

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8490-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin	Buffer	Description					
Pin Name	TQFP	Туре Туре		Description					
				PORTA is a bidirectional I/O port.					
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog input 0.					
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.					
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (Low) input. SEG16 output for LCD.					
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (High) input. SEG17 output for LCD.					
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST/OD ST Analog	Digital I/O. Open-drain when configured as output. Timer0 external clock input. SEG14 output for LCD.					
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 4. Low-Voltage Detect input. SEG15 output for LCD.					
RA6				See the OSC2/CLKO/RA6 pin.					
RA7				See the OSC1/CLKI/RA7 pin.					
RA7 See the OSC1/CLKI/RA7 pin. Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input P = Power CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.									

TABLE 1-2:	PIC18F6X90 PINOUT I/O DESCRIPTIONS (CONTINUED)	

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then set SCS1:SCS0 to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled, but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set after the INTOSC output becomes stable after an interval of TIOBST (parameter 39, Table 26-10). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled; the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Device Reset Timers

PIC18F6390/6490/8390/8490 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18F6390/6490/8390/8490 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and is stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset, or on exit from most power-managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, all time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 4-5). This is useful for testing purposes, or to synchronize more than one PIC18FXXXX device operating in parallel.

Oscillator	Power-up ⁽²⁾ an	Exit from		
Configuration	PWRTEN = 0	PWRTEN = 1 Power-Managed N	Power-Managed Mode	
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	
EC, ECIO	66 ms ⁽¹⁾	_	—	
RC, RCIO	66 ms ⁽¹⁾	_	—	
INTIO1, INTIO2	66 ms ⁽¹⁾	_	—	

TABLE 4-2:	TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.

5.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds five additional two-word commands to the existing PIC18 instruction set: ADDFSR, CALLW, MOVSF, MOVSS and SUBFSR. These instructions are executed as described in Section 5.2.4 "Two-Word Instructions".

5.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

5.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode. When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

5.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 5-8.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 24.2.1** "Extended Instruction Syntax".

EXAMPLE	6-1: F	READING A FLASH PI	ROGRAM MEMORY WORD
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the word
	MOVLW	CODE ADDR HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE ADDR LOW	
	MOVWF	TBLPTRL	
READ WORD			
_	TBLRD*+		; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD EVEN	
	TBLRD*+	—	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD_ODD	

TABLE 6-2:	REGISTERS ASSOCIATED WITH READING PROGRAM FLASH MEMORY									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
TBLPTRU	—		bit 21	•	Program Memory Table Pointer Upper Byte TBLPTR<20:16>)					
TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)									
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)							59		
TABLAT	Program Me	emory Table	Latch						59	

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash access.

								_	_		
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page		
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	62		
LATC	LATC Data	LATC Data Output Register									
TRISC	PORTC D	PORTC Data Direction Register									
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	64		

TABLE 9-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: Shaded cells are not used by PORTC.

10.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- · Dedicated 8-bit software programmable prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 10-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 10-1. Figure 10-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 10-1: TOCON: TIMER0 CONTROL REGISTER

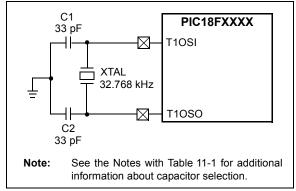
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	TOSE	PSA	PSA T0PS2		T0PS0
bit 7							bit 0

Legend:										
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	d bit, read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	TMR0ON	: Timer0 On/Off Control bit								
		les Timer0								
	0 = Stops	Timer0								
bit 6	T08BIT: 1	Timer0 8-Bit/16-Bit Control bi	t							
		0 is configured as an 8-bit ti								
	0 = Timer	0 is configured as a 16-bit ti	mer/counter							
bit 5	TOCS: Tir	TOCS: Timer0 Clock Source Select bit								
		1 = Transition on TOCKI pin								
	0 = Intern	al instruction cycle clock (Cl	_KO)							
bit 4	TOSE: Tir	ner0 Source Edge Select bit								
		ment on high-to-low transition								
		ment on low-to-high transition								
bit 3	PSA: Tim	er0 Prescaler Assignment bi	it							
			Timer0 clock input bypasses							
			er0 clock input comes from pr	escaler output.						
bit 2-0		0PS0: Timer0 Prescaler Sele	ect bits							
		256 Prescale value								
		28 Prescale value								
		32 Prescale value								
		6 Prescale value								
	010 = 1:8	B Prescale value								
		Prescale value								
	000 = 1:2	Prescale value								

11.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 11-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.


