

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8390-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset.

Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
	RCON REGISTER

Condition	Program	RCON Register						STKPTR Register		
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF	
Power-on Reset	0000h	1	1	1	1	0	0	0	0	
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u	
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u	
MCLR Reset during power-managed Run modes	0000h	u (2)	u	1	u	u	u	u	u	
MCLR Reset during power-managed Idle modes and Sleep	0000h	ս (2)	u	1	0	u	u	u	u	
WDT time-out during full power or power-managed Run modes	0000h	u (2)	u	0	u	u	u	u	u	
MCLR during full-power execution	0000h	ս (2)	u	u	u	u	u	u	u	
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u	
Stack Underflow Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	u	1	
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u (2)	u	u	u	u	u	u	1	
WDT time-out during power-managed Idle or Sleep modes	PC + 2 ⁽¹⁾	u (2)	u	0	0	u	u	u	u	
Interrupt exit from power-managed modes	PC + 2 ⁽¹⁾	u (2)	u	u	0	u	u	u	u	

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR PIC18F6390/6490/8390/8490 DEVICES
(CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	SPBRGH1	F6Fh	SPBRG2	F5Fh	LCDSE5 ⁽³⁾	F4Fh	(2)
F7Eh	BAUDCON1	F6Eh	RCREG2	F5Eh	LCDSE4 ⁽³⁾	F4Eh	(2)
F7Dh	(2)	F6Dh	TXREG2	F5Dh	LCDSE3	F4Dh	(2)
F7Ch	LCDDATA23 ⁽⁴⁾	F6Ch	TXSTA2	F5Ch	LCDSE2	F4Ch	(2)
F7Bh	LCDDATA22 ⁽⁴⁾	F6Bh	RCSTA2	F5Bh	LCDSE1	F4Bh	(2)
F7Ah	LCDDATA21	F6Ah	LCDDATA10 ⁽⁴⁾	F5Ah	LCDSE0	F4Ah	(2)
F79h	LCDDATA20	F69h	LCDDATA9	F59h	LCDCON	F49h	(2)
F78h	LCDDATA19	F68h	LCDDATA8	F58h	LCDPS	F48h	(2)
F77h	LCDDATA18	F67h	LCDDATA7	F57h	(2)	F47h	(2)
F76h	LCDDATA17 ⁽⁴⁾	F66h	LCDDATA6	F56h	(2)	F46h	(2)
F75h	LCDDATA16 ⁽⁴⁾	F65h	LCDDATA5 ⁽⁴⁾	F55h	(2)	F45h	(2)
F74h	LCDDATA15	F64h	LCDDATA4 ⁽⁴⁾	F54h	(2)	F44h	(2)
F73h	LCDDATA14	F63h	LCDDATA3	F53h	(2)	F43h	(2)
F72h	LCDDATA13	F62h	LCDDATA2	F52h	(2)	F42h	(2)
F71h	LCDDATA12	F61h	LCDDATA1	F51h	(2)	F41h	(2)
F70h	LCDDATA11 ⁽⁴⁾	F60h	LCDDATA0	F50h	(2)	F40h	(2)

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 64-pin devices.

4: This register is implemented but unused on 64-pin devices.

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 9-5). The pins have Schmitt Trigger input buffers. RC1 is normally configured by Configuration bit, CCP2MX, as the default peripheral pin of the CCP2 module (default/erased state, CCP2MX = 1).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. Note: On a Power-on Reset, these pins are configured as digital inputs.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

RC2 and RC5 are also multiplexed with LCD segment drives controlled by bits in the LCDSE1 register. I/O port functions are only available when the segments are disabled.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
at DE		; data latches
CLRF	LATC	; Alternate method ; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs ; RC<7:6> as inputs
		,

9.9 PORTJ, TRISJ and LATJ Registers

Note: PORTJ is available only on 80-pin devices.

