



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT                          |
| Number of I/O              | 66                                                                        |
| Program Memory Size        | 8KB (4K x 16)                                                             |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 768 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 12x10b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 80-TQFP                                                                   |
| Supplier Device Package    | 80-TQFP (12x12)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f8390-e-pt |
|                            |                                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

### 2.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 2-2) controls several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

The System Clock Select bits, SCS1:SCS0, select the clock source. The available clock sources are the primary clock (defined by the FOSC:FOSC0 Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared on all forms of Reset.

The Internal Oscillator Frequency Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source, the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC postscaler (31.25 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output.

When an output frequency of 31 kHz is selected (IRCF2:IRCF0 = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source by enabling the divide-by-256 output of the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer has timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock, or the internal oscillator block has just started and is not yet stable. The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 3.0** "Power-Managed Modes".

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
  - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction, or a very long delay may occur while the Timer1 oscillator starts.

### 2.7.2 OSCILLATOR TRANSITIONS

PIC18F6390/6490/8390/8490 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

NOTES:

### 8.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

#### REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

| GIE/GIEH         PEIE/GIEL         TMR0IE         INT0IE         RBIE         TMR0IF         INT0IF         RBIF <sup>(1)</sup> bit 7         bit | R/W-0    | R/W-0     | R/W-0  | R/W-0  | R/W-0 | R/W-0  | R/W-0  | R/W-x               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------|--------|-------|--------|--------|---------------------|
| bit 7 bit                                                                                                                                         | GIE/GIEH | PEIE/GIEL | TMR0IE | INT0IE | RBIE  | TMR0IF | INT0IF | RBIF <sup>(1)</sup> |
|                                                                                                                                                   | bit 7    |           |        |        |       |        |        | bit 0               |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 7   | GIE/GIEH: Global Interrupt Enable bit<br><u>When IPEN = 0:</u><br>1 = Enables all unmasked interrupts<br>0 = Disables all interrupts<br><u>When IPEN = 1:</u><br>1 = Enables all high-priority interrupts |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 0 = Disables all interrupts                                                                                                                                                                               |
| bit 6   | PEIE/GIEL: Peripheral Interrupt Enable bit                                                                                                                                                                |
|         | <u>When IPEN = 0:</u><br>1 = Enables all unmasked peripheral interrupts<br>0 = Disables all peripheral interrupts<br><u>When IPEN = 1:</u>                                                                |
|         | <ul> <li>1 = Enables all low-priority peripheral interrupts</li> <li>0 = Disables all low-priority peripheral interrupts</li> </ul>                                                                       |
| bit 5   | TMR0IE: TMR0 Overflow Interrupt Enable bit                                                                                                                                                                |
|         | <ul> <li>1 = Enables the TMR0 overflow interrupt</li> <li>0 = Disables the TMR0 overflow interrupt</li> </ul>                                                                                             |
| bit 4   | INTOIE: INTO External Interrupt Enable bit                                                                                                                                                                |
|         | <ul> <li>1 = Enables the INT0 external interrupt</li> <li>0 = Disables the INT0 external interrupt</li> </ul>                                                                                             |
| bit 3   | RBIE: RB Port Change Interrupt Enable bit                                                                                                                                                                 |
|         | <ul> <li>1 = Enables the RB port change interrupt</li> <li>0 = Disables the RB port change interrupt</li> </ul>                                                                                           |
| bit 2   | TMR0IF: TMR0 Overflow Interrupt Flag bit                                                                                                                                                                  |
|         | <ul> <li>1 = TMR0 register has overflowed (must be cleared in software)</li> <li>0 = TMR0 register did not overflow</li> </ul>                                                                            |
| bit 1   | INT0IF: INT0 External Interrupt Flag bit                                                                                                                                                                  |
|         | <ul> <li>1 = The INT0 external interrupt occurred (must be cleared in software)</li> <li>0 = The INT0 external interrupt did not occur</li> </ul>                                                         |
| bit 0   | <b>RBIF:</b> RB Port Change Interrupt Flag bit <sup>(1)</sup>                                                                                                                                             |
|         | <ul> <li>1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)</li> <li>0 = None of the RB7:RB4 pins have changed state</li> </ul>                                             |
| Note 1: | A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and                                                                                                     |

allow the bit to be cleared.

| R/W-0                                                                | U-0                                                                                                                                                                                                                                                              | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0  | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CMIE                                                                 | —                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BCLIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HLVDIE | TMR3IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCP2IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| POR                                                                  | '1' = Bit is set                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '0' = Bit is clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ared   | x = Bit is unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| OSCFIE: Osc                                                          | illator Fail Inter                                                                                                                                                                                                                                               | rupt Enable bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1 = Enabled                                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 0 = Disabled                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| •                                                                    | arator Interrupt                                                                                                                                                                                                                                                 | Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      | ted: Deed ee fo                                                                                                                                                                                                                                                  | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| -                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      | Collision Interri                                                                                                                                                                                                                                                | upt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      | n/I ow-Voltage F                                                                                                                                                                                                                                                 | Detect Interrup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1 = Enabled                                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 0 = Disabled                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| TMR3IE: TMF                                                          | R3 Overflow Inte                                                                                                                                                                                                                                                 | errupt Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1 = Enabled                                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 0 = Disabled                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      | P2 Interrupt Ena                                                                                                                                                                                                                                                 | able bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      | CMIE<br>bit<br>OSCFIE: Osc<br>1 = Enabled<br>0 = Disabled<br>CMIE: Compa<br>1 = Enabled<br>0 = Disabled<br>Unimplemen<br>BCL1IE: Bus<br>1 = Enabled<br>0 = Disabled<br>HLVDIE: High<br>1 = Enabled<br>0 = Disabled<br>TMR3IE: TMF<br>1 = Enabled<br>0 = Disabled | CMIE       —         bit       W = Writable I         POR       '1' = Bit is set         OSCFIE: Oscillator Fail Inter         1 = Enabled         0 = Disabled         CMIE: Comparator Interrupt         1 = Enabled         0 = Disabled         Unimplemented: Read as '0'         BCL1IE: Bus Collision Interrupt         1 = Enabled         0 = Disabled         HLVDIE: High/Low-Voltage I         1 = Enabled         0 = Disabled         TMR3IE: TMR3 Overflow Inter         1 = Enabled         0 = Disabled         CCP2IE: CCP2 Interrupt Enabled         1 = Enabled | CMIE       —       —         bit       W = Writable bit         POR       '1' = Bit is set         OSCFIE: Oscillator Fail Interrupt Enable bit         1 = Enabled         0 = Disabled         CMIE: Comparator Interrupt Enable bit         1 = Enabled         0 = Disabled         Unimplemented: Read as '0'         BCL1IE: Bus Collision Interrupt Enable bit         1 = Enabled         0 = Disabled         HLVDIE: High/Low-Voltage Detect Interrup         1 = Enabled         0 = Disabled         TMR3IE: TMR3 Overflow Interrupt Enable         1 = Enabled         0 = Disabled         CCP2IE: CCP2 Interrupt Enable bit         1 = Enabled | CMIE   | CMIE       —       BCLIE       HLVDIE         bit       W = Writable bit       U = Unimplemented bit, read         POR       '1' = Bit is set       '0' = Bit is cleared         OSCFIE: Oscillator Fail Interrupt Enable bit         1 = Enabled       0         0 = Disabled       CMIE: Comparator Interrupt Enable bit         1 = Enabled       0         0 = Disabled       Unimplemented: Read as '0'         BCL1E: Bus Collision Interrupt Enable bit       1         1 = Enabled       0         0 = Disabled       HLVDIE: High/Low-Voltage Detect Interrupt Enable bit         1 = Enabled       0         0 = Disabled       TMR3IE: TMR3 Overflow Interrupt Enable bit         1 = Enabled       0         0 = Disabled       CCP21E: CCP2 Interrupt Enable bit | CMIE       —       BCLIE       HLVDIE       TMR3IE         bit       W = Writable bit       U = Unimplemented bit, read as '0'       POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unkn         OSCFIE: Oscillator Fail Interrupt Enable bit       1 = Enabled       0 = Disabled       X = Bit is unkn         OSCFIE: Oscillator Fail Interrupt Enable bit       1 = Enabled       0 = Disabled       X = Bit is unkn         OSCFIE: Oscillator Fail Interrupt Enable bit       1 = Enabled       0 = Disabled       X = Bit is unkn         OSCFIE: Comparator Interrupt Enable bit       1 = Enabled       0 = Disabled       X = Bit is unkn         Unimplemented: Read as '0'       BCL1E       BCL1E: Bus Collision Interrupt Enable bit       X = Bit is unkn         1 = Enabled       0 = Disabled       HLVDIE: High/Low-Voltage Detect Interrupt Enable bit       X = Bit is unkn         1 = Enabled       0 = Disabled       TMR3IE: TMR3 Overflow Interrupt Enable bit       X = Enabled         0 = Disabled       CCP2IE: CCP2 Interrupt Enable bit       X = Enabled       X = Enabled         0 = Disabled       Enabled       X = Enabled       X = Enabled |  |  |

