

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6390-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset.

Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
	RCON REGISTER

Condition	Program		RCC	N Reg	jister			STKPTR Register		
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF	
Power-on Reset	0000h	1	1	1	1	0	0	0	0	
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u	
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u	
MCLR Reset during power-managed Run modes	0000h	_ບ (2)	u	1	u	u	u	u	u	
MCLR Reset during power-managed Idle modes and Sleep	0000h	u (2)	u	1	0	u	u	u	u	
WDT time-out during full power or power-managed Run modes	0000h	u (2)	u	0	u	u	u	u	u	
MCLR during full-power execution	0000h	_ບ (2)	u	u	u	u	u	u	u	
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u	
Stack Underflow Reset (STVREN = 1)	0000h	_ບ (2)	u	u	u	u	u	u	1	
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u (2)	u	u	u	u	u	u	1	
WDT time-out during power-managed Idle or Sleep modes	PC + 2 ⁽¹⁾	u (2)	u	0	0	u	u	u	u	
Interrupt exit from power-managed modes	PC + 2 ⁽¹⁾	_ປ (2)	u	u	0	u	u	u	u	

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

5.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds five additional two-word commands to the existing PIC18 instruction set: ADDFSR, CALLW, MOVSF, MOVSS and SUBFSR. These instructions are executed as described in Section 5.2.4 "Two-Word Instructions".

5.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

5.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode. When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

5.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 5-8.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 24.2.1** "Extended Instruction Syntax".

6.0 FLASH PROGRAM MEMORY

In PIC18F6390/6490/8390/8490 devices, the program memory is implemented as read-only Flash memory. It is readable over the entire VDD range during normal operation. A read from program memory is executed on one byte at a time.

6.1 Table Reads

For PIC18 devices, there are two operations that allow the processor to move bytes between the program memory space and the data RAM: table read (TBLRD) and table write (TBLWT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

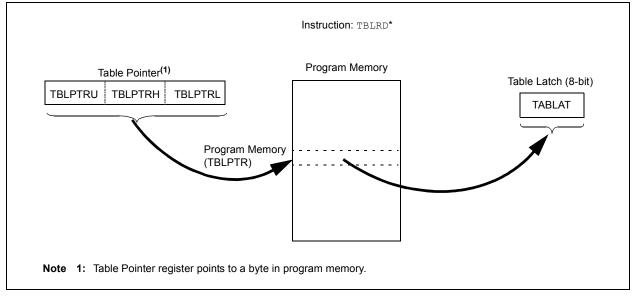

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register, TABLAT.

FIGURE 6-1: TABLE READ OPERATION

Table reads work with byte entities. A table block containing data, rather than program instructions, is not required to be word-aligned. Therefore, a table block can start and end at any byte address.

Because the program memory cannot be written to or erased under normal operation, the TBLWT operation is not discussed here.

- Note 1: Although it cannot be used in PIC18F6390/6490/8390/8490 devices in normal operation, the TBLWT instruction is still implemented in the instruction set. Executing the instruction takes two instruction cycles, but effectively results in a NOP.
 - The TBLWT instruction is available only in programming modes and is used during In-Circuit Serial Programming[™] (ICSP[™]).

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 9-5). The pins have Schmitt Trigger input buffers. RC1 is normally configured by Configuration bit, CCP2MX, as the default peripheral pin of the CCP2 module (default/erased state, CCP2MX = 1).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. Note: On a Power-on Reset, these pins are configured as digital inputs.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

RC2 and RC5 are also multiplexed with LCD segment drives controlled by bits in the LCDSE1 register. I/O port functions are only available when the segments are disabled.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

NOTES:

14.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP2 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR2L register and CCP2CON<5:4> bits.
- 3. Make the CCP2 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP2 module for PWM operation.