The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

11.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 11-3. Table 11-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 11-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 11-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR^(2,3,4)

Osc Type	Freq	C1	C2							
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾							
Note 1: Microchip suggests these values as a starting point in validating the oscillator circuit.										
2:	Higher capacitance increases the stability of the oscillator, but also increases the start-up time.									
3:	Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.									
4:	Capacitor value only.	es are for des	ign guidance							

11.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

11.3.2 LOW-POWER TIMER1 OPTION

The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device's operating mode. The default Timer1 configuration is the higher power mode.

As the Low-Power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is therefore best suited for low noise applications where power conservation is an important design consideration.

16.2.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift Register is loaded with data. Note that the value of data written to TXREG1 will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG1 for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 16-10 for the timing of the Break character sequence.

16.2.5.1 Break and Sync Transmit Sequence

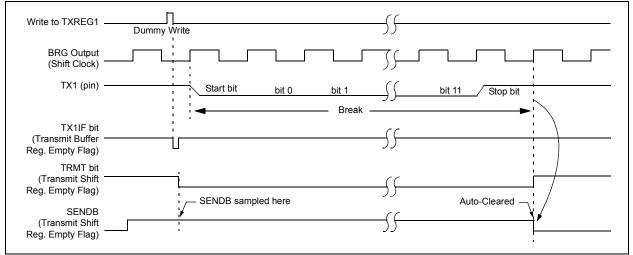
The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.

- 3. Load the TXREG1 with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG1 to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG1 becomes empty, as indicated by the TX1IF, the next data byte can be written to TXREG1.

16.2.6 RECEIVING A BREAK CHARACTER


The Enhanced USART module can receive a Break character in two ways.

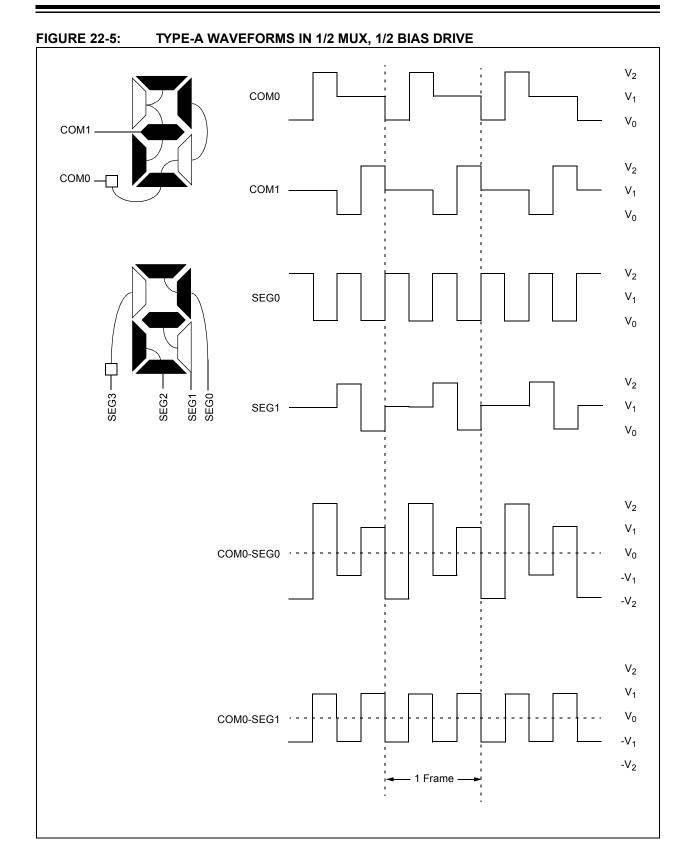
The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 16.2.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX1/DT1, cause an RC1IF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TX1IF interrupt is observed.