#### REGISTER 8-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

NOTES:

#### 14.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP2 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR2L register and CCP2CON<5:4> bits.
- 3. Make the CCP2 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP2 module for PWM operation.

| Name    | Bit 7                                   | Bit 6                                   | Bit 5          | Bit 4     | Bit 3    | Bit 2  | Bit 1   | Bit 0   | Reset<br>Values<br>on Page |  |
|---------|-----------------------------------------|-----------------------------------------|----------------|-----------|----------|--------|---------|---------|----------------------------|--|
| INTCON  | GIE/GIEH                                | PEIE/GIEL                               | TMR0IE         | INT0IE    | RBIE     | TMR0IF | INT0IF  | RBIF    | 59                         |  |
| RCON    | IPEN                                    | IPEN SBOREN - RI TO PD POR BOR          |                |           |          |        |         |         | 60                         |  |
| PIR1    | _                                       | ADIF                                    | RC1IF          | TX1IF     | SSPIF    | CCP1IF | TMR2IF  | TMR1IF  | 61                         |  |
| PIE1    | _                                       | ADIE                                    | RC1IE          | TX1IE     | SSPIE    | CCP1IE | TMR2IE  | TMR1IE  | 61                         |  |
| IPR1    | _                                       | ADIP                                    | RC1IP          | TX1IP     | SSPIP    | CCP1IP | TMR2IP  | TMR1IP  | 61                         |  |
| TRISC   | PORTC Data Direction Register           |                                         |                |           |          |        |         |         |                            |  |
| TRISE   | PORTE Da                                | PORTE Data Direction Register — — — — — |                |           |          |        |         |         |                            |  |
| TMR2    | Timer2 Reg                              | gister                                  |                |           |          |        |         |         | 60                         |  |
| PR2     | Timer2 Per                              | iod Register                            |                |           |          |        |         |         | 60                         |  |
| T2CON   | _                                       | T2OUTPS3                                | T2OUTPS2       | T2OUTPS1  | T2OUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | 60                         |  |
| CCPR1L  | Capture/Co                              | mpare/PWN                               | I Register 1 L | _ow Byte  |          |        |         |         | 61                         |  |
| CCPR1H  | Capture/Co                              | mpare/PWN                               | I Register 1 I | ligh Byte |          |        |         |         | 61                         |  |
| CCP1CON | _                                       | _                                       | DC1B1          | DC1B0     | CCP1M3   | CCP1M2 | CCP1M1  | CCP1M0  | 61                         |  |
| CCPR2L  | Capture/Compare/PWM Register 2 Low Byte |                                         |                |           |          |        |         |         |                            |  |
| CCPR2H  | Capture/Co                              | mpare/PWN                               | I Register 2 I | ligh Byte |          |        |         |         | 61                         |  |
| CCP2CON | _                                       | _                                       | DC2B1          | DC2B0     | CCP2M3   | CCP2M2 | CCP2M1  | CCP2M0  | 61                         |  |

#### TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

**Legend:** — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

### 15.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The MSSP consists of a Transmit/Receive Shift register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 15-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

#### EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER

| LOOP | BTFSS | SSPSTAT, BF | ;Has data been received (transmit complete)? |
|------|-------|-------------|----------------------------------------------|
|      | BRA   | LOOP        | ;No                                          |
|      | MOVF  | SSPBUF, W   | ;WREG reg = contents of SSPBUF               |
|      | MOVWF | RXDATA      | ;Save in user RAM, if data is meaningful     |
|      | MOVF  | TXDATA, W   | ;W reg = contents of TXDATA                  |
|      | MOVWF | SSPBUF      | ;New data to xmit                            |

#### 15.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 15-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication, as shown in Figure 15-3, Figure 15-5 and Figure 15-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 15-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

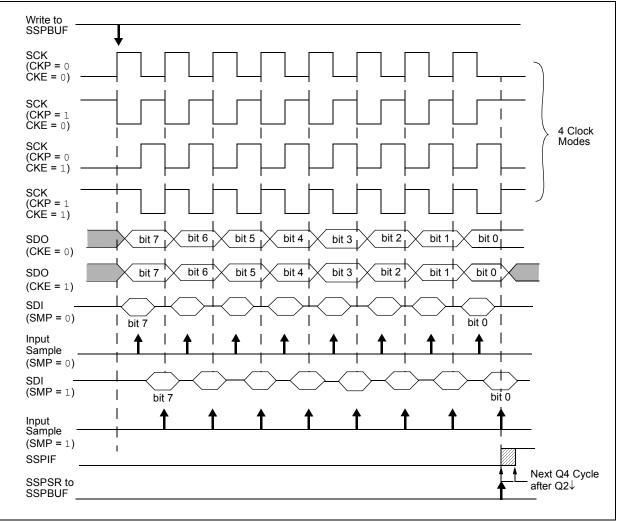
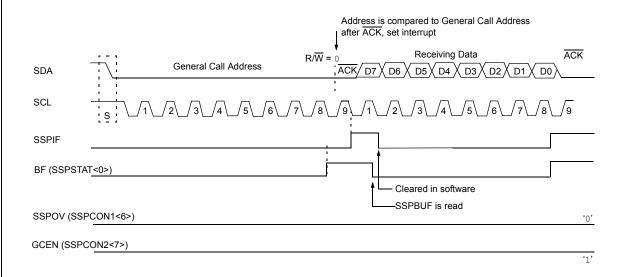



