

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6490t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE I-I. DEVICE FEATU	RES			
Features	PIC18F6390	PIC18F6490	PIC18F8390	PIC18F8490
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	8K	16K	8K	16K
Program Memory (Instructions)	4096	8192	4096	8192
Data Memory (Bytes)	768	768	768	768
Interrupt Sources	22	22	22	22
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Number of Pixels the LCD Driver can Drive	128 (32 SEGs x 4 COMs)	128 (32 SEGs x 4 COMs)	192 (48 SEGs x 4 COMs)	192 (48 SEGs x 4 COMs)
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, AUSART Enhanced USART	MSSP, AUSART Enhanced USART	MSSP, AUSART Enhanced USART	MSSP, AUSART Enhanced USART
10-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	12 Input Channels	12 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

TABLE 1-1: DEVICE FEATURES

Din Nome	Pin Number	Pin	Buffer	Description				
Fill Naille	TQFP	Туре	Туре	Description				
MCLR/Vpp/RG5 MCLR Vpp	7	I P	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. Programming voltage input.				
RG5		I	ST	Digital input.				
OSC1/CLKI/RA7 OSC1	39	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS				
CLKI		I	CMOS	otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)				
RA7		I/O	TTL	General purpose I/O pin.				
OSC2/CLKO/RA6 OSC2	40	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
CLKO		0	—	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate				
RA6		I/O	TTL	General purpose I/O pin.				
Legend: TTL = TTL co ST = Schmi I = Input P = Power	ompatible input tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)				

TABLE 1-2:PIC18F6X90 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (Low) input. SEG16 output for LCD.
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (High) input. SEG17 output for LCD.
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST/OD ST Analog	Digital I/O. Open-drain when configured as output. Timer0 external clock input. SEG14 output for LCD.
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 4. Low-Voltage Detect input. SEG15 output for LCD.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	ompatible input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-2:	PIC18F6X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Bin Nomo	Pin Number	Pin	Buffer	Description				
	TQFP	Туре	Туре	Description				
				PORTD is a bidirectional I/O port.				
RD0/SEG0 RD0 SEG0	58	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.				
RD1/SEG1 RD1 SEG1	55	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.				
RD2/SEG2 RD2 SEG2	54	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.				
RD3/SEG3 RD3 SEG3	53	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.				
RD4/SEG4 RD4 SEG4	52	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.				
RD5/SEG5 RD5 SEG5	51	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.				
RD6/SEG6 RD6 SEG6	50	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.				
RD7/SEG7 RD7 SEG7	49	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.				
Legend: TTL = TTL co ST = Schmit	mpatible input t Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input				

TABLE 1-2: PIC18F6X90 PINOUT I/O DESCRIPTIONS (CONTINUED)

= Input L

- Р = Power
- Output
- OD = Open-Drain (no P diode to VDD)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

5.3.5 STATUS REGISTER

The STATUS register, shown in Register 5-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the status is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu'). It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 24-2 and Table 24-3.

Note: The C and DC bits operate as a borrow and digit borrow bit respectively, in subtraction.

REGISTER 5-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	N	OV	Z	DC ⁽¹⁾	C ⁽²⁾
bit 7			I			_	bit 0
Legend:							
R = Read	able bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5 bit 4	Unimplemer	nted: Read as '()'				
	This bit is us (ALU MSB =	ed for signed ari 1).	ithmetic (2's c	omplement). It i	ndicates whet	ner the result w	as negative
	1 = Result w 0 = Result w	as negative as positive					
bit 3	OV: Overflow	v bit					
	This bit is use which causes 1 = Overflow 0 = No overfl	ed for signed ari s the sign bit (bit occurred for sig low occurred	ithmetic (2's c t 7) to change gned arithmeti	omplement). It i state. c (in this arithm	ndicates an ov etic operation)	rerflow of the 7-	bit magnitude
bit 2	Z: Zero bit						
	1 = The resu 0 = The resu	lt of an arithmet	ic or logic ope ic or logic ope	ration is zero ration is not zer	0		
bit 1	DC: Digit car	rry/borrow bit ⁽¹⁾					
	For ADDWF,	ADDLW, SUBL	W and SUBWF	instructions:			
	1 = A carry-c 0 = No carry	out from the 4th I	low-order bit o low-order bit	of the result occ	urred		
bit 0	\mathbf{C} : Carry/bor	$\frac{1}{10000000000000000000000000000000000$		of the result			
	For ADDWF,	ADDLW, SUBL	W and SUBWF	instructions:			
	1 = A carry-c	out from the Mos	t Significant b	it of the result o	occurred		
	0 = No carry	-out from the Mo	ost Significant	bit of the result	occurred		
Note 1:	For borrow, the p operand. For rota	olarity is reverse ate (RRF, RLF)	ed. A subtractions, th	on is executed b his bit is loaded y	by adding the 2 with either bit 4	's complement of or bit 3 of the s	of the second ource register.
2:	For borrow, the p operand. For rota source register.	oolarity is reverse ate (RRF,RLF)	ed. A subtracti instructions, t	on is executed his bit is loaded	by adding the 2 I with either the	2's complement e high or low-or	of the second der bit of the