FIGURE 16-10: SEND BREAK CHARACTER SEQUENCE

	BRGH = 0											
	Foso	= 40.00	0 MHz	Fosc	; = 20.00	0 MHz	Foso	c = 10.000	0 MHz	Fosc = 8.000 MHz		
BAUD RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	—		_	_	_	_	—	_	_	_	_	_
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	—	—


TABLE 17-3: BAUD RATES FOR ASYNCHRONOUS MODES

	BRGH = 0								
	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz		
BAUD RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	—
9.6	8.929	-6.99	6	_	_	_	—	_	—
19.2	20.833	8.51	2	—	_	_	—	_	_
57.6	62.500	8.51	0	—	_	_	—	_	_
115.2	62.500	-45.75	0	—	_	—	—	_	—

	BRGH = 1												
BAUD RATE	Foso	; = 40.00	0 MHz	Fosc	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_	_	_	_		_	_	_	_	—	_	_	
1.2		—	—	—		—	—	—		—	—	—	
2.4	_	_	_	_	_	_	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

	BRGH = 1										
BAUD	Fosc = 4.000 MHz			Fos	Fosc = 2.000 MHz			Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_	_		_	_		0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_		
19.2	19.231	0.16	12	—	_	_	_	_	_		
57.6	62.500	8.51	3	_	_	_	_	_	_		
115.2	125.000	8.51	1	_	_	_	_	_	_		

© 2007 Microchip Technology Inc.

REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1				
_	_	—	BORV1	BORV0	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	PWRTEN ⁽¹⁾				
bit 7		•			•		bit 0				
Legend:											
R = Reada	ıble bit	P = Programn	nable bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value when device is unprogrammed u = Unchanged from programmed state											
bit 7-5	Unimplemented: Read as '0'										
bit 4-3	BORV1:BORV0: Brown-out Reset Voltage bits 11 = VBOR set to 2.1V										
	10 = VBOR se	t to 2.8V									
	01 = VBOR se										
	00 = VBOR se										
bit 2-1	BOREN1:BOREN0 Brown-out Reset Enable bits ⁽¹⁾										
	11 = Brown-out Reset enabled in hardware only (SBOREN is disabled)										
	10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)										
		10 = Brown-out Reset enabled and controlled by software (SBOREN is enabled)									
	10 = Brown-out Reset disabled in hardware and software										
bit 0	PWRTEN : Power-up Timer Enable bit ⁽¹⁾										
	1 = PWRT dis										
	0 = PWRT en	abled									
Note 1	The Power-up Tin	ner is decouple	d from Brown-	out Reset allo	wing these feat	ures to be inde	nendently				

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

REGISTER 23-7: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F6390/6490/8390/8490 DEVICES

R	R	R	R	R	R	R	R	
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
bit 7		•		•			bit C	
Legend:								
R = Readab	le bit	P = Program	nable bit	U = Unimplem	ented bit, read	as '0'		
-n = Value w	vhen device is ur	programmed		u = Unchanged from programmed state				
bit 7-5	DEV2:DEV0:	Device ID bits						
	100 = PIC18F	8390/8490						
	101 = PIC18F	6390/6490						
bit 4-0	REV4:REV0:	Revision ID bi	ts					
	These bits are	e used to indica	ate the device	revision.				

REGISTER 23-8: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F6390/6490/8390/8490 DEVICES

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0
l egend.							

Legenu.					
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'			
-n = Value when device is	s unprogrammed	u = Unchanged from programmed state			

bit 7-0 **DEV10:DEV3:** Device ID bits⁽¹⁾

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number. 0000 0110 = PIC18F6490/8490 devices 0000 1011 = PIC18F6390/8390 devices

Note 1: These values for DEV10:DEV3 may be shared with other devices. The specific device is always identified by using the entire DEV10:DEV0 bit sequence.

Byte-oriented file register operations	Example Instruction
<u>15 10 9 8 7 0</u>	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
<u>15 12 11 0</u>	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
<u>15 12 11 9 8 7 0</u>	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 0.7 0	
15 8 7 0	
15 8 7 0 OPCODE S n<7:0> (literal)	CALL MYFUNC
	CALL MYFUNC
OPCODE S n<7:0> (literal)	CALL MYFUNC
OPCODE S n<7:0> (literal) 15 12 11 0	CALL MYFUNC
OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal)	CALL MYFUNC
OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) S = Fast bit 15 11 10 0	CALL MYFUNC BRA MYFUNC
OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) S = Fast bit 15 11 10 0	
OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) S = Fast bit 15 11 10 0	

