCK DIAGRAM (HS MODE)

2.5.2 PLL AND INTOSC

The PLL is also available to the internal oscillator block in selected oscillator modes. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 2.6.4 "PLL in INTOSC Modes**".

2.6 Internal Oscillator Block

The PIC18F6390/6490/8390/8490 devices include an internal oscillator block, which generates two different clock signals; either can be used as the micro-controller's clock source. This may eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the device clock. It also drives a postscaler, which can provide a range of clock frequencies from 31 kHz to 4 MHz. The INTOSC output is enabled when a clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC), which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source; it is also enabled automatically when any of the following are enabled:

- Power-up Timer
- · Fail-Safe Clock Monitor
- · Watchdog Timer
- Two-Speed Start-up
- · LCD with INTRC as its clock source

These features are discussed in greater detail in Section 23.0 "Special Features of the CPU".

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (Register 2-2).

2.6.1 INTIO MODES

Using the internal oscillator as the clock source eliminates the need for up to two external oscillator pins, which can then be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

2.6.2 INTOSC OUTPUT FREQUENCY

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 8.0 MHz.

The INTRC oscillator operates independently of the INTOSC source. Any changes in INTOSC across voltage and temperature are not necessarily reflected by changes in INTRC and vice versa.

2.6.3 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory, but can be adjusted in the user's application. This is done by writing to the OSCTUNE register (Register 2-1). The tuning sensitivity is constant throughout the tuning range. When the OSCTUNE register is modified, the INTOSC and INTRC frequencies will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately $8 * 32 \ \mu s = 256 \ \mu s$). The INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred.

The OSCTUNE register also implements the INTSRC and PLLEN bits, which control certain features of the internal oscillator block. The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in **Section 2.7.1 "Oscillator Control Register"**.

The PLLEN bit controls the operation of the frequency multiplier, PLL, in internal oscillator modes.

2.6.4 PLL IN INTOSC MODES

The 4x frequency multiplier can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with an internal oscillator. When enabled, the PLL produces a clock speed of up to 32 MHz.

Unlike HSPLL mode, the PLL is controlled through software. The control bit, PLLEN (OSCTUNE<6>), is used to enable or disable its operation.

The PLL is available when the device is configured to use the internal oscillator block as its primary clock source (FOSC3:FOSC0 = 1001 or 1000). Additionally, the PLL will only function when the selected output frequency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111 or 110). If both of these conditions are not met, the PLL is disabled.

The PLLEN control bit is only functional in those internal oscillator modes where the PLL is available. In all other modes, it is forced to '0' and is effectively unavailable.

2.6.5 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. Three compensation techniques are discussed in Section 2.6.5.1 "Compensating with the AUSART", Section 2.6.5.2 "Compensating with the Timers" and Section 2.6.5.3 "Compensating with the Timers", but other techniques may be used.

2.7 Clock Sources and Oscillator Switching

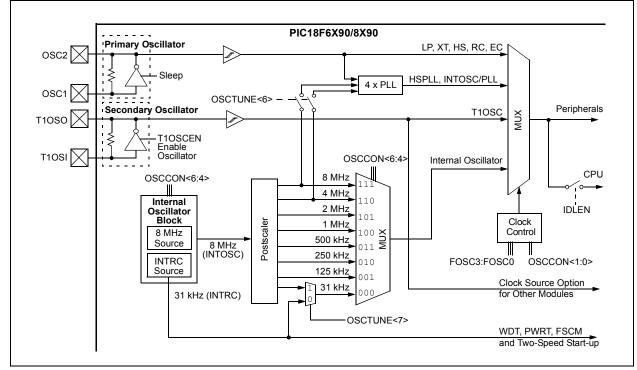
Like previous PIC18 devices, the PIC18F6390/6490/8390/8490 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F6390/6490/8390/8490 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC3:FOSC0 Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F6390/6490/8390/8490 devices offer the Timer1 oscillator as a secondary oscillator. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock.


Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP Oscillator mode circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 11.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F6390/6490/8390/8490 devices are shown in Figure 2-8. See **Section 23.0 "Special Features of the CPU"** for Configuration register details.