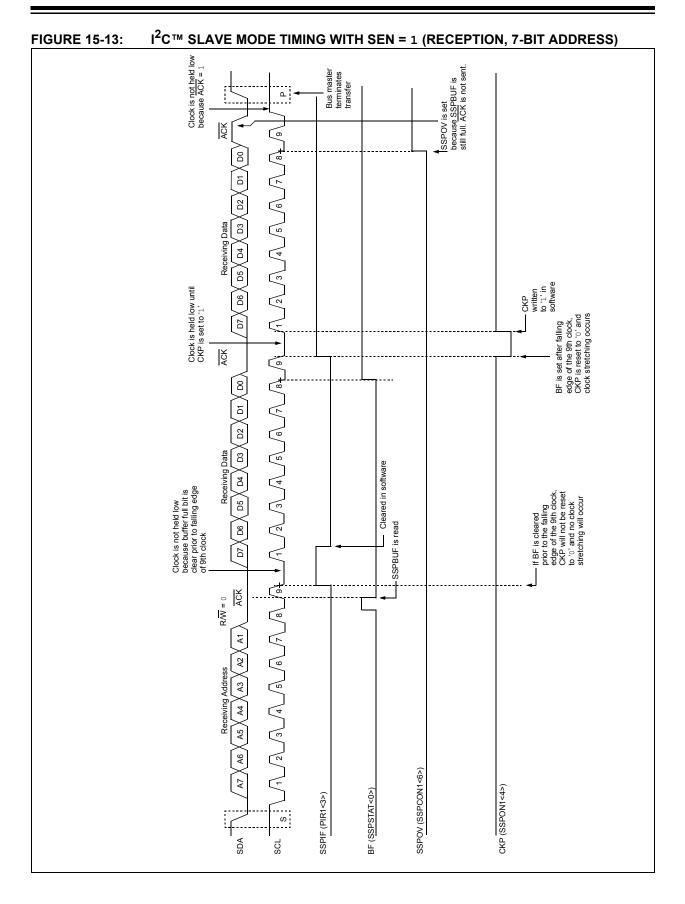
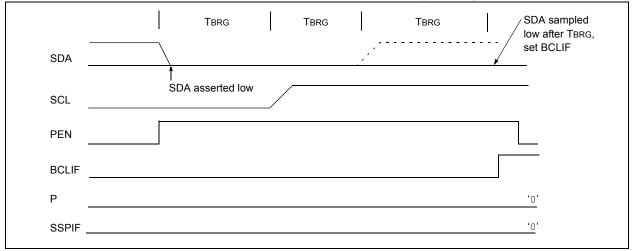

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
RCON	IPEN	SBOREN	—	RI	TO	PD	POR	BOR	60
PIR1	_	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	61
PIE1	_	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	61
IPR1	_	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	61
TRISC	PORTC Da	ta Direction	Register						62
TRISE	PORTE Da	ta Direction I	Register				_	—	62
TMR2	Timer2 Reg	gister							60
PR2	Timer2 Per	iod Register							60
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	60
CCPR1L	Capture/Co	mpare/PWN	I Register 1 L	_ow Byte					61
CCPR1H	Capture/Co	mpare/PWN	I Register 1 I	ligh Byte					61
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	61
CCPR2L	2L Capture/Compare/PWM Register 2 Low Byte								61
CCPR2H	Capture/Compare/PWM Register 2 High Byte							61	
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	61

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

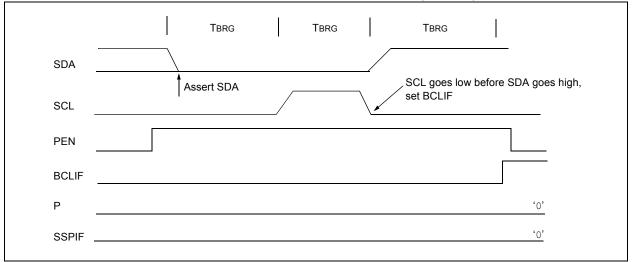
Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	GCEN: Gene	eral Call Enable	bit (Slave mod	le only)			
		terrupt when a call address dis		ldress (0000h) i	s received in t	he SSPSR	
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Master	r Transmit mode	e only)		
		edge was not re edge was receiv		ave			
bit 5	ACKDT: Ack	nowledge Data	bit (Master Re	ceive mode only	y) ⁽¹⁾		
	1 = Not Ackn	•					
	0 = Acknowle	•				. (2)	
bit 4				bit (Master Rece			A 1
		cknowledge se by hardware.	quence on SD/	A and SCL pins	and transmit A	ACKDT data bit.	Automatica
		edge sequence	Idle				
bit 3	RCEN: Rece	ive Enable bit (Master mode c	only) ⁽²⁾			
	1 = Enables I	Receive mode f	or I ² C				
	0 = Receive						
bit 2		ondition Enable					
	1 = Initiate St 0 = Stop cone		SDA and SCL	_ pins. Automati	cally cleared b	by hardware.	
bit 1	RSEN: Repe	ated Start Cond	lition Enable bi	it (Master mode	only) ⁽²⁾		
		Repeated Start of d Start condition		DA and SCL pin	s. Automatical	ly cleared by ha	ardware.
bit 0	SEN: Start C	ondition Enable	Stretch Enabl	e bit ⁽²⁾			
	In Master mo 1 = Initiate St 0 = Start con	art condition or	SDA and SCL	₋ pins. Automati	cally cleared b	by hardware.	
	In Slave mod	<u>e:</u>		ve transmit and	slave receive	(stretch enable	d)
	/alue that will be the I ² C module						

 If the I²C module is not in the Idle mode, these bits may not be set (no spooling) and the SSPBUF may n be written (or writes to the SSPBUF are disabled).