ANDWF	AND W w	ith f			
Syntax:	ANDWF	f {,d {,a}}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	(W) .AND. ((f) \rightarrow dest			
Status Affected:	N, Z				
Encoding:	0001	01da ff	ff ffff		
Description:	The contents of W are ANDed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.				
	set is enabl in Indexed I mode when Section 24 Bit-Oriente	nd the extend ed, this instru- Literal Offset A ever $f \le 95$ (5 .2.3 "Byte-Or d Instruction set Mode" for	ction operates Addressing Fh). See iented and s in Indexed		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write to destination		

BCBranch if CarrySyntax:BCnOperands: $-128 \le n \le 127$ Operation:if Carry bit is '1', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding: 1110 0010 Description:If the Carry bit is '1', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles: $1(2)$ Q Cycle Activity:IfIf Jump: $Q1$ Q1Q2Q3Q4Q4 $Pcode$ No							
Operands: $-128 \le n \le 127$ Operation:if Carry bit is '1', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding: 1110 0010 nnnnDescription:If the Carry bit is '1', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4DecodeNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoOperationoperationOperationoperation							
Operation: if Carry bit is '1', (PC) + 2 + 2n → PC Status Affected: None Encoding: 1110 0010 nnnn nnnn Description: If the Carry bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC No No No No No No No No No No							
$(PC) + 2 + 2n \rightarrow PC$ Status Affected: None Encoding: 1110 0010 nnnn nnnn Description: If the Carry bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC No No No No operation operation operation operation							
Encoding: 1110 0010 nnnn nnnn Description: If the Carry bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC No No No No No No No No operation operation							
Description: If the Carry bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC to Pata Process							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c} \mbox{added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. \\ \hline \mbox{Words:} 1 \\ \mbox{Cycles:} 1(2) \\ \mbox{Q Cycle Activity:} \\ \mbox{If Jump:} \\ \hline \begin{tabular}{c} Q1 & Q2 & Q3 & Q4 \\ \hline \begin{tabular}{c} Q1 & Q2 & Q3 & Q4 \\ \hline \begin{tabular}{c} Q1 & Q2 & Q3 & Q4 \\ \hline \begin{tabular}{c} Pccess & Write to PC \\ \ndots & Data & Process \\ \hline \ndots & No & No \\ \hline \ndots & operation & operation & operation \\ \hline \end{tabular}$							
Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC 'n' Data Write to PC No No No No operation operation operation							
Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC 'n' Data Vrite to PC No No No No No operation operation operation operation							
If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC 'n' Data Vite to PC No No No No operation operation operation operation							
Q1Q2Q3Q4DecodeRead literal 'n'Process DataWrite to PCNoNoNoNooperationoperationoperationoperation							
DecodeRead literal (n'Process DataWrite to PCNoNoNoNooperationoperationoperationoperation							
'n' Data No No No operation operation operation							
operation operation operation operation							
If No Jump:							
Q1 Q2 Q3 Q4							
Decode Read literal Process No							
'n' Data operation							
Example: HERE BC 5							
Before Instruction PC = address (HERE) After Instruction							

1; address (HERE + 12) 0; address (HERE + 2)

If Carry PC If Carry PC

= = =

RCAL	.L	Relative (Call		RES	ET	Reset				
Syntax	c	RCALL n			Synta	ax:	RESET	RESET			
Opera	nds:	-1024 ≤ n ≤	1023		Oper	ands:	None				
Opera	tion:	(PC) + 2 → (PC) + 2 +	,		Oper	ation:	Reset all registers and flags tha affected by a MCLR Reset.		•	are	
Status	us Affected: None		Statu	Status Affected: All							
Encod	ing:	1101	1nnn nn	inn nnnn	Enco	oding:	0000	0000 112	11 1	1111	
Descri	ption:	from the cu	call with a jur rrent location C + 2) is push	. First, return		cription:	This instruction provides a way to execute a MCLR Reset in softwar				
		•	(1, add the 2's)		Word	ls:	1				
				nce the PC will	Cycle	es:	1				
			nented to feto		QC	ycle Activity:					
		,	the new addr			Q1	Q2	Q3	Q	24	
		two-cycle ir				Decode	Start	No	N		
Words	:	1					Reset	operation	opera	ation	
Cycles	:	2			Exan	nnlo:	RESET				
Q Cv	cle Activity:										
	Q1	Q2	Q3	Q4		After Instructi Register		/alua			
Г	Decode	Read literal	Process	Write to PC		Flags*	= Reset V				
		'n'	Data								
		PUSH PC to									
		stack									
	No	No	No	No							
	operation	operation	operation	operation							

