

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6490-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Din Nomo	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/SEG0 RD0 SEG0	72	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.
RD1/SEG1 RD1 SEG1	69	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.
RD2/SEG2 RD2 SEG2	68	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.
RD3/SEG3 RD3 SEG3	67	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.
RD4/SEG4 RD4 SEG4	66	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.
RD5/SEG5 RD5 SEG5	65	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.
RD6/SEG6 RD6 SEG6	64	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.
RD7/SEG7 RD7 SEG7	63	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels L = Input = Input				

TABLE 1-3: PIC18F8X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Р = Power

OD = Open-Drain (no P diode to VDD)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	62
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	Output Reg	jister				62
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				62
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	61
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	64
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	64

 TABLE 9-2:
 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

11.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 11-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

11.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 11-3. Table 11-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 11-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 11-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR^(2,3,4)

Osc Type	Freq	C1	C2			
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾			
Note 1: 1	Vicrochip sug starting point i circuit.	gests these in validating	values as a the oscillator			
2: (Higher capacitance increases the stability of the oscillator, but also increases the start-up time.					
3: 5 (t	Since each res characteristics he resonator, appropriate components.	sonator/crysta , the user sh /crystal manu values o	l has its own ould consult ufacturer for f external			
4: (Capacitor value	es are for des	ign guidance			

11.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

11.3.2 LOW-POWER TIMER1 OPTION

The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device's operating mode. The default Timer1 configuration is the higher power mode.

As the Low-Power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is therefore best suited for low noise applications where power conservation is an important design consideration.

14.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP2 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR2L register and CCP2CON<5:4> bits.
- 3. Make the CCP2 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP2 module for PWM operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
RCON	IPEN	SBOREN		RI	TO	PD	POR	BOR	60
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	61
PIE1	_	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	61
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	61
TRISC	PORTC Da	ta Direction I	Register						62
TRISE	PORTE Da	ta Direction I	Register					_	62
TMR2	Timer2 Reg	gister							60
PR2	Timer2 Per	iod Register							60
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	60
CCPR1L	Capture/Co	mpare/PWN	I Register 1 I	_ow Byte					61
CCPR1H	Capture/Co	mpare/PWN	I Register 1 I	High Byte					61
CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	61
CCPR2L	Capture/Compare/PWM Register 2 Low Byte							61	
CCPR2H	Capture/Co	mpare/PWN	I Register 2 I	High Byte					61
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	61

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7	1		1	-	I	I	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
 bit 7 WCOL: Write Collision Detect bit <u>In Master Transmit mode:</u> 1 = A write to the SSPxBUF register was attempted while the I²C conditions were not valid for transmission to be started (must be cleared in software) 0 = No collision <u>In Slave Transmit mode:</u> 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared software) 0 = No collision <u>In Receive mode (Master or Slave modes):</u> The term of the mode (Master or Slave modes): 							
	This is a "don	i't care" bit.					
DIT 6	In Receive ma 1 = A byte is software) 0 = No overfil In Transmit m This is a "don	ode: received while) low lode: 't care" hit in Tr	the SSPxBUF	register is still h	nolding the prev	vious byte (mus	t be cleared in
bit 5	SSPEN: Sync 1 = Enables th 0 = Disables s	chronous Serial he serial port a serial port and	Port Enable I nd configures configures the	oit(1) the SDA and Se se pins as I/O p	CL pins as the ort pins	serial port pins	
bit 4	CKP: SCK Release Control bit In Slave mode: 1 = Releases clock 0 = Holds clock low (clock stretch), used to ensure data setup time In Master mode: Unused in this mode.						
bit 3-0	Unused in this mode. SSPM3:SSPM0: Synchronous Serial Port Mode Select bits ⁽²⁾ 1111 = I ² C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I ² C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I ² C Firmware Controlled Master mode (Slave Idle) 1000 = I ² C Master mode, clock = Fosc/(4 * (SSPADD + 1)) 0111 = I ² C Slave mode, 10-bit address 0110 = I ² C Slave mode, 7-bit address						

REGISTER 15-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C™ MODE)

- **Note 1:** When enabled, the SDA and SCL pins must be configured as inputs.
 - 2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

15.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 15-15).

15.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 15-23).

15.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

15.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-24).

15.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 15-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

16.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up, due to activity on the RX1/DT1 line, while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX1/DT1 is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX1/DT1 line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN protocol.)