FIGURE 15-3: SPI MODE WAVEFORM (MASTER MODE)

#### 15.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the  $I^2C$  bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the  $I^2C$  protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 15-15).





|             |                                     |            |                             |                    | SYN        | C = 0, BRGH                 | <b>i =</b> 0, <b>BRG</b> | 16 = 1     |                             |                    |            |                             |
|-------------|-------------------------------------|------------|-----------------------------|--------------------|------------|-----------------------------|--------------------------|------------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD        | FOSC = 40,000 MHZ FOSC = 20,000 MHZ |            |                             |                    | Fosc       | : = 10.00                   | 0 MHz                    | Fos        | Fosc = 8.000 MHz            |                    |            |                             |
| RATE<br>(K) | Actual<br>Rate (K)                  | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K)       | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) |
| 0.3         | 0.300                               | 0.00       | 8332                        | 0.300              | 0.02       | 4165                        | 0.300                    | 0.02       | 2082                        | 0.300              | -0.04      | 1665                        |
| 1.2         | 1.200                               | 0.02       | 2082                        | 1.200              | -0.03      | 1041                        | 1.200                    | -0.03      | 520                         | 1.201              | -0.16      | 415                         |
| 2.4         | 2.402                               | 0.06       | 1040                        | 2.399              | -0.03      | 520                         | 2.404                    | 0.16       | 259                         | 2.403              | -0.16      | 207                         |
| 9.6         | 9.615                               | 0.16       | 259                         | 9.615              | 0.16       | 129                         | 9.615                    | 0.16       | 64                          | 9.615              | -0.16      | 51                          |
| 19.2        | 19.231                              | 0.16       | 129                         | 19.231             | 0.16       | 64                          | 19.531                   | 1.73       | 31                          | 19.230             | -0.16      | 25                          |
| 57.6        | 58.140                              | 0.94       | 42                          | 56.818             | -1.36      | 21                          | 56.818                   | -1.36      | 10                          | 55.555             | 3.55       | 8                           |
| 115.2       | 113.636                             | -1.36      | 21                          | 113.636            | -1.36      | 10                          | 125.000                  | 8.51       | 4                           | —                  | _          | _                           |

#### TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

|              |                    |            | s                           | YNC = 0, E         | BRGH = (    | ), BRG16 = | 1     |            |                             |
|--------------|--------------------|------------|-----------------------------|--------------------|-------------|------------|-------|------------|-----------------------------|
| BAUD<br>RATE | Fos                | c = 4.000  | MHz                         | Fos                | c = 2.000   | MHz        | Fos   | c = 1.000  | MHz                         |
| (K)          | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | · · · · · · |            |       | %<br>Error | SPBRG<br>value<br>(decimal) |
| 0.3          | 0.300              | 0.04       | 832                         | 0.300              | -0.16       | 415        | 0.300 | -0.16      | 207                         |
| 1.2          | 1.202              | 0.16       | 207                         | 1.201              | -0.16       | 103        | 1.201 | -0.16      | 51                          |
| 2.4          | 2.404              | 0.16       | 103                         | 2.403              | -0.16       | 51         | 2.403 | -0.16      | 25                          |
| 9.6          | 9.615              | 0.16       | 25                          | 9.615              | -0.16       | 12         | —     | _          | _                           |
| 19.2         | 19.231             | 0.16       | 12                          | _                  | _           | _          | _     | _          | _                           |
| 57.6         | 62.500             | 8.51       | 3                           | —                  | _           | _          | —     | _          | _                           |
| 115.2        | 125.000            | 8.51       | 1                           | —                  | _           |            | —     | —          | _                           |

|       |                    |            |                             | SYNC = 0           | , BRGH     | = 1, BRG16                  | = 1 or SYI                 | NC = 1, E | 3RG16 = 1                   |                    |            |                             |
|-------|--------------------|------------|-----------------------------|--------------------|------------|-----------------------------|----------------------------|-----------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD  | Foso               | ; = 40.00  | 0 MHz Fosc = 20.000 MHz     |                    |            | Fosc = 10.000 MHz           |                            |           | Fosc = 8.000 MHz            |                    |            |                             |
| (K)   | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual %<br>Rate (K) Error |           | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) |
| 0.3   | 0.300              | 0.00       | 33332                       | 0.300              | 0.00       | 16665                       | 0.300                      | 0.00      | 8332                        | 0.300              | -0.01      | 6665                        |
| 1.2   | 1.200              | 0.00       | 8332                        | 1.200              | 0.02       | 4165                        | 1.200                      | 0.02      | 2082                        | 1.200              | -0.04      | 1665                        |
| 2.4   | 2.400              | 0.02       | 4165                        | 2.400              | 0.02       | 2082                        | 2.402                      | 0.06      | 1040                        | 2.400              | -0.04      | 832                         |
| 9.6   | 9.606              | 0.06       | 1040                        | 9.596              | -0.03      | 520                         | 9.615                      | 0.16      | 259                         | 9.615              | -0.16      | 207                         |
| 19.2  | 19.193             | -0.03      | 520                         | 19.231             | 0.16       | 259                         | 19.231                     | 0.16      | 129                         | 19.230             | -0.16      | 103                         |
| 57.6  | 57.803             | 0.35       | 172                         | 57.471             | -0.22      | 86                          | 58.140                     | 0.94      | 42                          | 57.142             | 0.79       | 34                          |
| 115.2 | 114.943            | -0.22      | 86                          | 116.279            | 0.94       | 42                          | 113.636                    | -1.36     | 21                          | 117.647            | -2.12      | 16                          |

|       | SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 |            |                             |                    |            |                             |                    |                  |                             |  |  |
|-------|------------------------------------------------------|------------|-----------------------------|--------------------|------------|-----------------------------|--------------------|------------------|-----------------------------|--|--|
| BAUD  | Fos                                                  | c = 4.000  | MHz                         | Fos                | c = 2.000  | MHz                         | Fos                | Fosc = 1.000 MHz |                             |  |  |
| (K)   | Actual<br>Rate (K)                                   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate (K) | %<br>Error       | SPBRG<br>value<br>(decimal) |  |  |
| 0.3   | 0.300                                                | 0.01       | 3332                        | 0.300              | -0.04      | 1665                        | 0.300              | -0.04            | 832                         |  |  |
| 1.2   | 1.200                                                | 0.04       | 832                         | 1.201              | -0.16      | 415                         | 1.201              | -0.16            | 207                         |  |  |
| 2.4   | 2.404                                                | 0.16       | 415                         | 2.403              | -0.16      | 207                         | 2403               | -0.16            | 103                         |  |  |
| 9.6   | 9.615                                                | 0.16       | 103                         | 9.615              | -0.16      | 51                          | 9.615              | -0.16            | 25                          |  |  |
| 19.2  | 19.231                                               | 0.16       | 51                          | 19.230             | -0.16      | 25                          | 19.230             | -0.16            | 12                          |  |  |
| 57.6  | 58.824                                               | 2.12       | 16                          | 55.555             | 3.55       | 8                           | —                  | _                | _                           |  |  |
| 115.2 | 111.111                                              | -3.55      | 8                           | —                  | _          | _                           | —                  | _                | —                           |  |  |

© 2007 Microchip Technology Inc.