5.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING

NOTES:

13.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

13.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in **Section 11.0** "Timer1 Module".

13.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

13.5 Resetting Timer3 Using the CCP Special Event Trigger

If either of the CCP modules is configured in Compare mode to generate a Special Event Trigger (CCP1M3:CCP1M0 or CCP2M3:CCP2M0 = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 14.3.4 "Special Event Trigger"** for more information.).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR2H:CCPR2L register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Note: The Special Event Triggers from the CCP2 module will not set the TMR3IF interrupt flag bit (PIR2<1>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59	
PIR2	OSCFIF	CMIF	_	_	BCLIF	HLVDIF	TMR3IF	CCP2IF	61	
PIE2	OSCFIE	CMIE	_	_	BCLIE	HLVDIE	TMR3IE	CCP2IE	61	
IPR2	OSCFIP	CMIP	_	_	BCLIP	HLVDIP	TMR3IP	CCP2IP	61	
TMR3L	Timer3 Register Low Byte									
TMR3H	Timer3 Register High Byte									
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	60	
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	61	

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

14.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP2 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR2L register and CCP2CON<5:4> bits.
- 3. Make the CCP2 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP2 module for PWM operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
RCON	IPEN	SBOREN		RI	TO	PD	POR	BOR	60
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	61
PIE1	_	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	61
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	61
TRISC	PORTC Da	ta Direction I	Register						62
TRISE	PORTE Da	PORTE Data Direction Register — — — —							
TMR2	Timer2 Register								
PR2	Timer2 Per	iod Register							60
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	60
CCPR1L	Capture/Co	mpare/PWN	I Register 1 I	_ow Byte					61
CCPR1H	Capture/Co	mpare/PWN	I Register 1 I	High Byte					61
CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	61
CCPR2L	Capture/Co	mpare/PWN	I Register 2 I	_ow Byte					61
CCPR2H	Capture/Co	mpare/PWN	I Register 2 I	High Byte					61
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	61

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

The value in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 18.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time <u>can be</u> programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - · Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear ADIF bit, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 3 TAD is required before the next acquisition starts.

FIGURE 18-2: A/D TRANSFER FUNCTION

FIGURE 18-3: ANALOG INPUT MODEL

REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1
IESO	FCMEN	—	—	FOSC3	FOSC2	FOSC1	FOSC0
bit 7							bit 0
Legend:							
R = Readable	e bit	P = Programm	able bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value wh	nen device is ur	nprogrammed		u = Unchange	ed from prograr	nmed state	
							1
bit 7	IESO: Interna	l/External Oscil	lator Switcho	over bit			
	1 = Oscillator	Switchover mo	de enabled				
	0 = Oscillator	Switchover mo	de disabled				
bit 6	FCMEN: Fail-	-Safe Clock Mo	nitor Enable I	bit			
	1 = Fail-Safe	Clock Monitor e	enabled				
	0 = Fail-Safe	Clock Monitor of	lisabled				
bit 5-4	Unimplemen	ted: Read as '0	,				
bit 3-0	FOSC3:FOS	C0: Oscillator S	election bits				
	11xx = Exter	nal RC oscillato	r, CLKO fund	tion on RA6			
	101x = Exter	nal RC oscillato	r, CLKO fund	tion on RA6			
	1001 = Intern	al oscillator blo	ck, CLKO fur	nction on RA6, p	ort function on	RA7	
	1000 = Intern	al oscillator bio	ck, port funct		RA7		
	0111 - Exten	scillator PLL en	abled (clock	frequency = 4×10^{-10}	FOSC1)		
	0101 = FC os	scillator, port fur	abled (clock	nequency – + x S	10001)		
	0100 = EC os	scillator, CLKO	function on R	A6			
	0011 = Exter	nal RC oscillato	r, CLKO fund	tion on RA6			
	0010 = HS o s	scillator					
	0001 = XT os	scillator					
	0000 = LP os	cillator					