Before Instruction PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2)

SUBLW	Subtrac	t W from Li	teral					
Syntax:	SUBLW	SUBLW k						
Operands:	$0 \le k \le 25$	$0 \le k \le 255$						
Operation:	k – (W) →	$k - (W) \rightarrow W$						
Status Affected:	N, OV, C,	DC, Z						
Encoding:	0000	0000 1000 kkkk kkkk						
Description:		W is subtracted from the eight-bit literal 'k'. The result is placed in W.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read literal 'k'	Process Data	Write to W					
Example 1: SUBLW 02h								
Before Instruction W = 01h								
W C								
After Instruction								
W C	= 01h = 1 ·r							
Z	= 0	ecult ic pecili						
Example 2:	C C	02h						
Before Instruc	tion							
W	= 02h	02h						
C After Instructio	= ? on							
W	= 00h							
C Z	= 1 ;r = 1	1,10001110,2010						
$\bar{N} = 0$								
Example 3: SUBLW 02h								
Before Instruction W = 03h								
W C								
After Instruction	on .							
W C		's compleme sult is negative						
Z	= 0	Suit is neydliv						
N	= 1							

SUBWF			Subtract W from f							
Syntax:			SUBWF f {,d {,a}}							
Ope	Operands:			0 ≤ f ≤ 255						
·			∈ [0,1]							
			a ∈ [0,1]							
Operation:			$(f) - (W) \rightarrow dest$							
Status Affected:			N, OV, C, DC, Z							
Encoding:			0101 11da ffff ffff							
Description:			Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected.							
			If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates							
				henever $f \le 9$		•				
				24.2.3 "Byte						
				nted Instruc		s in Indexed				
Word	do.	1		inset moue	101	ucialis.				
		-								
Cycl		1								
QC	Sycle Activity:		~~			<u>.</u>				
	Q1 Decode		Q2 Read	Q3 Process		Q4 Write to				
	Decode	-	ister 'f'	Data	5	destination				
Evar	mple 1:		UBWF	REG, 1,	0					
	Before Instruc		ODWE	REG, I,	0					
	REG	=	3							
	W C	=	2 ?							
	After Instruction	on	•							
	REG	=	1							
	W C	=	2 1 ;ı	esult is pos	itive					
	Z	=	0	·						
Evar	N 1010 <u>nple 2:</u>	-	U	REG, 0,	0					
	Before Instruc		ODWL	100, 0,	0					
	REG	=	2							
	W C	=	2							
	After Instruction	on	•							
	REG	=	2							
	W C	=	0	result is ze	ro					
	Z	=	1 0							
Exar	mple 3:	-	UBWF	REG, 1,	Ο					
	Before Instruc		ODNI	100, 1,	0					
	REG	=	1							
	W C	=	2 ?							
	After Instruction		•							
	REG	=		;(2's comple	men	it)				
	W C	=	2 0 ;	result is ne	gativ	/e				
	Z	=	0 1							
	N	-	1							

26.2 DC Characteristics: Power-Down and Supply Current PIC18F6390/6490/8390/8490 (Industrial) PIC18LF6390/6490/8390/8490 (Industrial) (Continued)