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0		
IPEN	SBOREN	_	RI	TO	PD	POR	BOR		
bit 7							bit		
Legend:									
R = Readable	<u>e</u> bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	nown		
			-				-		
bit 7	IPEN: Interru	ot Priority Ena	ble bit						
		riority levels o							
	-	-		PIC16CXXX Co	mpatibility mod	le)			
bit 6	SBOREN: BO	DR Software E	nable bit ⁽¹⁾						
	If BOREN1:B								
	1 = BOR is e								
	0 = BOR is disabled <u>If BOREN1:BOREN0 = 00, 10 or 11:</u>								
		Bit is disabled and read as '0'.							
bit 5	Unimplemen	Unimplemented: Read as '0'							
bit 4	RI: RESET IN	struction Flag	bit						
	1 = The RES	ET instruction	was not execu	ited (set by firm	ware only)				
		ET instruction		d causing a de	vice Reset (m	ust be set in so	oftware after		
bit 3	TO: Watchdo	g Time-out Fla	ıg bit						
				or SLEEP instr	uction				
		me-out occurr							
bit 2	PD: Power-D		•						
			the CLRWDT in						
bit 1		on Reset Stati		Clion					
				set by firmwar	e only)				
	 1 = A Power-on Reset has not occurred (set by firmware only) 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 								
bit 0		out Reset Stat	•				,		
	1 = A Brown	-out Reset ha	s not occurred	(set by firmwa	re only)				
						n-out Reset occ	curs)		
Note 1: If S	SBOREN is enal	oled, its Reset	state is '1'; ot	herwise, it is '0					
Note 1: It	is recommende	d that the \overline{POF}	bit be set afte	er a Power-on F	Reset has been	detected, so th	at subseque		
	ower-on Resets								

REGISTER 4-1: RCON: RESET CONTROL REGISTER

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after a Power-on Reset).

Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
LCDSE5	6X90	8X90	0000 0000	0000 0000 (6)	սսսս սսսս			
LCDSE4	6X90	8X90	0000 0000	0000 0000 (6)	սսսս սսսս			
LCDSE3	6X90	8X90	0000 0000	0000 0000 (6)	uuuu uuuu			
LCDSE2	6X90	8X90	0000 0000	0000 0000 (6)	սսսս սսսս			
LCDSE1	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน			
LCDSE0	6X90	8X90	0000 0000	0000 0000 (6)	นนนน นนนน			
LCDCON	6X90	8X90	000- 0000	000- 0000	uuu- uuuu			
LCDPS	6X90	8X90	0000 0000	0000 0000	นนนน นนนน			

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: These registers are cleared on POR and unchanged on BOR.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
SPBRGH1	EUSART1 Ba	aud Rate Gene	erator Register	r High Byte					0000 0000	62, 201
BAUDCON1	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	62, 200
LCDDATA23(6)	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	XXXX XXXX	63, 261
LCDDATA22(6)	S39C3	S38C3	S37C3	S36C3	S35C3	S34C3	S33C3	S32C3	XXXX XXXX	63, 261
LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	XXXX XXXX	63, 261
LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	XXXX XXXX	63, 261
LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	XXXX XXXX	63, 261
LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	XXXX XXXX	63, 261
LCDDATA17 ⁽⁶⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	XXXX XXXX	63, 261
LCDDATA16 ⁽⁶⁾	S39C2	S38C2	S37C2	S36C2	S35C2	S34C2	S33C2	S32C2	XXXX XXXX	63, 261
LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	XXXX XXXX	63, 261
LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	XXXX XXXX	63, 261
LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	XXXX XXXX	63, 261
LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	XXXX XXXX	63, 261
LCDDATA11 ⁽⁶⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	XXXX XXXX	63, 261
SPBRG2	AUSART2 Ba	aud Rate Gene	erator Register	r					0000 0000	63, 220
RCREG2	AUSART2 Receive Register								0000 0000	63, 224
TXREG2	AUSART2 Tr	ansmit Registe	er						0000 0000	63, 222
TXSTA2	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	63, 218
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	63, 219
LCDDATA10 ⁽⁶⁾	S39C1	S38C1	S37C1	S36C1	S35C1	S34C1	S33C1	S32C1	XXXX XXXX	63, 261
LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	XXXX XXXX	63, 261
LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	XXXX XXXX	63, 261
LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	XXXX XXXX	63, 261
LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	XXXX XXXX	63, 261
LCDDATA5 ⁽⁶⁾	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	XXXX XXXX	63, 261
LCDDATA4 ⁽⁶⁾	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	XXXX XXXX	63, 261
LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	XXXX XXXX	63, 261
LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	XXXX XXXX	63, 261
LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	XXXX XXXX	63, 261
LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	XXXX XXXX	63, 261
LCDSE5 ⁽²⁾	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	0000 0000	64, 261
LCDSE4 ⁽²⁾	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	0000 0000	64, 260
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	0000 0000	64, 260
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	64, 260
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	64, 260
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	64, 260
LCDCON	LCDEN	SLPEN	WERR	_	CS1	CS0	LMUX1	LMUX0	000- 0000	64, 258
LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	0000 0000	64, 259