#### 16.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up, due to activity on the RX1/DT1 line, while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX1/DT1 is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX1/DT1 line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN protocol.)

Following a wake-up event, the module generates an RC1IF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 16-8) and asynchronously, if the device is in Sleep mode (Figure 16-9). The interrupt condition is cleared by reading the RCREG1 register.

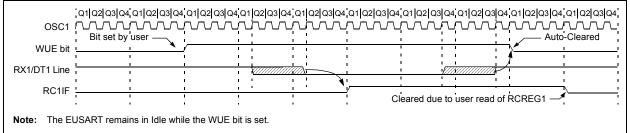
The WUE bit is automatically cleared once a low-to-high transition is observed on the RX1 line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

#### 16.2.4.1 Special Considerations Using Auto-Wake-up

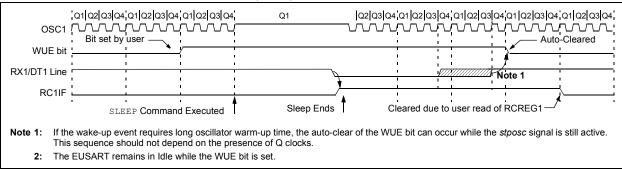
Since auto-wake-up functions by sensing rising edge transitions on RX1/DT1, information with any state changes before the Stop bit may signal a false

End-Of-Character (EOC) and cause data or framing errors. Therefore, to work properly, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices, or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.


### 16.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RC1IF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RC1IF bit. The WUE bit is cleared after this when a rising edge is seen on RX1/DT1. The interrupt condition is then cleared by reading the RCREG1 register. Ordinarily, the data in RCREG1 will be dummy data and should be discarded.


The fact that the WUE bit has been cleared (or is still set), and the RC1IF flag is set, should not be used as an indicator of the integrity of the data in RCREG1. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

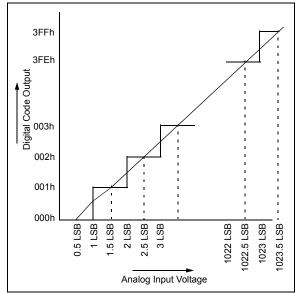
### FIGURE 16-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

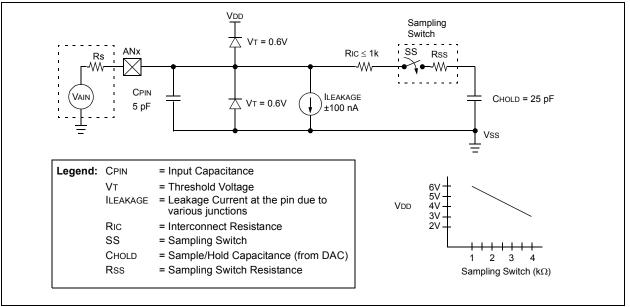


### FIGURE 16-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

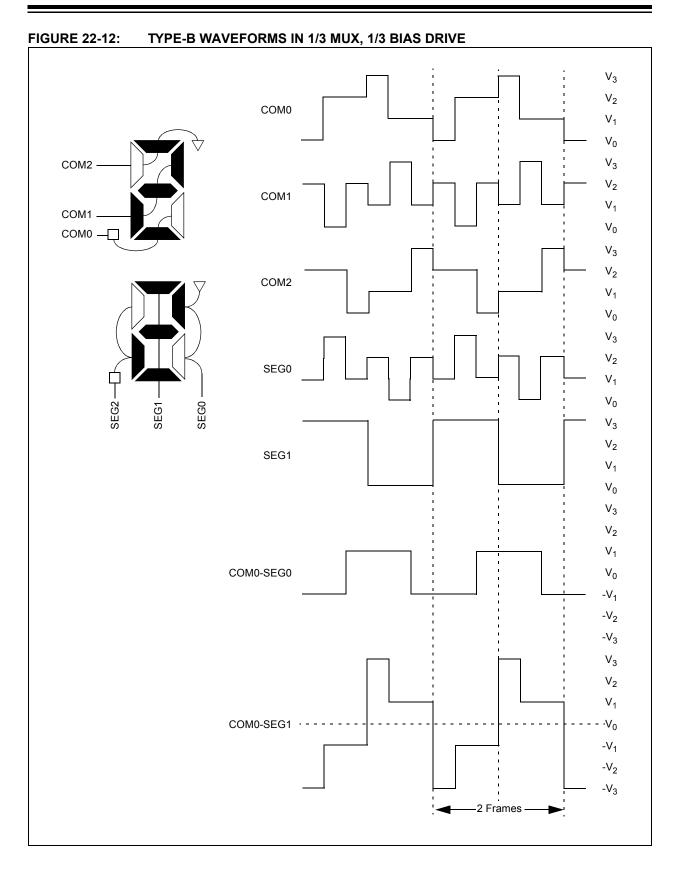


The value in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 18.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time <u>can be</u> programmed to occur between setting the GO/DONE bit and the actual start of the conversion.


The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
  - Configure analog pins, voltage reference and digital I/O (ADCON1)
  - Select A/D input channel (ADCON0)
  - Select A/D acquisition time (ADCON2)
  - Select A/D conversion clock (ADCON2)
  - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
  - · Clear ADIF bit
  - · Set ADIE bit
  - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
  - Set GO/DONE bit (ADCON0<1>)


- 5. Wait for A/D conversion to complete, by either:
  - Polling for the GO/DONE bit to be cleared
    OR
  - · Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear ADIF bit, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 3 TAD is required before the next acquisition starts.