PIC18LF6390/6490/8390/8490 (Industrial) PIC18F6390/6490/8390/8490 (Industrial)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
									Param No.
	Supply Current (IDD) ⁽²⁾								
	PIC18LF6390/6490/8390/8490	12	26	μA	-40°C				
		12	24	μA	+25°C	VDD = 2.0V			
		12	23	μA	+85°C				
	PIC18LF6390/6490/8390/8490	32	50	μA	-40°C		Fosc = 31 kHz		
		27	48	μA	+25°C	VDD = 3.0V	(RC_RUN mode,		
		22	46	μA	+85°C		INTRC source)		
	All devices	84	134	μA	-40°C				
		82	128	μA	+25°C	VDD = 5.0V			
		72	128	μA	+85°C				
	PIC18LF6390/6490/8390/8490	.26	.8	mA	-40°C				
		.26	.8	mA	+25°C	VDD = 2.0V			
		.26	.8	mA	+85°C				
	PIC18LF6390/6490/8390/8490	.48	1.04	mA	-40°C		Fosc = 1 MHz		
		.44	.96	mA	+25°C	VDD = 3.0V	(RC_RUN mode,		
		.48	.88	mA	+85°C		INTOSC source)		
	All devices	.88	1.84	mA	-40°C				
		.88	1.76	mA	+25°C	VDD = 5.0V			
		.8	1.68	mA	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Low-power Timer1 oscillator selected.
- **4:** BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Param. No.	Symbol	Characteris	Characteristic			Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP module	1.5 TCY	—		
101 TLOW	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP module	1.5 TCY	—		
102 TR	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated
			400 kHz mode	0.6	—	μS	Start condition
91 THD	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock pulse is generated
			400 kHz mode	0.6	—	μS	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107 TSU:DAT	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
		400 kHz mode	100	—	ns		
92 Ts	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—		ns	
110 Te	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 26-18: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C[™] bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

RA1/AN1	1
RA2/AN2/VREF-/SEG16	
RA3/AN3/VREF+/SEG1713, 2	
RA4/T0CKI/SEG14 13, 2	1
RA5/AN4/HLVDIN/SEG15 13, 2	
RB0/INT014, 2	
RB1/INT1/SEG8 14, 2	
RB2/INT2/SEG914, 2	
RB3/INT3/SEG1014, 2	2
RB4/KBI0/SEG1114, 2	
RB5/KBI114, 2	
RB6/KBI2/PGC14, 2	
RB7/KBI3/PGD14, 2	
RC0/T10S0/T13CKI 15, 2	
RC1/T1OSI/CCP215, 2	3
RC2/CCP1/SEG1315, 2	
RC3/SCK/SCL 15, 2	
RC4/SDI/SDA15, 2	
RC5/SDO/SEG1215, 2	
RC6/TX1/CK115, 2	
RC7/RX1/DT115, 2	
RD0/SEG016, 2	
RD1/SEG116, 2	
RD2/SEG216, 2	
RD3/SEG316, 2	
RD4/SEG416, 2	
RD5/SEG516, 2	
RD6/SEG616, 2	
RD7/SEG716, 2	
RE4/COM1 17, 2	
RE5/COM2	
DE6/COM2 47 0	5
RE6/COM3 17, 2	
RE7/CCP2/SEG31	5
RE7/CCP2/SEG31	5 6
RE7/CCP2/SEG31	5 6 6
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C20UT/SEG19 18, 2 RF2/AN7/C10UT/SEG20 18, 2	5 6 6
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C20UT/SEG19 18, 2 RF2/AN7/C10UT/SEG20 18, 2 RF3/AN8/SEG21 18, 2	5 6 6 6
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2	56666
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2	56666
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2	5666666
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2	566666666
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2	
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2	5 6 6 6 6 6 6 7 7
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG2/RX2/DT2/SEG28 19, 2	5666666777
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2	56666667777
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG28 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2	5 6 6 6 6 6 6 7 7 7 7 7 7
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2	566666667777777
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RH0/SEG47 2	566666667777778