PORTJ is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISJ. Setting a TRISJ bit (= 1) will make the corresponding PORTJ pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISJ bit (= 0) will make the corresponding PORTJ pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATJ) is also memory mapped. Read-modify-write operations on the LATJ register read and write the latched output value for PORTJ.

All pins on PORTJ are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a	Power-on	Reset,	these	pins	are
	configured as digital inputs.					

PORTJ is also multiplexed with LCD segment drives controlled by the LCDSE4 register. I/O port functions are only available when the segments are disabled.

EXAMPLE 9-9: INITIALIZING PORTJ

-		
CLRF	PORTJ	; Initialize PORTG by ; clearing output
		; data latches
CLRF	LATJ	; Alternate method
		; to clear output
		; data latches
MOVLW	OxCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISJ	; Set RJ3:RJ0 as inputs
		; RJ5:RJ4 as output
		; RJ7:RJ6 as inputs

11.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 11-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 11-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 11-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

Legend:									
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	RD16: 1	6-Bit Read/Write Mode Enab	le bit						
	1 = Ena 0 = Ena	bles register read/write of TIr bles register read/write of Tir	mer1 in one 16-bit operation ner1 in two 8-bit operations						
bit 6	T1RUN:	Timer1 System Clock Status	bit						
	1 = Dev	ice clock is derived from Time	er1 oscillator						
	0 = Dev	ice clock is derived from another	ther source						
bit 5-4	T1CKPS	1:T1CKPS0: Timer1 Input C	lock Prescale Select bits						
	11 = 1:8	Prescale value							
	10 = 1:4	Prescale value							
	01 = 1:2	01 = 1.2 Prescale value							
bit 3	T1OSCF	N: Timer1 Oscillator Enable	bit						
	1 = Time	er1 oscillator is enabled							
	0 = Time	0 = Timer1 oscillator is shut off							
	The osci	llator inverter and feedback r	esistor are turned off to elimination	ate power drain.					
bit 2	T1SYNC	: Timer1 External Clock Inpu	it Synchronization Select bit						
	When T	<u> MR1CS = 1:</u>							
	1 = Do n	ot synchronize external clock	< input						
	0 = Sync	0 = Synchronize external clock input							
	When II	<u>When TMR1CS = 0:</u> This bit is imported. Times the internal cleak when TMD1CS = 0							
L :1 4		s ignored. Timer i uses the in	at hit	0.					
DICI		S: Timer I Clock Source Select	CLDIL						
	1 = Extension 0 = Intension	rnal clock from pin RC0/110 rnal clock (Fosc/4)	ISO/113CKI (on the rising eag	e)					
bit 0	TMR10	I: Timer1 On bit							
	1 = Ena	bles Timer1							
	0 = Stop	os Timer1							

11.1 Timer1 Operation

Timer1 can operate in one of these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS is cleared (= 0), Timer1 increments on every internal instruction

cycle (Fosc/4). When the bit is set, Timer1 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When Timer1 is enabled, the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 11-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

15.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

15.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven,

even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 15-4: SLAVE SYNCHRONIZATION WAVEFORM

15.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 15-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 15-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 15-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 15-3: I²C[™] CLOCK RATE w/BRG

Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
10 MHz	20 MHz	19h	400 kHz ⁽¹⁾
10 MHz	20 MHz	20h	312.5 kHz
10 MHz	20 MHz	3Fh	100 kHz
4 MHz	8 MHz	0Ah	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Dh	308 kHz
4 MHz	8 MHz	28h	100 kHz
1 MHz	2 MHz	03h	333 kHz ⁽¹⁾
1 MHz	2 MHz	0Ah	100 kHz
1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

15.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 15-18).

FIGURE 16-5: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

TABLE 16-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	61
PIE1	—	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	61
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	61
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
TXREG1	EUSART1	Transmit Re	gister						61
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	61
BAUDCON1	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	62
SPBRGH1	PBRGH1 EUSART1 Baud Rate Generator Register High Byte							62	
SPBRG1	EUSART1	Baud Rate (Generator R	legister Low	Byte				61

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

17.2 AUSART Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTA2<4>). In this mode, the AUSART uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator.