#### FIGURE 18-2: A/D TRANSFER FUNCTION





#### FIGURE 18-3: ANALOG INPUT MODEL



| CPF                                                    | SGT                   | Compare                      | f with W, Sk                                                                                                                                                           | ip if f > W  |  |  |  |  |  |  |
|--------------------------------------------------------|-----------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| Synta                                                  | ax:                   | CPFSGT                       | f {,a}                                                                                                                                                                 |              |  |  |  |  |  |  |
| Oper                                                   | ands:                 | $0 \le f \le 255$            |                                                                                                                                                                        |              |  |  |  |  |  |  |
| •                                                      |                       | a ∈ [0,1]                    |                                                                                                                                                                        |              |  |  |  |  |  |  |
| Oper                                                   | ation:                | (f) – (W),                   |                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                        |                       | skip if (f) > (              | (W)                                                                                                                                                                    |              |  |  |  |  |  |  |
|                                                        |                       | (unsigned c                  | comparison)                                                                                                                                                            |              |  |  |  |  |  |  |
| Statu                                                  | s Affected:           | None                         |                                                                                                                                                                        |              |  |  |  |  |  |  |
| Enco                                                   | ding:                 | 0110                         | 010a fff                                                                                                                                                               | ff ffff      |  |  |  |  |  |  |
| Desc                                                   | ription:              | location 'f' t               | Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction.                                                      |              |  |  |  |  |  |  |
|                                                        |                       | contents of<br>instruction i | nts of 'f' are gr<br>WREG, then t<br>s discarded ar<br>stead, making<br>istruction.                                                                                    | he fetched   |  |  |  |  |  |  |
|                                                        |                       |                              | he Access Bar<br>he BSR is use                                                                                                                                         |              |  |  |  |  |  |  |
|                                                        |                       |                              | nd the extende                                                                                                                                                         | dinstruction |  |  |  |  |  |  |
|                                                        |                       | set is enabl<br>in Indexed I | If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever $f \le 95$ (5Fh). See |              |  |  |  |  |  |  |
|                                                        |                       | Bit-Oriente                  | Section 24.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details.                                                         |              |  |  |  |  |  |  |
| Word                                                   | e.                    | 1                            |                                                                                                                                                                        |              |  |  |  |  |  |  |
| Cycle                                                  |                       |                              |                                                                                                                                                                        |              |  |  |  |  |  |  |
| Cycle                                                  | 5.                    | 1(2)<br>Note: 3 c            | walaa if akin a                                                                                                                                                        | ad followed  |  |  |  |  |  |  |
|                                                        |                       |                              | cycles if skip ar<br>a 2-word instr                                                                                                                                    |              |  |  |  |  |  |  |
|                                                        | ycle Activity:        |                              |                                                                                                                                                                        |              |  |  |  |  |  |  |
| QU                                                     | Q1                    | Q2                           | Q3                                                                                                                                                                     | Q4           |  |  |  |  |  |  |
|                                                        | Decode                | Read                         | Process                                                                                                                                                                | No           |  |  |  |  |  |  |
|                                                        |                       | register 'f'                 | Data                                                                                                                                                                   | operation    |  |  |  |  |  |  |
| lf sk                                                  | ip:                   |                              |                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                        | Q1                    | Q2                           | Q3                                                                                                                                                                     | Q4           |  |  |  |  |  |  |
|                                                        | No                    | No                           | No                                                                                                                                                                     | No           |  |  |  |  |  |  |
| 16 - 14                                                | operation             | operation                    | operation                                                                                                                                                              | operation    |  |  |  |  |  |  |
| IT SK                                                  | Ip and followed<br>Q1 | d by 2-word in:<br>Q2        | Q3                                                                                                                                                                     | Q4           |  |  |  |  |  |  |
|                                                        | No                    | No                           | No                                                                                                                                                                     | No           |  |  |  |  |  |  |
|                                                        | operation             | operation                    | operation                                                                                                                                                              | operation    |  |  |  |  |  |  |
|                                                        | No                    | No                           | No                                                                                                                                                                     | No           |  |  |  |  |  |  |
|                                                        | operation             | operation                    | operation                                                                                                                                                              | operation    |  |  |  |  |  |  |
| Example: HERE CPFSGT REG, 0<br>NGREATER :<br>GREATER : |                       |                              |                                                                                                                                                                        |              |  |  |  |  |  |  |
| Before Instruction                                     |                       |                              |                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                        | PC<br>W               | = Ad<br>= ?                  | dress (HERE)                                                                                                                                                           | )            |  |  |  |  |  |  |
| After Instruction                                      |                       |                              |                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                        | If REG                | > W;                         |                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                        | PC<br>If REG          |                              | dress (GREAT                                                                                                                                                           | TER)         |  |  |  |  |  |  |
|                                                        | PC                    |                              | dress (NGREA                                                                                                                                                           | ATER)        |  |  |  |  |  |  |

| CPF         | SLT                                              | Compare                                                                                                                       | Compare f with W, Skip if f < W                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
|-------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Synta       | ax:                                              | CPFSLT                                                                                                                        | CPFSLT f {,a}                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |  |  |
| Oper        | ands:                                            | 0 ≤ f ≤ 255<br>a ∈ [0,1]                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
| Oper        | ation:                                           |                                                                                                                               | (f) – (W),<br>skip if (f) < (W)<br>(unsigned comparison)                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |
| Statu       | s Affected:                                      | None                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |  |  |  |  |  |
| Enco        | ding:                                            | 0110                                                                                                                          | 000a ff                                                                                                                                                                                                                                                                                                                                                                                                 | ff ffff         |  |  |  |  |  |  |
| Desc        | ription:                                         | location 'f' t<br>performing<br>If the conte<br>contents of<br>instruction<br>executed ir<br>two-cycle ir<br>If 'a' is '0', t | Compares the contents of data memory<br>location 'f' to the contents of W by<br>performing an unsigned subtraction.<br>If the contents of 'f' are less than the<br>contents of W, then the fetched<br>instruction is discarded and a NOP is<br>executed instead, making this a<br>two-cycle instruction.<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the |                 |  |  |  |  |  |  |
| Word        | ls.                                              | 1                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
| Cycle       |                                                  | 1(2)                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
| e y e k     |                                                  | Note: 3 d                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
| QC          | ycle Activity:                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
|             | Q1                                               | Q2                                                                                                                            | Q3                                                                                                                                                                                                                                                                                                                                                                                                      | Q4              |  |  |  |  |  |  |
|             | Decode                                           | Read                                                                                                                          | Process                                                                                                                                                                                                                                                                                                                                                                                                 | No<br>operation |  |  |  |  |  |  |
| lf sk       | in <sup>.</sup>                                  | register 'f'                                                                                                                  | Data                                                                                                                                                                                                                                                                                                                                                                                                    | operation       |  |  |  |  |  |  |
| ii on       | Q1                                               | Q2                                                                                                                            | Q3                                                                                                                                                                                                                                                                                                                                                                                                      | Q4              |  |  |  |  |  |  |
|             | No                                               | No                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                      | No              |  |  |  |  |  |  |
|             | operation                                        | operation                                                                                                                     | operation                                                                                                                                                                                                                                                                                                                                                                                               | operation       |  |  |  |  |  |  |
| lf sk       | ip and followed                                  | d by 2-word in                                                                                                                | struction:                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |  |  |  |
|             | Q1                                               | Q2                                                                                                                            | Q3                                                                                                                                                                                                                                                                                                                                                                                                      | Q4              |  |  |  |  |  |  |
|             | No                                               | No                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                      | No              |  |  |  |  |  |  |
|             | operation                                        | operation<br>No                                                                                                               | operation                                                                                                                                                                                                                                                                                                                                                                                               | operation       |  |  |  |  |  |  |
|             | No<br>operation                                  | operation                                                                                                                     | No<br>operation                                                                                                                                                                                                                                                                                                                                                                                         | No<br>operation |  |  |  |  |  |  |
| <u>Exan</u> | n <u>ple:</u><br>Before Instruc<br>PC            | HERE<br>NLESS<br>LESS<br>tion<br>= Ac                                                                                         | CPFSLT REG,<br>:<br>:<br>idress (here                                                                                                                                                                                                                                                                                                                                                                   | , 1             |  |  |  |  |  |  |
|             | W                                                | = ?                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |
|             | After Instructic<br>If REG<br>PC<br>If REG<br>PC | < ₩<br>= Ac<br>≥ ₩                                                                                                            | dress (LESS                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |