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 64-pin devices; read as '0'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: The RG5 bit is only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: These registers are implemented but unused in 64-pin devices and may be used as general-purpose data RAM if required.

6.2 **Control Registers**

Two control registers are used in conjunction with the TBLRD instruction: the TABLAT register and the TBLPTR register set.

6.2.1 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.2 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer register (TBLPTR) addresses a byte within the program memory. It is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer Byte and Table Pointer Low Byte Hiah (TBLPTRU:TBLPTRH:TBLPTRL). Only the lower six bits of TBLPTRU are used with TBLPTRH and TBLPTRL to form a 22-bit wide pointer.

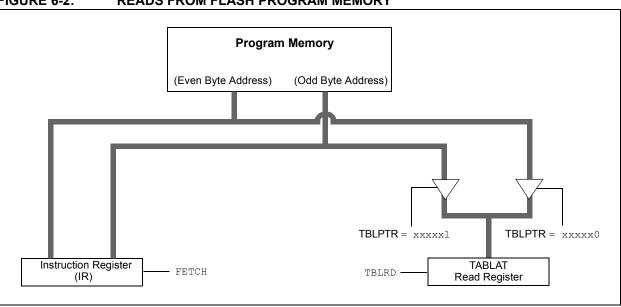
The contents of TBLPTR indicates a location in program memory space. The low-order 21 bits allow the device to address the full 2 Mbytes of program memory space. The 22nd bit allows access to the configuration space, including the device ID, user ID locations and the Configuration bits.

The TBLPTR register set is updated when executing a TBLRD in one of four ways, based on the instruction's arguments. These are detailed in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

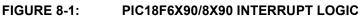
When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

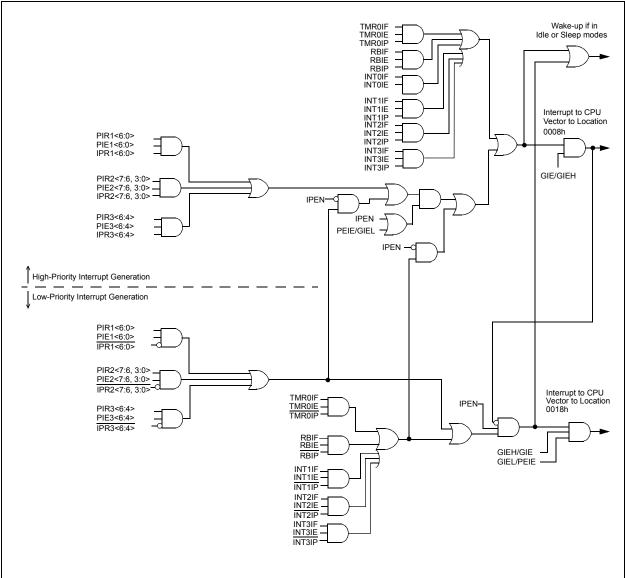
TABLE POINTER TABLE 6-1: OPERATIONS WITH TBLRD INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD*	TBLPTR is not modified
TBLRD*+	TBLPTR is incremented after the read
TBLRD*-	TBLPTR is decremented after the read
TBLRD+*	TBLPTR is incremented before the read


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.


TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.


The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-2 shows the interface between the internal program memory and the TABLAT.

A typical method for reading data from program memory is shown in Example 6-1.