The AUSART transmits and receives the LSb first. The AUSART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH bit (TXSTA2<2>). Parity is not supported by the hardware but can be implemented in software and stored as the 9th data bit.

When operating in Asynchronous mode, the AUSART module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

17.2.1 AUSART ASYNCHRONOUS TRANSMITTER

The AUSART transmitter block diagram is shown in Figure 17-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG2. The TXREG2 register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG2 register (if available). Once the TXREG2 register transfers the data to the TSR register (occurs in one TcY), the TXREG2 register is empty and the TX2IF flag bit (PIR3<4>) is set. This interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TX2IE (PIE3<4>). TX2IF will be set regardless of the state of TX2IE; it cannot be cleared in software. TX2IF is also not cleared immediately upon loading TXREG2, but becomes valid in the second instruction cycle following the load instruction. Polling TX2IF immediately following a load of TXREG2 will return invalid results.

While TX2IF indicates the status of the TXREG2 register, another bit, TRMT (TXSTA2<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory, so it is not available to the user.
2:	Flag bit, TX2IF, is set when enable bit, TXEN is set.

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRG2 register for the appropriate baud rate. Set or clear the BRGH bit, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, TX2IE.
- 4. If 9-bit transmission is desired, set transmit bit, TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit, TXEN, which will also set bit, TX2IF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Load data to the TXREG2 register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Data Bus TX2IF TXREG2 Register TX2IE 8 MSb LSb Pin Buffer (8) 0 • . . and Control TSR Register TX2 pin Interrupt TXEN Baud Rate CLK TRMT SPEN SPBRG2 TX9 Baud Rate Generator TX9D

FIGURE 17-1: AUSART TRANSMIT BLOCK DIAGRAM

FIGURE 20-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 20-1: REGISTERS ASSOCIATED WITH THE COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	61
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	61
TRISF	PORTF Data Direction Register							62	

Legend: Shaded cells are not used with the comparator voltage reference.

21.5 Applications

In many applications, the ability to detect a drop below, or rise above a particular threshold, is desirable. For example, the HLVD module could be periodically enabled to detect USB attach or detach. This assumes the device is powered by a lower voltage source than the Universal Serial Bus when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 21-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1
IESO	FCMEN	—	—	FOSC3	FOSC2	FOSC1	FOSC0
bit 7							bit 0
Legend:							
R = Readable	e bit	P = Programm	able bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value wh	nen device is ur	nprogrammed		u = Unchange	ed from prograr	nmed state	
							1
bit 7	IESO: Interna	l/External Oscil	lator Switcho	over bit			
	1 = Oscillator	Switchover mo	de enabled				
	0 = Oscillator	Switchover mo	de disabled				
bit 6	FCMEN: Fail-	-Safe Clock Mo	nitor Enable I	bit			
	1 = Fail-Safe	Clock Monitor e	enabled				
	0 = Fail-Safe	Clock Monitor of	lisabled				
bit 5-4	Unimplemen	ted: Read as '0	,				
bit 3-0	FOSC3:FOS	C0: Oscillator S	election bits				
	11xx = Exter	nal RC oscillato	r, CLKO fund	tion on RA6			
	101x = Exter	nal RC oscillato	r, CLKO fund	tion on RA6			
	1001 = Intern	al oscillator blo	ck, CLKO fur	nction on RA6, p	ort function on	RA7	
	1000 = Intern	al oscillator bio	ck, port funct		RA7		
	0111 - Exten	scillator PLL en	abled (clock	frequency = 4×10^{-10}	FOSC1)		
	0101 = FC os	scillator, port fur	abled (clock	nequency – + x S	10001)		
	0100 = EC os	scillator, CLKO	function on R	A6			
	0011 = Exter	nal RC oscillato	r, CLKO fund	tion on RA6			
	0010 = HS o s	scillator					
	0001 = XT os	scillator					
	0000 = LP os	cillator					