=

22h 22h

After Instruction REG W

| LFS         | R                        | Load FSI                                                            | र                                    |    | MOVF                          | Move f                                                                                                                                                    |                         |                         |            |
|-------------|--------------------------|---------------------------------------------------------------------|--------------------------------------|----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------|
| Synta       | ax:                      | LFSR f, k                                                           |                                      |    | Syntax:                       | MOVF f{                                                                                                                                                   | ,d {,a}}                |                         |            |
| Oper        | ands:                    | $\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$ | 95                                   |    | Operands:                     | $\begin{array}{l} 0 \leq f \leq 255 \\ d  \in  [0,1] \end{array}$                                                                                         |                         |                         |            |
| Oper        | ation:                   | $k\toFSRf$                                                          |                                      |    | <b>o</b> <i>i i</i>           | a ∈ [0,1]                                                                                                                                                 |                         |                         |            |
| Statu       | s Affected:              | None                                                                |                                      |    | Operation:                    | $f \rightarrow dest$                                                                                                                                      |                         |                         |            |
| Enco        | ding:                    | 1110<br>1111                                                        |                                      |    | Status Affected:<br>Encoding: | N, Z                                                                                                                                                      | 00da                    | ffff                    | ffff       |
| Desc        | ription:                 |                                                                     | literal 'k' is loa<br>egister pointe |    | Description:                  | The conten<br>a destination<br>status of 'd                                                                                                               | on depend               | dent upor               | n the      |
| Word        | IS:                      | 2                                                                   |                                      |    |                               | placed in V                                                                                                                                               |                         | -                       |            |
| Cycle       | es:                      | 2                                                                   |                                      |    |                               | placed back in register 'f' (default).                                                                                                                    |                         |                         |            |
| QC          | ycle Activity:           |                                                                     |                                      |    |                               | Location 'f' can be anywhere in the<br>256-byte bank.<br>If 'a' is '0', the Access Bank is selected.                                                      |                         |                         |            |
| 1           | Q1                       | Q2                                                                  | Q3                                   | Q4 |                               |                                                                                                                                                           |                         |                         |            |
|             | Decode                   | Read literal<br>'k' MSB                                             |                                      |    |                               | lf 'a' is '1', t<br>GPR bank.<br>If 'a' is '0' a                                                                                                          | he BSR is<br>and the ex | s used to<br>ttended ir | select the |
|             | Decode                   | Read literalProcessWrite literal'k' LSBData'k' to FSRfL             |                                      |    |                               | set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever f ≤ 95 (5Fh). See<br>Section 24.2.3 "Byte-Oriented and |                         |                         |            |
| <u>Exan</u> |                          | LFSR 2,                                                             | 3ABh                                 |    |                               | Bit-Oriente                                                                                                                                               | ed Instru               | ctions in               | Indexed    |
|             | After Instructi<br>FSR2H | ion<br>= 03                                                         | h                                    |    | Words:                        | 1                                                                                                                                                         |                         |                         |            |
|             | FSR2L                    | = AB                                                                | 3h                                   |    | Cycles:                       | 1                                                                                                                                                         |                         |                         |            |
|             |                          |                                                                     |                                      |    | Q Cycle Activity:             |                                                                                                                                                           |                         |                         |            |
|             |                          |                                                                     |                                      |    | Q1                            | Q2                                                                                                                                                        | Q3                      |                         | Q4         |
|             |                          |                                                                     |                                      |    | Decode                        | Read<br>register 'f'                                                                                                                                      | Proces<br>Data          |                         | Vrite W    |
|             |                          |                                                                     |                                      |    | Example:                      | MOVF R                                                                                                                                                    | EG, 0,                  | 0                       |            |
|             |                          |                                                                     |                                      |    | Before Instruc<br>REG<br>W    | ction<br>= 22<br>= FF                                                                                                                                     |                         |                         |            |