FIGURE 6-2: READS FROM FLASH PROGRAM MEMORY

9.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

CLRF	PORTB	; Initialize PORTB by
1		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB7:RB4) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB4:RB1 are also multiplexed with LCD segment drives controlled by bits in the LCDSE1 register. I/O port functions are only available when the segments are disabled.

	-				1		
Pin Name	Function	TRIS Setting	I/O	Buffer	Description		
RH0/SEG47	RH0	0	0	DIG-4	LATH<0> data output; disabled when LCD segment enabled.		
		1	Ι	ST	PORTH<0> data input.		
	SEG47	х	0	ANA	Segment 47 analog output for LCD.		
RH1/SEG46	RH1	0	0 O DIG LATH<1> data output; disabled when		LATH<1> data output; disabled when LCD segment enabled.		
		1	I	ST	PORTH<1> data input.		
	SEG46	x	0	ANA	Segment 46 analog output for LCD.		
RH2/SEG45	RH2	0	0	DIG	LATH<2> data output; disabled when LCD segment enabled.		
		1	I	ST	PORTH<2> data input.		
	SEG45	х	0	ANA	Segment 45 analog output for LCD.		
RH3/SEG44	RH3	0	0	DIG	LATH<3> data output; disabled when LCD segment enabled.		
-		1	I	ST	PORTH<3> data input.		
	SEG44	x	0	ANA	Segment 44 analog output for LCD.		
RH4/SEG40	RH4	0	0	DIG	LATH<4> data output; disabled when LCD segment enabled.		
		1	I	ST	PORTH<4> data input.		
	SEG40	х	0	ANA	Segment 40 analog output for LCD		
RH5/SEG41	RH5	0	0	DIG	LATH<5> data output; disabled when LCD segment enabled.		
		1	I	ST	PORTH<5> data input.		
	SEG41	х	0	ANA	Segment 41 analog output for LCD.		
RH6/SEG42	RH6	0	0	DIG	LATH<6> data output; disabled when LCD segment enabled.		
		1	I	ST	PORTH<6> data input.		
	SEG42	х	0	ANA	Segment 42 analog output for LCD.		
RH7/SEG43	RH7	0	0	DIG	LATH<7> data output; disabled when LCD segment enabled.		
		1	Ι	ST	PORTH<7> data input.		
	SEG43	х	0	ANA	Segment 43 analog output for LCD.		

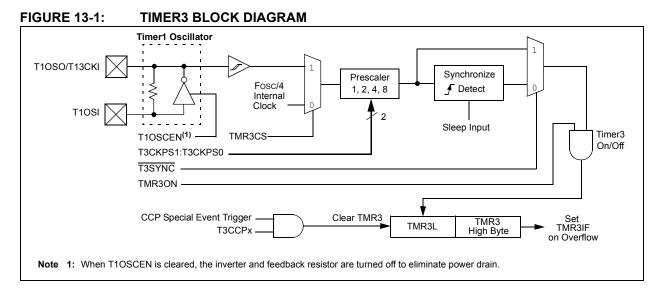
TABLE 9-16: PORTH FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

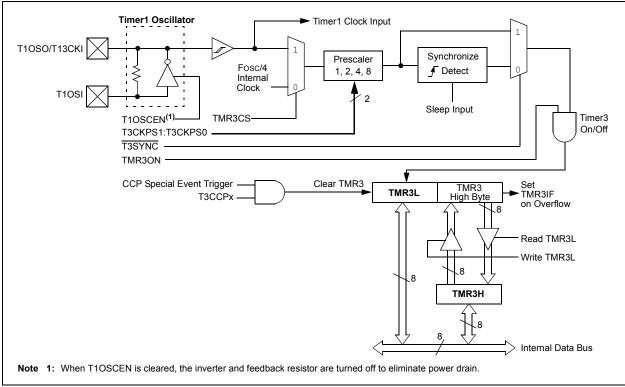
TABLE 9-17: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TRISH	PORTH D	PORTH Data Direction Register							62
PORTH	Read PORTH pin/Write PORTH Data Latch						62		
LATH	LATH Data Output Register						62		
LCDSE5	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	64

13.1 Timer3 Operation


Timer3 can operate in one of three modes:

- Timer
- · Synchronous counter
- Asynchronous counter


The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction

cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

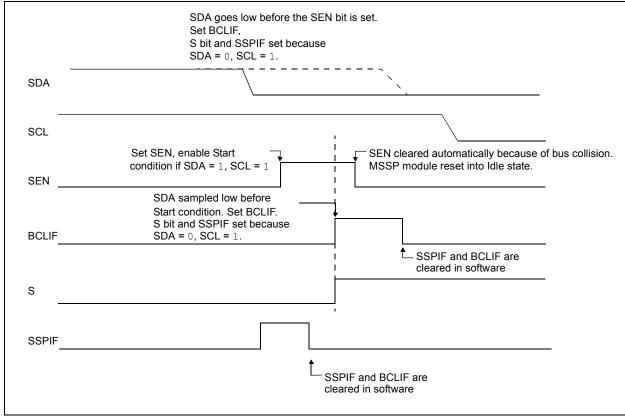
FIGURE 13-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

15.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 15-26).
- b) SCL is sampled low before SDA is asserted low (Figure 15-27).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- · the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 15-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 15-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0 and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 15-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

R/W-0	R-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	
bit 7							bit C	
Legend:	. 1.4		1.11					
R = Readable		W = Writable		U = Unimplem				
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	rea	x = Bit is unkr	nown	
bit 7	ABDOVF: Au	uto-Baud Acqui	sition Rollover	Status bit				
		ollover has occ rollover has oc		uto-Baud Rate D	etect mode	(must be cleared	d in software)	
bit 6	RCIDL: Rece	eive Operation	Idle Status bit					
		operation is Idle						
bit 5	Unimplemer	nted: Read as '	0'					
bit 4	SCKP: Syncl	hronous Clock	Polarity Select	bit				
	Asynchronou Unused in thi							
		<u>mode:</u> for clock (CK1 for clock (CK1	, 0					
bit 3		Bit Baud Rate F	-					
				H1 and SPBRG1 only (Compatible		BRGH1 value ig	Inored	
bit 2	0 = 8-bit Baud Rate Generator – SPBRG1 only (Compatible mode), SPBRGH1 value ignored Unimplemented: Read as '0'							
bit 1	WUE: Wake-	up Enable bit						
	hardware		ising edge	RX1 pin – interru detected	pt generate	d on falling edge	; bit cleared i	
	Synchronous Unused in thi							
bit 0	ABDEN: Auto-Baud Detect Enable bit							
	cleared i		on completion.		. Requires r	reception of a Sy	nc field (55h	
	<u>Synchronous</u> Unused in thi							

16.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 16-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

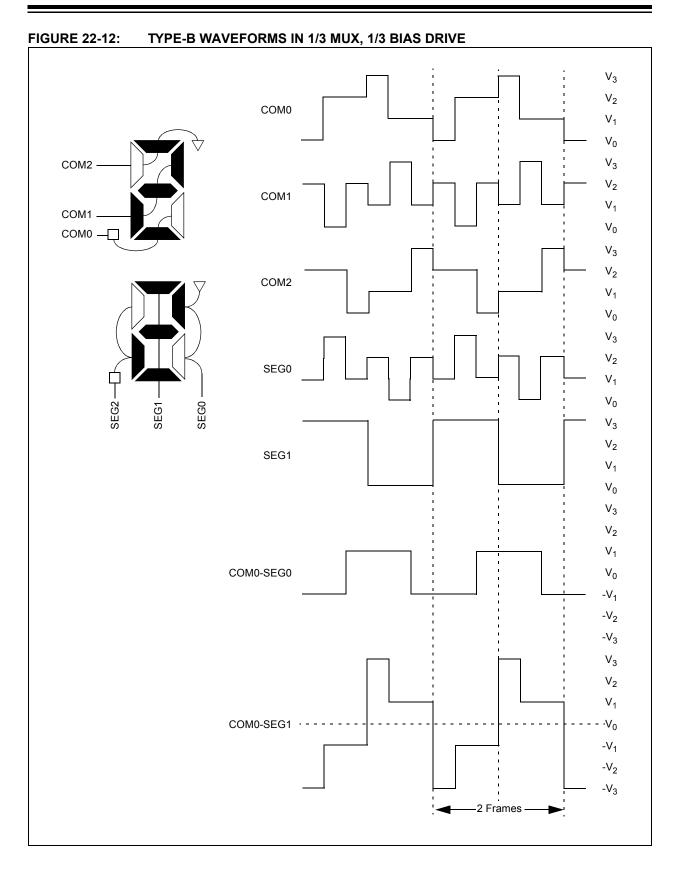
In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX1 signal, the RX1 signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