Following a wake-up event, the module generates an RC1IF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 16-8) and asynchronously, if the device is in Sleep mode (Figure 16-9). The interrupt condition is cleared by reading the RCREG1 register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RX1 line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

16.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RX1/DT1, information with any state changes before the Stop bit may signal a false

End-Of-Character (EOC) and cause data or framing errors. Therefore, to work properly, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices, or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

16.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RC1IF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RC1IF bit. The WUE bit is cleared after this when a rising edge is seen on RX1/DT1. The interrupt condition is then cleared by reading the RCREG1 register. Ordinarily, the data in RCREG1 will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set), and the RC1IF flag is set, should not be used as an indicator of the integrity of the data in RCREG1. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 16-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 16-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

TABLE 17-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR3	—	LCDIF	RC2IF	TX2IF	—	—	_	—	61
PIE3	—	LCDIE	RC2IE	TX2IE	—	—	_	—	61
IPR3	—	LCDIP	RC2IP	TX2IP	—	—	_	—	61
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	63
TXREG2 AUSART2 Transmit Register									63
TXSTA2	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	63
SPBRG2	AUSART2	Baud Rate (Generator R	egister					63

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

NOTES:

IOR	LW	Inclusive OR Literal with W							
Synta	ax:	IORLW k	IORLW k						
Oper	ands:	$0 \le k \le 25$	5						
Oper	ation:	(W) .OR. I	$v \to W$						
Statu	is Affected:	N, Z							
Enco	oding:	0000	1001	kkk}	c kkkk				
Desc	ription:	The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.							
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'k'	Proce Data	ess a	Write to W				
Exan	nple:	IORLW	35h						
Before Instruction W = 9Ah									

IORWF	Inclusive	Inclusive OR W with f						
Syntax:	IORWF f	{,d {,a}}						
Operands:	$\begin{array}{l} 0\leq f\leq 255\\ d\in [0,1]\\ a\in [0,1] \end{array}$							
Operation:	(W) .OR. (f)	(W) .OR. (f) \rightarrow dest						
Status Affected:	N, Z							
Encoding:	0001	00da	ffff	ffff				
Description:	Inclusive O '0', the result is (default). If 'a' is '0', ti If 'a' is '1', ti GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente Literal Offs	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read register 'f'	Proce Data	ess V a des	Vrite to stination				
Example:	IORWF RE	ESULT,	0, 1					

imple.	10	TINT
Before Instruc	tion	
RESULT	=	13h
W	=	91h
After Instruction	n	
RESULT	=	13h
W	=	93h

W = 9 After Instruction

W = BFh

26.2 DC Characteristics: Power-Down and Supply Current PIC18F6390/6490/8390/8490 (Industrial) PIC18LF6390/6490/8390/8490 (Industrial) (Continued)

PIC18LF6390/6490/8390/8490 (Industrial)			i rd Ope ing tem	rating C	onditions (un -40°C ≤	less otherwise TA ≤ +85°C for i	e stated) ndustrial	
PIC18F63 (Indus	Standa Operat	i rd Ope	rating C	Conditions (un -40°C ≤	less otherwise TA ≤ +85°C for i	e stated) ndustrial		
Param No.	Device	Тур	Мах	Units	Conditions			
	Module Differential Currents (Δ Ιωστ, Δ	IBOR, A	Ilvd, ∆I	LCD, Δ IOSCB, Δ	IAD)		
D025	Timer1 Oscillator	1.0	3.5	μA	-10°C			
(∆loscb)		1.1	3.5	μA	+25°C	VDD = 2.0V	32 kHz on Timer1 ⁽⁴⁾	
		1.1	4.5	μA	+70°C			
		1.2	4.5	μA	-10°C			
		1.3	4.5	μA	+25°C	VDD = 3.0V	32 kHz on Timer1 ⁽⁴⁾	
		1.2	5.5	μA	+70°C			
		1.8	6.0	μA	-10°C			
		1.9	6.0	μA	+25°C	VDD = 5.0V	32 kHz on Timer1 ⁽⁴⁾	
		1.9	7.0	μA	+70°C			
D026	A/D Converter	1.0	3.0	μA	_	VDD = 2.0V	A/D on, not converting	
(ΔAD)		1.0	4.0	μA	_	VDD = 3.0V		
		1.0	8.0	μA	_	VDD = 5.0V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 26-5 apply to all timing specifications unless otherwise noted. Figure 26-4 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F6390/6490/8390/8490 and PIC18LF6390/6490/8390/8490 families of devices specifically and only those devices.

TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 26.1 and
	Section 26.3.
	LF parts operate for industrial temperatures only.

FIGURE 26-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-19: MASTER SSP I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

FIGURE 26-18: MASTER SSP I²C™ BUS DATA TIMING

27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and tables are not available at this time.