23.2 Watchdog Timer (WDT)

For PIC18F6390/6490/8390/8490 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 134.2 seconds (2.24 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed, or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

23.2.1 CONTROL REGISTER

Register 23-9 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 23-1: WDT BLOCK DIAGRAM

23.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18F6390/6490/8390/8490 Flash devices differs from previous PIC18 devices.

For all devices in the PIC18F6X90/8X90 family, the user program memory is made of a single block. Figure 23-5 shows the program memory organization for individual devices. Code protection for this block is controlled by a single bit, CP (CONFIG5L<0>). The CP bit inhibits external reads from and writes to the entire program memory space. It has no direct effect in normal execution mode.

23.5.1 READING PROGRAM MEMORY AND OTHER LOCATIONS

The program memory may be read to any location using the table read instructions. The Device ID and the Configuration registers may be read with the table read instructions.

23.5.2 CONFIGURATION REGISTER PROTECTION

The Configuration registers can only be written via ICSP using an external programmer. No separate protection bit is associated with them.

FIGURE 23-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F6390/6490/8390/8490

N	IEMORY S	IZE/DEVICE		
8 Kbytes (PIC18F6390/8390)	Address Range	16 Kbytes (PIC18F6490/8490)	Address Range	Block Code Protection Controlled By:
Program Memory Block	000000h 001FFFh	Program Memory Block	000000h 003FFFh	CP, EBTR
	002000h		004000h	
Unimplemented Read '0's		Unimplemented Read '0's		(Unimplemented Memory Space)
	1FFFFFh		1FFFFFh	

TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS

File N	lame	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L					_			CP

Legend: Shaded cells are unimplemented.

NOTES:

CLRF	Clear f	CLRWDT	Clear Wat	chdog Time	ər
Syntax:	CLRF f {,a}	Syntax:	CLRWDT		
Operands:	$0 \leq f \leq 255$	Operands:	None		
	a ∈ [0,1]	Operation:	000h $ ightarrow$ WE	DT,	
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$		$\begin{array}{c} 000h \rightarrow WE \\ 1 \rightarrow \overline{TO}, \end{array}$	OT postscaler,	
Status Affected:	Z	. .	$1 \rightarrow PD$		
Encoding:	0110 101a ffff ffff	Status Affected:	TO, PD		
Description:	Clears the contents of the specified	Encoding:	0000	0000 00	00 0100
	register.	Description:	CLRWDT in	struction rese	ts the
	If 'a' is '0', the Access Bank is selected.		postscaler of	of the WDT. Si	tatus bits. TO
	GPR bank.		and PD, are	e set.	
	If 'a' is '0' and the extended instruction	Words:	1		
	set is enabled, this instruction operates	Cycles:	1		
	in indexed Literal Offset Addressing mode whenever $f < 95$ (5Fh). See	Q Cycle Activity:			
	Section 24.2.3 "Byte-Oriented and	Q1	Q2	Q3	Q4
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Decode	No	Process Data	No
Words:	1		oportution	2010	oporation
Cycles:	1	Example:	CLRWDT		
Q Cycle Activity:		Before Instruc	tion		
Q1	Q2 Q3 Q4	WDT Co	unter =	?	
Decode	ReadProcessWriteregister 'f'Dataregister 'f'	After Instruction WDT Co WDT Pos	on unter = stscaler =	00h 0	
Example:	CLRF FLAG_REG,1	TO PD	=	1 1	
Before Instruc	tion				
FLAG_R	EG = 5Ah				
FLAG_R	EG = 00h				