15.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 15-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 15-32).

FIGURE 15-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 15-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

17.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is very similar in function to the Enhanced USART module, discussed in the previous chapter. It is provided as an additional channel for serial communication, with external devices, for those situations that do not require Auto-Baud Detection or LIN bus support.

The AUSART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

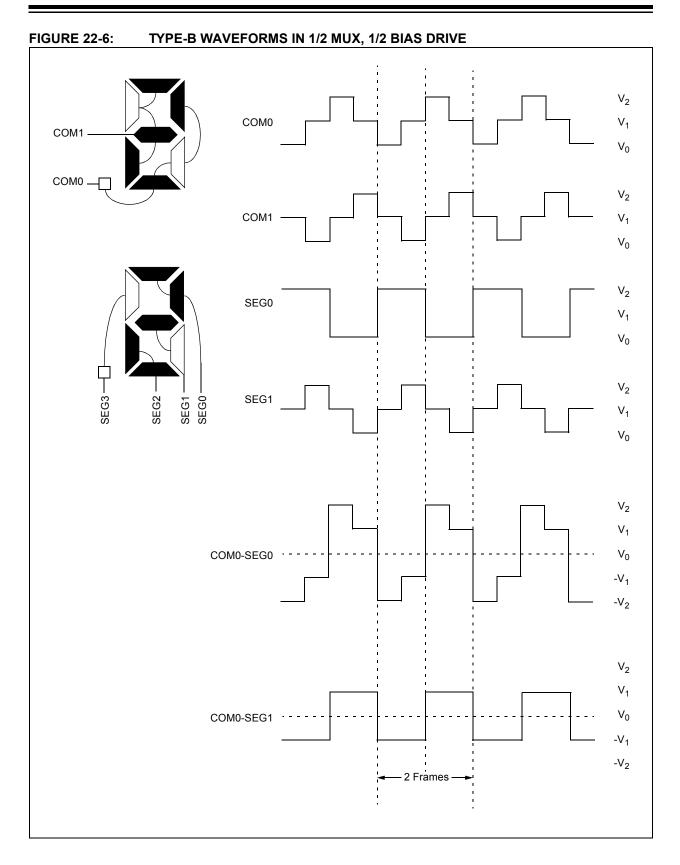
The pins of the AUSART module are multiplexed with the functions of PORTG (RG1/TX2/CK2/SEG29 and RG2/RX2/DT2/SEG28, respectively). In order to configure these pins as an AUSART:

- SPEN bit (RCSTA2<7>) must be set (= 1)
- TRISG<2> bit must be set (= 1)
- TRISG<1> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
- TRISG<1> bit must be set (= 1) for Synchronous Slave mode

Note: The AUSART control will automatically reconfigure the pin from input to output as needed.

The operation of the Addressable USART module is controlled through two registers, TXSTA2 and RXSTA2. These are detailed in Register 17-1 and Register 17-2 respectively.

21.0 HIGH/LOW-VOLTAGE DETECT (HLVD)


PIC18F6390/6490/8390/8490 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The High/Low-Voltage Detect Control register (Register 21-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 21-1.

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	—	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 7		/oltage Directio	-				
			•	xceeds trip poir	•	,	
bit 6		nted: Read as '	•	alls below trip p	oint (HLVDL3:F	HLVDLU)	
bit 5	-	nal Reference V		-log bit			
DIL D			•	will generate the	intorrunt flag	at the energified	voltago rango
				will not genera			
		nd the HLVD int					
bit 4	HLVDEN: Hi	gh/Low-Voltage	Detect Power	Enable bit			
	1 = HLVD en						
	0 = HLVD dis			(1)			
bit 3-0		VDL0: Voltage I					
	1111 = Exten 1110 = 4.41		ut is used (inpu	t comes from th	ie HLVDIN pin))	
	1101 = 4.41 1101 = 4.11						
	1100 = 3.92						
	1011 = 3.72						
	1010 = 3.53	V-3.91V					
	1001 = 3.43						
	1000 = 3.24						
	0111 = 2.95 0110 = 2.75						
	0110 = 2.75						
	0100 = 2.43						
	0011 = 2.35						
	0010 = 2.16	V-2.38V					
	0001 = 1.96						
	0000 = Rese	erved					

Note 1: HLVDL3:HLVDL0 modes that result in a trip point below the valid operating voltage of the device are not tested.