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RH1/SEG46 2	5666666677777888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RH1/SEG46 2 RH1/SEG45 2	566666666777778888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2	566666667777788888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 2 RH1/SEG46 2 RH1/SEG46 2 RH3/SEG44 2 RH4/SEG40 2	5666666667777778888888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2 RH4/SEG40 2 RH5/SEG41 2	5666666677777888888888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2 RH4/SEG40 2 RH4/SEG41 2 RH6/SEG42 2	5666666677777888888888888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 2 RH0/SEG47 2 RH1/SEG46 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2 RH4/SEG40 2 RH5/SEG41 2 RH6/SEG42 2 RH7/SEG43 2	566666667777778888888888888888888888888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 2 RH1/SEG46 2 RH1/SEG46 2 RH1/SEG46 2 RH4/SEG40 2 RH4/SEG41 2 RH6/SEG42 2 RH7/SEG43 2 RH7/SEG43 2	5666666677777788888888888
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 2 RH1/SEG46 2 RH1/SEG45 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2 RH4/SEG40 2 RH5/SEG41 2 RH6/SEG42 2 RH7/SEG33 2	566666667777778888888888999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 2 RH1/SEG46 2 RH1/SEG45 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2 RH4/SEG40 2 RH5/SEG41 2 RH6/SEG42 2 RH7/SEG33 2	566666667777788888888889999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 2 RH1/SEG46 2 RH1/SEG46 2 RH4/SEG40 2 RH4/SEG41 2 RH6/SEG42 2 RH7/SEG33 2 RJ0/SEG34 2	56666666777777888888888899999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF4/AN9/SEG22 18, 2 RF4/AN9/SEG22 18, 2 RF6/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG2/RX2/DT2/SEG28 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RH1/SEG46 2 RH1/SEG45 2 RH3/SEG44 2 RH4/SEG40 2 RH5/SEG41 2 RH7/SEG33 2 RJ0/SEG32 2 RJ1/SEG33 2 RJ3/SEG34 2	56666666777777888888888999999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG2/RX2/DT2/SEG28 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG4/SEG46 19, 2 RG4/SEG46 2 RH1/SEG46 2 RH1/SEG46 2 RH3/SEG44 2 RH4/SEG40 2 RH5/SEG41 2 RH7/SEG33 2 RJ0/SEG32 2 RJ1/SEG33 2 RJ3/SEG35 2 RJ4/SEG39 2	5666666667777788888888889999999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG2/RX2/DT2/SEG28 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG40 2 RH1/SEG46 2 RH2/SEG41 2 RH6/SEG42 2 RJ0/SEG32 2 RJ1/SEG33 2 RJ3/SEG35 2 RJ4/SEG39 2 RJ4/SEG38 2 RJ5/SEG38 2	56666666677777888888888999999999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG2/RX2/DT2/SEG28 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG41 2 RH1/SEG46 2 RH4/SEG40 2 RH5/SEG41 2 RH6/SEG42 2 RJ0/SEG32 2 RJ1/SEG33 2 RJ3/SEG35 2 RJ4/SEG39 2 RJ4/SEG37 2	56666666777777888888889999999999999
RE7/CCP2/SEG31 17, 2 RF0/AN5/SEG18 18, 2 RF1/AN6/C2OUT/SEG19 18, 2 RF2/AN7/C1OUT/SEG20 18, 2 RF3/AN8/SEG21 18, 2 RF4/AN9/SEG22 18, 2 RF5/AN10/CVREF/SEG23 18, 2 RF6/AN11/SEG24 18, 2 RF7/SS/SEG25 18, 2 RG0/SEG30 19, 2 RG1/TX2/CK2/SEG29 19, 2 RG3/SEG27 19, 2 RG4/SEG26 19, 2 RG5 19, 2 RG5 19, 2 RG4/SEG26 19, 2 RG4/SEG47 2 RH1/SEG46 2 RH1/SEG46 2 RH2/SEG45 2 RH3/SEG44 2 RH5/SEG41 2 RH5/SEG41 2 RH7/SEG33 2 RJ1/SEG33 2 RJ3/SEG35 2 RJ4/SEG39 2	5666666667777778888888888999999999999

Vss	9
Vss	Э
Pinout I/O Descriptions PIC18F6X9012	2
PIC18F8X90	
PIR Registers	
PLL	
HSPLL Oscillator Mode	
Use with INTOSC	
POP	
POR. <i>See</i> Power-on Reset. PORTA	
Associated Registers	
LATA Register	
TRISA Register	
PORTB	
Associated Registers 114	
LATB Register	
PORTB Register112 RB7:RB4 Interrupt-on-Change Flag	2
(RBIF Bit)	2
TRISB Register 112	
PORTC	
Associated Registers	
LATC Register	
RC3/SCK/SCL Pin	
TRISC Register 115	
PORTD	
Associated Registers	
LATD Register	
TRISD Register	
PORTE	
Associated Registers 121	
LATE Register	
PORTE Register	
PORTF	5
Associated Registers 124	4
LATF Register 122	
PORTF Register	
TRISF Register 122 PORTG	2
Associated Registers 126	ô
LATG Register 125	5
PORTG Register	
TRISG Register	S
Associated Registers 128	в
LATH Register	
PORTH Register 127	7
TRISH Register	7
PORTJ Associated Registers	n
LATJ Register	
PORTJ Register	
TRISJ Register 129	
Postscaler, WDT	~
Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits)	
	,