NEGF	Negate f					
Syntax:	NEGF f {,a}					
Operands:	$0 \le f \le 255$ a $\in [0,1]$					
Operation:	$(\overline{f}) + 1 \rightarrow f$					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0110 110a ffff ffff					
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Words:	1					
Cycles:	1					

NOF)	No Operation						
Synta	ax:	NOP	NOP					
Oper	ands:	None						
Oper	ation:	No operati	on					
Statu	s Affected:	None						
Encoding:		0000 1111	0000 xxxx	000 xxx) () X X	0000 xxxx		
Desc	ription:	No operati	on.					
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No operation	No operat	No operation		No operation		

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1
		- /	

Before Instruc	tion			
REG	=	0011	1010	[3Ah]
After Instruction	on			
REG	=	1100	0110	[C6h]

RCA	LL	Relative	Call		RES	ET	Reset			
Synta	ax:	RCALL n			Synta	ax:	RESET			
Oper	ands:	-1024 ≤ n ≤	≤ 1023		Oper	ands:	None			
Oper	ation:	(PC) + 2 → (PC) + 2 +	TOS, $2n \rightarrow PC$		Oper	ation:	Reset all re affected by	egi <u>sters a</u> nd fla a MCLR Res	ags that are et.	
Statu	s Affected:	None			Statu	s Affected:	All			
Enco	ding:	1101	lnnn nn	nn nnnn	Enco	ding:	0000	0000 11	11 111	
Description:		Subroutine from the cu address (P	Desc	ription:	This instruction execute a l	ction provides MCLR Reset i	a way to n software.			
		stack. Ther	n, add the 2's of	complement	vvorc	IS:	1			
		number '2n	number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be			es:	1			
		have increr				ycle Activity:				
		PC + 2 + 2n. This instruction is a				Q1	Q2	Q3	Q4	
		two-cycle ii	two-cycle instruction.			Decode	Start	No	No	
Word	ls:	1					Reset	operation	operation	
Cycle	es:	2			Exan	nnle:	ਸਦਨਸ਼ਪ			
QC	vcle Activity:					After Instruct				
	Q1	Q2	Q3	Q4		Register	on rs = Reset Value			
	Decode	Read literal 'n'	Process Data	Write to PC		Flags*	= Reset \	/alue		
		PUSH PC to stack								
	No operation	No operation	No operation	No operation						
<u>Exan</u>	<u>nple:</u>	HERE	RCALL Jump)						

Before Instruction PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2) 1111

Q4 No operation

TABLE 26-9: C	LKO AND I/O TIMING	REQUIREMENTS
---------------	--------------------	--------------

Param No.	Symbol	Characteri	Min	Тур	Мах	Units	Conditions	
10	TosH2ckL	OSC1 ↑ to CLKO ↓			75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12	ТскR	CLKO Rise Time		—	35	100	ns	(Note 1)
13	ТскF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2IoV	CLKO \downarrow to Port Out Valid		—	_	0.5 Tcy + 20	ns	(Note 1)
15	ТюV2скН	Port In Valid before CLKC	0.25 Tcy + 25	_	—	ns	(Note 1)	
16	TckH2iol	Port In Hold after CLKO 1	0	_	—	ns	(Note 1)	
17	TosH2IoV	OSC1↑ (Q1 cycle) to Por	—	50	150	ns		
18	TosH2iol	OSC1↑ (Q2 cycle) to	PIC18FXXXX	100	_	—	ns	
18A		Port Input Invalid (I/O in hold time)	PIC18 LF XXXX	200		—	ns	VDD = 2.0V
19	TioV2osH	Port Input Valid to OSC1↑	(I/O in setup time)	0	I	—	ns	
20	TioR	Port Output Rise Time	PIC18 F XXXX	—	10	25	ns	
20A			PIC18 LF XXXX	—	_	60	ns	VDD = 2.0V
21	TIOF	Port Output Fall Time	PIC18 F XXXX	—	10	25	ns	
21A			PIC18 LF XXXX	—	_	60	ns	VDD = 2.0V
22†	TINP	INTx pin High or Low Tim	e	Тсү	_	—	ns	
23†	Trbp	RB7:RB4 Change INTx H	ligh or Low Time	Тсү		_	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