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemonic, Operands		Description	Qualas	16-E	Bit Instr	uction V	Vord	Status	Natas	
		Description	Cycles	MSb			LSb	Affected	Notes	
BYTE-ORI	BYTE-ORIENTED OPERATIONS									
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff		1,2	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2	
COMF	f, d, a	Complement f	1	0001	11da	ffff		Z, N	1, 2	
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4	
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4	
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4	
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)		11da	ffff	ffff	None	1, 2	
INCF	f, d, a	Increment f	1 ΄	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff		None	4	
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2	
IORWF	f, d, a	Inclusive OR WREG with f	1 ΄	0001	00da	ffff	ffff	Z, N	1, 2	
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff			
	3, u	f _d (destination) 2nd word		1111	ffff	ffff	ffff			
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None		
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2	
NEGF	f, a	Negate f	1		110a	ffff		C, DC, Z, OV, N		
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff		C, Z, N	1, 2	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff		,	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff		Ć, Z, N		
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff			
SETF	f, a	Set f	1	0110	100a	ffff	ffff		1, 2	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff		C, DC, Z, OV, N	-, _	
	, - ,	Borrow				-	_	, _, ,, _		
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1.2	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101		ffff		C, DC, Z, OV, N	, =	
	·,, •	Borrow						,,,,,		
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4	
TSTFSZ	f, a, a f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff		None	1, 2	
XORWF	f, d, a	Exclusive OR WREG with f	1		10da	ffff	ffff		·, -	
	i, u, a			0001	roua			<u> </u>		

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

IORLW	IORLW Inclusive OR Literal with W							
Syntax:	IORLW k	IORLW k						
Operands:	$0 \le k \le 255$							
Operation:	(W) .OR. k	$\rightarrow W$						
Status Affected:	N, Z							
Encoding:	0000	1001	kkkl	k kkkk				
Description:	The conten eight-bit lite in W.							
Words:	1	1						
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Proce Data		Write to W				
Example:	IORLW	35h						
Before Instruc W	tion = 9Ah							

IORWF	Inclusive	OR W v	vith f	
Syntax:	IORWF f	{,d {,a}}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			
Operation:	(W) .OR. (f)	\rightarrow dest		
Status Affected:	N, Z			
Encoding:	0001	00da	ffff	ffff
Description:	Inclusive O '0', the result is (default). If 'a' is '0', the If 'a' is '1', the GPR bank. If 'a' is '0' a set is enable in Indexed I mode when Section 24 Bit-Orienter Literal Offer	It is placed by placed by the Access he BSR i ed, this i Literal Of ever f ≤ c .2.3 "By d Instru	ed in W. back in ro ss Bank i s used to structio fset Add 95 (5Fh) te-Orien ctions in	If 'd' is '1', egister 'f' s selected. o select the instruction n operates ressing . See ted and n Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce Data		Write to estination
Example:	IORWF RI	ESULT,	0, 1	

ampic.	10	T/AAT.
Before Instruct	tion	
RESULT	=	13h
W	=	91h
After Instructio	'n	
RESULT	=	13h
W	=	93h

W = 9 After Instruction

W = BFh

РОР	Рор Тор	of Return S	tack
Syntax:	POP		
Operands:	None		
Operation:	$(TOS) \rightarrow b$	it bucket	
Status Affected:	None		
Encoding:	0000	0000 00	00 0110
Description:	stack and i then becon was pushe This instruc the user to	nes the previo d onto the retu ction is provide	The TOS value us value that urn stack. ed to enable age the return
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	No operation	POP TOS value	No operation
Example:	POP GOTO	NEW	
Before Instruc TOS Stack (1	ction level down)	= 0031/ = 01433	
After Instructi TOS PC	on	= 01433 = NEW	32h

PUSH	Push Top	Push Top of Return Stack					
Syntax:	PUSH	PUSH					
Operands:	None						
Operation:	$({\rm PC} + 2) \rightarrow$	$(PC + 2) \rightarrow TOS$					
Status Affected:	None						
Encoding:	0000	0000	000	0	0101		
Description:	The PC + 2 the return s value is pus	tack. T	he prev	ious	TOS		
	This instruc software sta then pushin	ack by	modifyir	ng T	OS and		
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3			Q4		
Decode	PUSH PC + 2 onto return stack	-	No operation		No eration		
Example:	PUSH						
Example: Before Instruc TOS PC		= =	345Ah 0124h				

24.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling	the	PIC18	instruction	set
	extension	may	cause leg	gacy applicat	ions
	to behave	errati	cally or fa	ail entirely.	