Effect of a Reset	
General Call Address Support	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
I ransmit Sequence	
Multi-Master Communication, Bus Comsion	101
Multi Master Mede	
Operation	
Read/Write Bit Information (P/W Bit)	170 171
Registers	166
Serial Clock (RC3/SCK/SCL)	171
Slave Mode	170
Addressing	
Reception	
Sleep Operation	
Stop Condition Timing	
Transmission	
ID Locations	281, 293
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	281, 293
Indexed Literal Offset Addressing Mode	
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	
Indirect Addressing	82
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Instruction Cycle	
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining	
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set	
Instruction Cycle	
Instruction Cycle	
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining ADDLW ADDWF ADDWF (Indexed Literal Offset mode)	
Instruction Cycle	59–64 69 69 295 301 301 343 302 302 303 303 303 304
Instruction Cycle	59–64 69 69 295 301 301 302 302 303 303 303 304 304
Instruction Cycle	59–64 69 69 295 301 301 302 302 303 303 303 303 304 304 304 305
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN	59–64 69 69 295 301 301 302 302 303 303 303 303 304 304 304 304 305 305
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNOV	59-64 69 69 295 301 301 302 302 303 303 303 303 304 304 304 304 305 305 306
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNC BNN BNOV BNZ	59-64 69 69 295 301 301 302 302 303 303 303 303 304 304 304 304 305 305 306 306
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BC BN BNC BNN BNC BNN BNOV BNZ BOV	59-64 69 69 295 301 301 302 302 303 303 303 303 304 304 304 304 305 305 305 306 306 309
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BC BN BNC BNN BNC BNN BNOV BNZ BOV BRA	59-64 69 69 295 301 301 302 302 303 303 303 303 303 304 304 304 304 305 305 305 306 306 309 307
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BC BN BNC BNC BNN BNC BNN BNC BNN BNC BNN BNC BNC	59-64 69 69 295 301 301 302 302 303 303 303 303 303 304 304 304 304 305 305 305 306 306 306 307 307
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNC BNN BNC BNN BNC BNC	59-64 69 69 295 301 301 302 302 303 303 303 303 304 304 304 304 305 305 305 306 306 306 307 307 307 307
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNC BNN BNC BNN BNC BNN BNC BNC	59-64 69 69 295 301 301 302 302 303 303 303 303 303 304 304 304 304 305 305 305 306 306 306 307 307 307 307
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNC BNN BNOV BNZ BNZ BOV BNZ BSF (Indexed Literal Offset mode) BTFSC BTFSS	
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNC BNN BNC BNN BNOV BNZ BNZ BOV BNZ BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG	.59-64 .69 .69 .69 .295 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .307 .307 .308 .308 .309
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNOV BNZ BNZ BOV BNZ BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BZ	.59-64 .69 .69 .69 .295 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .306 .307 .307 .308 .308 .309 .310
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNC BNN BNOV BNZ BOV BNZ BOV BRA BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BZ CALL	.59-64 .69 .69 .69 .301 .301 .302 .303 .303 .303 .303 .303 .303 .304 .305 .306 .306 .307 .307 .307 .308 .308 .309 .310
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNOV BNZ BNZ BOV BRA BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BZ CALL CLRF	.59-64 .69 .69 .69 .301 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .306 .307 .307 .307 .307 .307 .308 .308 .309 .310 .310
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNC BNN BNC BNN BNOV BNZ BOV BNZ BOV BRA BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT	.59-64 .69 .69 .69 .295 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .307 .307 .307 .307 .307 .307 .308 .308 .309 .310 .311 .311
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BC BC BN BNC BNN BNC BNN BNC BNN BNOV BNZ BOV BRA BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF	.59-64 .69 .69 .69 .301 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .306 .307 .307 .307 .307 .307 .307 .307 .307 .307 .308 .308 .309 .310 .311 .311 .312
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNC BNN BNOV BNZ BOV BRA BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ	.59-64 .69 .69 .69 .295 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .307 .307 .307 .307 .307 .307 .307 .307 .307 .307 .307 .308 .308 .309 .310 .311 .311 .312 .312 .312
Instruction Cycle Clocking Scheme Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset mode) ADDWFC ANDLW ANDWF BC BC BCF BN BNC BNN BNC BNN BNOV BNZ BOV BRA BSF BSF (Indexed Literal Offset mode) BTFSC BTFSS BTG BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT	.59-64 .69 .69 .69 .301 .301 .302 .303 .303 .303 .303 .303 .303 .303 .303 .303 .303 .304 .305 .305 .306 .306 .307 .307 .307 .307 .307 .307 .307 .307 .307 .307 .307 .307 .308 .308 .309 .310 .311 .311 .312 .313 .313

DAW	314
DCFSNZ	315
DECF	314
DECFSZ	315
Extended Instructions	337
and Using MPLAB IDE Tools	344
Considerations when Enabling	342
Svntax	337
General Format	97
GOTO	316
INCF	316
INCESZ 3	317
INFSNZ	317
IORI W	318
IORWE	318
LESR	319
MOV/F	810
MOV/FE	220
MOV/I B	320
	220
	021 001
	02 I 000
	222
	222
NOD	020 000
	23
	024
	024
RUALL	020
	220
	020
	020
RETURN	527
RLUF	327
RLINUF	20
	20
	529
SETF (Indexed Literal Officiat mode)	229
	243
Stepdard Instructions	005
	290
	224
	331
	201
	აა∠ აეე
	222
	224
	004 005
	222
	000 000
XURWF	330
	298
	140
RDIF DIL	07
Inter Integrated Circuit Sec 120	95
Inter-Integrated Circuit. See ITC.	24
	ა4 24
Adjustment	34 24
	34 24
	34 24
	34
Internal RC Oscillator	- -
	207
Internet Address	109