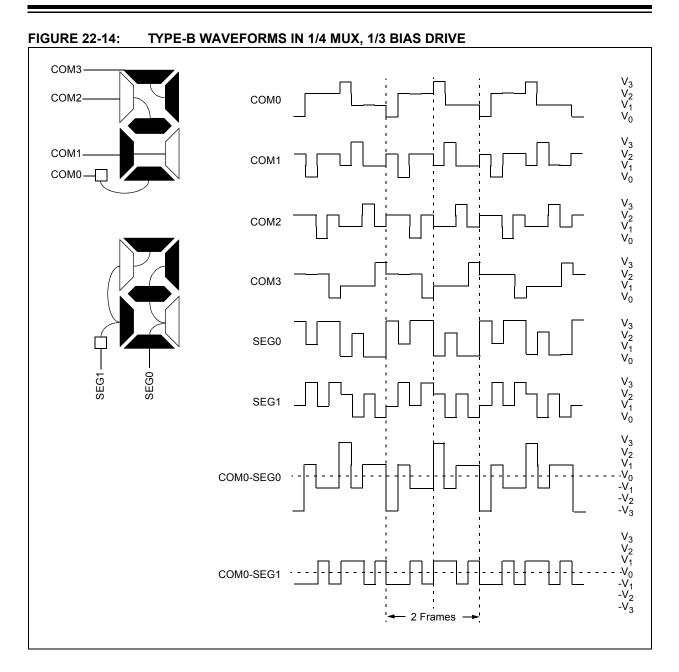
Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value, 55h (ASCII "U", which is also the LIN bus Sync character), in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG1 begins counting up, using the preselected clock source on the first rising edge of RX1. After eight bits on the RX1 pin or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH1:SPBRG1 register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON1<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 16-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGH1 register. Refer to Table 16-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RC1IF interrupt is set once the fifth rising edge on RX1 is detected. The value in the RCREG1 needs to be read to clear the RC1IF interrupt. The contents of RCREG1 should be discarded.


- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character.
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.
 - When the auto-baud feature is enabled, the BRG16 bit (BAUDCON<3>) must be set.


TABLE 16-4: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

16.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREG1 cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

23.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are readable during normal execution through the TBLRD instruction. During program/verify, these locations are readable and writable. The ID locations can be read when the device is code-protected.

23.7 In-Circuit Serial Programming

PIC18F6390/6490/8390/8490 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

23.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 23-4 shows which resources are required by the background debugger.

TABLE 23-4:	DEBUGGER RESOURCES	DEBUGGER RESOUR		
1/O min av				

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, VSS, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

DAW	Decimal A	Adjust W Re	gister	DECF		Decreme	nt f	
Syntax:	DAW			Syntax:		DECF f{,c	d {,a}}	
Operands: Operation:	None If [W<3:0> >9] or [DC = 1] then,		Operands:	perands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
	(W<3:0>) + else.	$6 \rightarrow W < 3:0 > 3$		Operation:		$a \in [0, 1]$ (f) – 1 $\rightarrow de$	est	
	(W<3:0>) –	→ W<3:0>;		Status Affecte	ed:	C, DC, N, C		
	•	>9] or [C = 1] · 6 → W<7:4> → W<7:4>		Encoding: Description:		0000 Decrement result is sto	-	' is '1', the
Status Affected:	С					lf 'a' is '0', t	he Access Ba	ink is selected.
Encoding:	0000	0000 00	00 0000 0111			If 'a' is '1', the BSR is used to select the GPR bank.		
Description:	resulting fro variables (e and produc result.		addition of two BCD format)			set is enabl in Indexed mode wher Section 24	led, this instru Literal Offset never f ≤ 95 (5 . 2.3 "Byte-O i	Fh). See riented and
Words:	1						ed Instructior set Mode" for	ns in Indexed
Cycles:	1			Words:		1		dotano.
Q Cycle Activity: Q1	Q2	Q3	Q4	Cycles:		1		
Decode	Read	Process	Write	Q Cycle Acti	vity:			
	register W	Data	W	Q1	•	Q2	Q3	Q4
Example 1:	DAW			Deco	de	Read register 'f'	Process Data	Write to destination
Before Instruc	ction							
W C	= A5h = 0			Example:		DECF	CNT, 1, 0)
DC	= 0			Before li				
After Instructi W C	on = 05h = 1			CN Z After Ins		= 01h = 0 n		
DC Example 2:	= 0			CN Z	IT	= 00h = 1		
Before Instruct W C DC	= CEh = 0 = 0							
After Instructi W C DC	on = 34h = 1 = 0							