NOTES:

Reset	51
MCLR Reset, during Power-Managed Modes	51
MCLR Reset, Normal Operation	51
Power-on Reset (POR)	51
Programmable Brown-out Reset (BOR)	51
Stack Full Reset	51
Stack Underflow Reset	51
Watchdog Timer (WDT) Reset	51
Resets	281
RETFIE	326
RETLW	326
RETURN	327
Return Address Stack	
Return Stack Pointer (STKPTR)	67
Revision History	395
RLCF	327
RLNCF	328
RRCF	328
RRNCF	329

S

-	
SCK	157
SDI	157
SDO	157
Serial Clock, SCK	157
Serial Data In (SDI)	157
Serial Data Out (SDO)	157
Serial Peripheral Interface See SPI Mode	
SETE	329
Slave Select (SS)	157
SI FEP	330
Sleen	
OSC1 and OSC2 Pin States	30
Software Enabled BOR	50 54
Software Simulator (MPLAR SIM)	346
Special Event Trigger, See Compare (CCP Module)	
Special Event Higger. See Compare (CCP Module).	201
Special Features of the CFO	201
	. /4–/5
SPI Mode (MSSP)	105
Associated Registers	105
	105
	105
Enabling SPI I/O	101
Master/Clave Connection	102
Master/Slave Connection	101
	100
Serial Clock	157
Serial Data In	157
Serial Data Out	157
	103
Slave Select	15/
	103
Sleep Operation	105
SPI Glock	102
	101
	107
	107
SSFOV Sidius Flay	107
	70 171
R/W Bit I Stock Full/Inderflow Poseto	10, 171
STATUS Projector	00
CI IDECD	2/1
	341
	330
300LVV	331

341
331
332
332

Т

T0CON Register	
PSA Bit	133
TOCS Bit	132
T0PS2:T0PS0 Bits	133
T0SE Bit	132
Table Pointer Operations (table)	88
Table Reads	68
TBLRD	333
TBLWT	334
Time out in Various Situations (table)	554
Time-Out III Vallous Situations (table)	100
1 IIIieiu	131
16-Bit Mode Timer Reads and Writes	132
Associated Registers	133
Clock Source Edge Select (T0SE Bit)	132
Clock Source Select (T0CS Bit)	132
Operation	132
Overflow Interrupt	133
Prescaler. See Prescaler, Timer0.	
Timer1	135
16-Bit Read/Write Mode	137
Associated Registers	139
Interrunt	138
Operation	136
Oscillator 135	127
Uscillator	101
	138
	135
Resetting, Using a Special Event Trigger	
Output (CCP)	138
TMR1H Register	135
TMR1L Register	135
Use as a Real-Time Clock	138
Timer2	141
Associated Registers	142
Interrupt	142
Operation	141
Output	142
PR2 Register	153
TMR2 to PR2 Match Interrunt	153
	1/2
16 Dit Dood/Write Mode	140
	140
	145
Operation	144
Oscillator 143,	145
Overflow Interrupt 143,	145
Special Event Trigger (CCP)	145
TMR3H Register	143
TMR3L Register	143
Timing Diagrams	
A/D Conversion	385
Acknowledge Seguence	190
Asynchronous Reception	225
Asynchronous Transmission 207	223
Asynchronous Transmission	
(Back-to-Back) 207	222
(Dack-to-Dack)	220
	200
Auto-wake-up Bit (WOE) During	040
	210
Auto-wake-up Bit (WUE) During Sleep	210
Baud Rate Generator with Clock Arbitration	184
BRG Overflow Sequence	205