| RETFIE Return fro |                         | om Interrup                                                                                                                                                                                                                                                                              | t                              | RE                        | RETLW                 |                                    | teral to W                                            |                                                                                |                           |  |  |
|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|-----------------------|------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|--|--|
| Synta             | ax:                     | RETFIE {                                                                                                                                                                                                                                                                                 | \$}                            |                           | Syn                   | tax:                               | RETLW k                                               |                                                                                |                           |  |  |
| Oper              | Operands: $s \in [0,1]$ |                                                                                                                                                                                                                                                                                          | ]                              |                           | Оре                   | erands:                            | $0 \le k \le 255$                                     | $0 \le k \le 255$                                                              |                           |  |  |
| Oper              | ration:                 | $(TOS) \rightarrow PC$ ,<br>1 $\rightarrow$ GIE/GIEH or PEIE/GIEL;<br>if s = 1,                                                                                                                                                                                                          |                                |                           | Оре                   | Operation:                         |                                                       | $k \rightarrow W$ ,<br>(TOS) $\rightarrow$ PC,<br>PCLATU, PCLATH are unchanged |                           |  |  |
|                   |                         | $(WS) \rightarrow W$                                                                                                                                                                                                                                                                     | $\rightarrow$ STATUS,          |                           | Stat                  | us Affected:                       | None                                                  |                                                                                |                           |  |  |
|                   |                         | $(BSRS) \rightarrow$                                                                                                                                                                                                                                                                     |                                |                           | Enc                   | oding:                             | 0000                                                  | 1100 kk                                                                        | kk kkkk                   |  |  |
|                   |                         | · /                                                                                                                                                                                                                                                                                      | CLATH are u                    | nchanged                  | Des                   | cription:                          | W is loaded                                           | d with the eigh                                                                | t-bit literal 'k'.        |  |  |
| Statu             | is Affected:            | GIE/GIEH,                                                                                                                                                                                                                                                                                | PEIE/GIEL.                     |                           |                       |                                    |                                                       |                                                                                | aded from the             |  |  |
| Enco              | oding:                  | 0000                                                                                                                                                                                                                                                                                     | 0000 0000 0001 000s            |                           |                       |                                    | •                                                     | tack (the retur<br>dress latch (F                                              | ,                         |  |  |
| Desc              | cription:               |                                                                                                                                                                                                                                                                                          | rom Interrupt. Stack is popped |                           |                       |                                    | The high address latch (PCLATH)<br>remains unchanged. |                                                                                |                           |  |  |
|                   |                         | and Top-of-Stack (TOS) is loaded into<br>the PC. Interrupts are enabled by<br>setting either the high or low-priority<br>global interrupt enable bit. If 's' = 1, the<br>contents of the shadow registers, WS,<br>STATUSS and BSRS, are loaded into<br>their corresponding registers, W, |                                | Wor                       | ds:                   | 1                                  |                                                       |                                                                                |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                | Сус                       | les:                  | 2                                  |                                                       |                                                                                |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                | Q                         | Cycle Activity:       |                                    |                                                       |                                                                                |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                |                           | Q1                    | Q2                                 | Q3                                                    | Q4                                                                             |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                |                           | Decode                | Read                               | Process                                               | POP PC                                                                         |                           |  |  |
|                   |                         | STATUS and BSR. If 's' = 0, no update of these registers occurs (default).                                                                                                                                                                                                               |                                |                           |                       |                                    | literal 'k'                                           | Data                                                                           | from stack,<br>Write to W |  |  |
| Word              | ds:                     | 1                                                                                                                                                                                                                                                                                        |                                | · · · ·                   |                       | No<br>operation                    | No<br>operation                                       | No<br>operation                                                                | No<br>operation           |  |  |
| Cycle             | es:                     | 2                                                                                                                                                                                                                                                                                        |                                |                           |                       |                                    |                                                       |                                                                                | <u> </u>                  |  |  |
| QC                | ycle Activity:          |                                                                                                                                                                                                                                                                                          |                                |                           | Exa                   | mple:                              |                                                       |                                                                                |                           |  |  |
|                   | Q1                      | Q2                                                                                                                                                                                                                                                                                       | Q3                             | Q4                        |                       | CALL TABL                          | E ; W cont                                            | ains table                                                                     |                           |  |  |
|                   | Decode                  | No                                                                                                                                                                                                                                                                                       | No                             | POP PC                    |                       |                                    | ; offset                                              |                                                                                |                           |  |  |
|                   |                         | operation                                                                                                                                                                                                                                                                                | operation                      | from stack<br>Set GIEH or |                       |                                    | ; W now<br>; table                                    |                                                                                |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                | GIEL                      |                       | :                                  | ,                                                     |                                                                                |                           |  |  |
|                   | No                      | No                                                                                                                                                                                                                                                                                       | No                             | No                        | TAB                   |                                    |                                                       |                                                                                |                           |  |  |
|                   | operation               | operation operation operation                                                                                                                                                                                                                                                            |                                |                           | ADDWF PCL<br>RETLW k0 | ; W = offset<br>; Begin table<br>; |                                                       |                                                                                |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                |                           | RETLW k1              |                                    |                                                       |                                                                                |                           |  |  |
| Exan              | <u>nple:</u>            | RETFIE                                                                                                                                                                                                                                                                                   | 1                              |                           |                       | :                                  |                                                       |                                                                                |                           |  |  |
|                   | After Interrupt         |                                                                                                                                                                                                                                                                                          |                                |                           |                       | :<br>RETLW kn                      | ; End of                                              | table                                                                          |                           |  |  |
|                   | PC<br>W                 |                                                                                                                                                                                                                                                                                          | = TOS<br>= WS                  |                           |                       | Before Instruc                     |                                                       | 00010                                                                          |                           |  |  |
|                   | BSR<br>STATUS           |                                                                                                                                                                                                                                                                                          | = BSRS<br>= STAT               |                           |                       | W                                  | = 07h                                                 |                                                                                |                           |  |  |
|                   |                         | H, PEIE/GIEL                                                                                                                                                                                                                                                                             | = $1$                          | 000                       |                       | After Instruction                  |                                                       |                                                                                |                           |  |  |
|                   |                         |                                                                                                                                                                                                                                                                                          |                                |                           |                       | W                                  | = value of                                            | fkn                                                                            |                           |  |  |

| TBL   | TBLRD Table Read |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
|-------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| Synta | ax:              | TBLRD ( *; *+;                                                                                                                                                                                                                                                                                                                                                                          | *-; +*)                                                                                                                     |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
| Oper  | ands:            | None                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
| Oper  | ation:           | if TBLRD *,<br>(Prog Mem (TBLPTR)) $\rightarrow$ TABLAT,<br>TBLPTR – No Change;<br>if TBLRD *+,<br>(Prog Mem (TBLPTR)) $\rightarrow$ TABLAT,<br>(TBLPTR) + 1 $\rightarrow$ TBLPTR;<br>if TBLRD *-,<br>(Prog Mem (TBLPTR)) $\rightarrow$ TABLAT,<br>(TBLPTR) – 1 $\rightarrow$ TBLPTR;<br>if TBLRD +*,<br>(TBLPTR) + 1 $\rightarrow$ TBLPTR,<br>(Prog Mem (TBLPTR)) $\rightarrow$ TABLAT |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
| Statu | s Affected:      | None                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
| Enco  | oding:           | 0000                                                                                                                                                                                                                                                                                                                                                                                    | 0000                                                                                                                        | 0000                                                                                                      |                                                                            | 10nn<br>nn=0 *<br>=1 *+<br>=2 *-<br>=3 +*                                                          |  |  |  |  |
|       | ription:         | This instruction<br>of Program Me<br>program meme<br>Pointer (TBLP<br>The TBLPTR (<br>each byte in th<br>has a 2-Mbyte<br>TBLPTR<0><br>TBLPTR<0><br>TBLPTR<0><br>The TBLRD ins<br>of TBLPTR as<br>• no change<br>• post-increm<br>• pre-increme                                                                                                                                         | emory (f<br>pry, a po<br>TR), is i<br>a 21-bit<br>e progra<br>addres<br>= 0: Le<br>Pro<br>truction<br>follows<br>ent<br>ent | P.M.).<br>pinter,<br>used.<br>pointer<br>am me<br>s rang<br>ast Sig<br>ogram<br>ost Sig<br>ogram<br>can m | To ad<br>calle<br>er) po<br>emory<br>e.<br>gnifica<br>Mem<br>nifica<br>Mem | dress the<br>d Table<br>bints to<br>7. TBLPTR<br>ant Byte of<br>ory Word<br>nt Byte of<br>ory Word |  |  |  |  |
| Word  | ls:              | 1                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
| Cycle | es:              | 2                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
| QC    | ycle Activity    | :                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                           |                                                                            |                                                                                                    |  |  |  |  |
|       | Q1               | Q2                                                                                                                                                                                                                                                                                                                                                                                      | Q                                                                                                                           | 3                                                                                                         |                                                                            | Q4                                                                                                 |  |  |  |  |
|       | Decode           | No<br>operation                                                                                                                                                                                                                                                                                                                                                                         | No<br>opera                                                                                                                 |                                                                                                           | op                                                                         | No<br>eration                                                                                      |  |  |  |  |
|       | No<br>operation  | No operation<br>(Read Program<br>Memory)                                                                                                                                                                                                                                                                                                                                                | No<br>opera                                                                                                                 | D                                                                                                         | No o                                                                       | operation<br>Write<br>ABLAT)                                                                       |  |  |  |  |