DEC	FSZ	Decrement f, Skip if 0				
Synta	ax:	DECFSZ f	DECFSZ f {,d {,a}}			
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation: $(f) - 1 \rightarrow dest,$ skip if result = 0						
Statu	is Affected:	None				
Enco	oding:	0010	11da fff	f ffff		
Encoding.IteaIteaIteaIteaDescription:The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the 						
Word	ls.	1	set Mode" for	dotano.		
Cycle		1(2)				
- ,		Note: 3 c	cycles if skip a a 2-word instr			
QC	ycle Activity:	by				
	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write to destination		
lf sk	ip:	register i	Data	destination		
	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
IT SK	up and followe Q1	d by 2-word in: Q2	Struction: Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
	No operation	No operation	No operation	No operation		
Example:		HERE	DECFSZ GOTO	CNT, 1, 1 LOOP		
CONTINUE						
Before Instruction PC After Instruction		= Address	= Address (HERE)			
	CNT If CNT PC If CNT	= CNT – 1 = 0; = Address ≠ 0;		.)		
	PC	≠ 0,= Address	6 (HERE + 2)		

DCF	SNZ	Decrement f, Skip if not 0				
Synt	ax:	DCFSNZ f {,d {,a}}				
Oper	ands:	$0 \leq f \leq 255$				
		$d \in [0,1]$				
0			a ∈ [0,1]			
Oper	ation:	()	(f) – 1 \rightarrow dest, skip if result $\neq 0$			
Stati	is Affected:	None	(+ 0			
			11.1			
	oding:	0100	11da fff			
Desc	cription:	decremente	The contents of register 'f' are decremented. If 'd' is '0', the result is blaced in W. If 'd' is '1', the result is			
			k in register 'f'			
			is not '0', the which is alread			
			and a NOP is ex			
			king it a two-c			
		lf 'a' is '0', tl	he Access Bar	nk is selected.		
		lf 'a' is '1', tl GPR bank.	he BSR is use	d to select the		
		lf 'a' is ' 0' a	nd the extende	ed instruction		
			ed, this instruc			
			Literal Offset A ever f ≤ 95 (5I			
			.2.3 "Byte-Or			
		Bit-Oriente	d Instruction	s in Indexed		
		Literal Offs	set Mode" for	details.		
Word	ds:	1				
Cycle	es:	1(2)				
			cycles if skip a			
~ ~	unda Antivituu	Dy	a 2-word instr			
QU	ycle Activity:	02	02	04		
	Q1 Decode	Q2 Read	Q3 Process	Q4 Write to		
	Decoue	register 'f'	Data	destination		
lf sk	ip:	<u> </u>				
	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
lf sk	ip and followed	,		• (
	Q1	Q2	Q3	Q4		
	No operation	No operation	No operation	No operation		
	No	No	No	No		
	operation	operation	operation	operation		
<u>Exar</u>	nple:	ZERO	DCFSNZ TEM :	IP, 1, 0		
Before Instruction						
	TEMP	=	?			
	After Instructio TEMP	on =	TEMP – 1,			
	If TEMP	= 0;				
	PC If TEMP	<pre>= Address (ZERO) ≠ 0;</pre>				
	PC	=		NZERO)		

26.4 AC (Timing) Characteristics

26.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase I	etters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase I	etters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		