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.6.1 "Indexed Addressing With Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0), or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between 'C' and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 24.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

24.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM[™] Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{y}$, or the PE directive in the source listing.

24.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18FXX90, it is very important to consider the type of code. A large, reentrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

26.3 DC Characteristics: PIC18F6390/6490/8390/8490 (Industrial) PIC18LF6390/6490/8390/8490 (Industrial)

DC CHA	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	VIL	Input Low Voltage					
		I/O Ports:					
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 4.5V	
D030A			—	0.8	V	$4.5V \le V\text{DD} \le 5.5V$	
D031		with Schmitt Trigger Buffer RC3 and RC4	Vss Vss	0.2 Vdd 0.3 Vdd	V V		
D032		MCLR	Vss	0.2 Vdd	V		
D032A		OSC1 and T1OSI	Vss	0.3 VDD	V	LP, XT, HS, HSPLL modes ⁽¹⁾	
D033		OSC1	Vss	0.2 VDD	V	EC mode ⁽¹⁾	
	VIH	Input High Voltage					
		I/O Ports:					
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 4.5V	
D040A			2.0	Vdd	V	$4.5V \le V\text{DD} \le 5.5V$	
D041		with Schmitt Trigger Buffer RC3 and RC4	0.8 VDD 0.7 VDD	Vdd Vdd	V V		
D042		MCLR	0.8 Vdd	Vdd	V		
D042A		OSC1 and T1OSI	0.7 VDD	Vdd	V	LP, XT, HS, HSPLL modes ⁽¹⁾	
D043		OSC1	0.8 Vdd	Vdd	V	EC mode ⁽¹⁾	
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O Ports	-	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at hi-impedance} \end{split}$	
D061		MCLR	_	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1		±5	μA	$Vss \leq V PIN \leq V DD$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS	

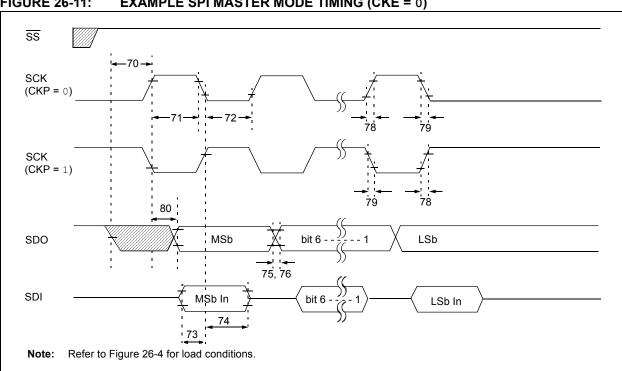
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the $PIC^{\mathbb{R}}$ device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

26.3 DC Characteristics: PIC18F6390/6490/8390/8490 (Industrial) PIC18LF6390/6490/8390/8490 (Industrial) (Continued)


			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O Ports	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D083		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O Ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	
D092		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C	
D150	Vod	Open-Drain High Voltage	—	8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins					
D100 ⁽⁴⁾	COSC2	OSC2 pin	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	_	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA		400	pF	I ² C [™] Specification	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

FIGURE 26-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 26-13: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characterist	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input	Тсү	—	ns		
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input	100	_	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to th of Byte 2	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100		ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXXXX		25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time	÷		25	ns	
78	TscR	SCR SCK Output Rise Time (Master mode)	PIC18FXXXX		25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)			25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXXXX	_	50	ns	
T	TscL2DoV	SCK Edge	PIC18LFXXXX	_	100	ns	VDD = 2.0V

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90	Tsu:sta	SU:STA Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition
91	THD:STA	A Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	THD:DAT	D:DAT Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	_	_	ns	
107	TSU:DAT	Data Input	100 kHz mode	250	—	ns	(Note 2)
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	_	_	ns	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid	100 kHz mode	_	3500	ns	
		from Clock	400 kHz mode	_	1000	ns	
			1 MHz mode ⁽¹⁾	_	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission
			1 MHz mode ⁽¹⁾	_	—	ms can star	can start
D102	Св	Bus Capacitive Lo	bading	_	400	pF	

TABLE 26-20: MASTER SSP I²C[™] BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode,) before the SCL line is released.