#### TBLRD **Table Read (Continued)**

| Example 1:                                      | TBLRD                | *+ | ;           |                               |
|-------------------------------------------------|----------------------|----|-------------|-------------------------------|
| Before Instruction                              | on                   |    |             |                               |
| TABLAT<br>TBLPTR<br>MEMORY<br>After Instruction | •                    | )  | =<br>=<br>= | 55h<br>00A356h<br>34h         |
| TABLAT<br>TBLPTR                                |                      |    | =<br>=      | 34h<br>00A357h                |
| Example 2:                                      | TBLRD                | +* | ;           |                               |
| Before Instruction                              | on                   |    |             |                               |
|                                                 |                      |    |             |                               |
| TABLAT<br>TBLPTR<br>MEMORY<br>MEMORY            | (01A357h)            |    | =<br>=<br>= | 0AAh<br>01A357h<br>12h<br>34h |
| TBLPTR<br>MEMORY                                | (01A357h<br>(01A358h |    | =           | 01A357h<br>12h                |

| Param<br>No. | Sym             | Characteristic                | Min | Тур† | Max | Units | Conditions   |
|--------------|-----------------|-------------------------------|-----|------|-----|-------|--------------|
| F10          | Fosc            | Oscillator Frequency Range    | 4   | _    | 10  | MHz   | HS mode only |
| F11          | Fsys            | On-Chip VCO System Frequency  | 16  | _    | 40  | MHz   | HS mode only |
| F12          | t <sub>rc</sub> | PLL Start-up Time (Lock Time) | _   | —    | 2   | ms    |              |
| F13          | $\Delta CLK$    | CLKO Stability (Jitter)       | -2  | _    | +2  | %     |              |

#### TABLE 26-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

# TABLE 26-8:AC CHARACTERISTICS: INTERNAL RC ACCURACYPIC18LF6390/6490/8390/8490 (INDUSTRIAL)PIC18F6390/6490/8390/8490 (INDUSTRIAL)

| -            | F6390/6490/8390/8490<br>ustrial)              | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |                                                                                                                                    |           |         |                    |                |  |  |
|--------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------------------|----------------|--|--|
|              | 6 <b>390/6490/8390/8490</b><br>ustrial)       |                                                                                                                                    | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |           |         |                    |                |  |  |
| Param Device |                                               | Min                                                                                                                                | Тур                                                                                                                                | Max       | Units   | Conditions         |                |  |  |
|              | INTOSC Accuracy @ Freq = 8 I                  | MHz, 4 MH                                                                                                                          | lz, 2 MHz                                                                                                                          | 2, 1 MHz, | 500 kHz | , 250 kHz, 125 kHz | .(1)           |  |  |
|              | PIC18LF6390/6490/8390/8490                    | -2                                                                                                                                 | +/-1                                                                                                                               | 2         | %       | +25°C              | VDD = 2.7-3.3V |  |  |
|              |                                               | -5                                                                                                                                 | —                                                                                                                                  | 5         | %       | -10°C to +85°C     | VDD = 2.7-3.3V |  |  |
|              |                                               | -10                                                                                                                                | +/-1                                                                                                                               | 10        | %       | -40°C to +85°C     | VDD = 2.7-3.3V |  |  |
|              | PIC18F6390/6490/8390/8490                     | -2                                                                                                                                 | +/-1                                                                                                                               | 2         | %       | +25°C              | VDD = 4.5-5.5V |  |  |
|              |                                               | -5                                                                                                                                 | —                                                                                                                                  | 5         | %       | -10°C to +85°C     | VDD = 4.5-5.5V |  |  |
|              |                                               | -10                                                                                                                                | +/-1                                                                                                                               | 10        | %       | -40°C to +85°C     | VDD = 4.5-5.5V |  |  |
|              | INTRC Accuracy @ Freq = 31 kHz <sup>(2)</sup> |                                                                                                                                    |                                                                                                                                    |           |         |                    |                |  |  |
|              | PIC18LF6390/6490/8390/8490                    | 26.562                                                                                                                             | _                                                                                                                                  | 35.938    | kHz     | -40°C to +85°C     | VDD = 2.7-3.3V |  |  |
|              | PIC18F6390/6490/8390/8490                     | 26.562                                                                                                                             | _                                                                                                                                  | 35.938    | kHz     | -40°C to +85°C     | VDD = 4.5-5.5V |  |  |

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

| Param.<br>No. | Symbol  | Charac                               | teristic                  | Min              | Max  | Units | Conditions                   |
|---------------|---------|--------------------------------------|---------------------------|------------------|------|-------|------------------------------|
| 100           | Thigh   | Clock High Time                      | 100 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    |                              |
|               |         |                                      | 400 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    |                              |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | —    | ms    |                              |
| 101           | TLOW    | Clock Low Time                       | 100 kHz mode              | 2(Tosc)(BRG + 1) |      | ms    |                              |
|               |         |                                      | 400 kHz mode              | 2(Tosc)(BRG + 1) |      | ms    |                              |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | —    | ms    |                              |
| 102           | TR      | SDA and SCL                          | 100 kHz mode              | _                | 1000 | ns    | CB is specified to be from   |
|               |         | Rise Time                            | 400 kHz mode              | 20 + 0.1 Св      | 300  | ns    | 10 to 400 pF                 |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | _                | 300  | ns    |                              |
| 103           | TF      | SDA and SCL                          | 100 kHz mode              | _                | 300  | ns    | CB is specified to be from   |
|               |         | Fall Time                            | 400 kHz mode              | 20 + 0.1 Св      | 300  | ns    | 10 to 400 pF                 |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | _                | 100  | ns    |                              |
| 90            | TSU:STA | SU:STA Start Condition<br>Setup Time | 100 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    | Only relevant for            |
|               |         |                                      | 400 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    | Repeated Start               |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | _    | ms    | condition                    |
| 91            | THD:STA | Start Condition<br>Hold Time         | 100 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    | After this period, the first |
|               |         |                                      | 400 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    | clock pulse is generated     |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | _    | ms    |                              |
| 106           | THD:DAT | Data Input                           | 100 kHz mode              | 0                | —    | ns    |                              |
|               |         | Hold Time                            | 400 kHz mode              | 0                | 0.9  | ms    |                              |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | _                | _    | ns    |                              |
| 107           | TSU:DAT | Data Input                           | 100 kHz mode              | 250              | —    | ns    | (Note 2)                     |
|               |         | Setup Time                           | 400 kHz mode              | 100              | —    | ns    |                              |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | _                | _    | ns    |                              |
| 92            | Tsu:sto | Stop Condition                       | 100 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    |                              |
|               |         | Setup Time                           | 400 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    |                              |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | _    | ms    |                              |
| 109           | ΤΑΑ     | Output Valid                         | 100 kHz mode              | _                | 3500 | ns    |                              |
|               |         | from Clock                           | 400 kHz mode              | _                | 1000 | ns    |                              |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | _                | —    | ns    |                              |
| 110           | TBUF    | Bus Free Time                        | 100 kHz mode              | 4.7              | _    | ms    | Time the bus must be free    |
|               |         |                                      | 400 kHz mode              | 1.3              | —    | ms    | before a new transmission    |
|               |         |                                      | 1 MHz mode <sup>(1)</sup> | _                | —    | ms    | can start                    |
| D102          | Св      | Bus Capacitive Lo                    | bading                    | _                | 400  | pF    |                              |

#### TABLE 26-20: MASTER SSP I<sup>2</sup>C<sup>™</sup> BUS DATA REQUIREMENTS

**Note 1:** Maximum pin capacitance = 10 pF for all  $I^2C^{TM}$  pins.

2: A Fast mode I<sup>2</sup>C bus device can be used in a Standard mode I<sup>2</sup>C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode,) before the SCL line is released.