COMF	Complem	ent f			
Syntax:	COMF f	{,d {,a}}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow dest$				
Status Affected:	N, Z				
Encoding:	0001	11da	ffff	ffff	
Description:	The conten complemen stored in W stored back If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a	The contents of register 'f' are complemented. If 'd' is '1', the result is stored in W. If 'd' is '0', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.			
	set is enabl in Indexed mode when Section 24 Bit-Oriente Literal Offs	ed, this i Literal Of ever f ≤ .2.3 "By ed Instru set Mode	nstruction ffset Addre 95 (5Fh). S te-Oriente ctions in 9" for deta	operates essing See d and Indexed ils.	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proce Data	ss M a des	/rite to stination	
Example: Before Instruc REG After Instructio REG W	COMF tion = 13h m = 13h = ECh	REG,	0, 0		

CPF	SEQ	Compare	Compare f with W, Skip if f = W			
Synta	ax:	CPFSEQ	f {,a}			
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Operation:		(f) – (W), skip if (f) = (unsigned	(f) - (W), skip if $(f) = (W)$ (unsigned comparison)			
Statu	s Affected:	None				
Enco	ding:	0110	001a ffi	ff ffff		
Desc	ription:	Compares location 'f' performing	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.			
		discarded a instead, ma instruction.	discarded and a NOP is executed instead, making this a two-cycle instruction.			
		If 'a' is '0', ' If 'a' is '0', ' GPR bank	the Access Bar the BSR is use	nk is selected. d to select the		
If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe				ed instruction ction operates addressing Fh). See iented and s in Indexed details		
Word	le.		Set WOULD TOP	ucialis.		
Cycle	ag.	1(2)				
e y e i		Note: 3 cy by a	ycles if skip and a 2-word instru	d followed ction.		
QC	ycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process	No		
lf sk	ip:	regiotor r	Dulu	oporation		
	Q1	Q2	Q3	Q4		
	No	No	No	No		
lf ok	operation	operation	operation	operation		
11 51		02 2-woru	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
	No	No	No	No		
	operation	operation	operation	operation		
Example:		HERE NEQUAL EQUAL	CPFSEQ REG : :	;, 0		
Before Instruction						
	PC Addre W REG	ess = HE = ? = ?	IRE			
	After Instructio	on				
	If REG PC	= W = Ac	; ddress (EQUA)	L)		
	If REG PC	≠ W = Ac	dress (NEQU	, AL)		

MOVSS	Move Indexed to Indexed			
Syntax:	MOVSS	[z _s], [z _d]		
Operands:	$0 \le z_s \le 12$	27		
	$0 \le z_d \le 12$	27		
Operation:	((FSR2) +	$z_s) \rightarrow ((F$	SR2) + z _d)
Status Affected:	None	None		
Encoding:				
1st word (source)	1110	1011	1 z z z	ZZZZ _S
2nd word (dest.)	1111	XXXX	XZZZ	zzzzd
Manda	addresses of the destination register. The addresses of the source and destination register. The registers are determined by adding the 7-bit literal offsets 'z _s ' or 'z _d ', respectively, to the value of FSR2. Bor registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points an Indirect Addressing register, the value returned will be 00h. If the resultant destination address points the an Indirect Addressing register, the instruction will execute as a NOP.			
Words:	2			
Cycles:	2			
Q Cycle Activity:				
Q1	Q2	Q	3	Q4

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	Determine	Determine	Write
	dest addr	dest addr	to dest reg

Example:	MOVSS	[05h],	[06h]
Before Instruction	on		
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	33h	

PUSHL Store Literal at FSR2, Decrement FSR2 Syntax: PUSHL k Operands: $0 \leq k \leq 255$ Operation: $k \rightarrow (FSR2),$ $FSR2 - 1 \rightarrow FSR2$ Status Affected: None Encoding: 1010 1111 kkkk kkkk The 8-bit literal 'k' is written to the data Description: memory address specified by FSR2. FSR2 is decremented by 1 after the operation. This instruction allows users to push values onto a software stack. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read 'k' Process Write to data destination Example: PUSHL 08h Before Instruction

FSR2H:FSR2L	=	01ECh
Memory (01ECh)	=	00h
After Instruction FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

TABLE 26-19: MASTER SSP I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	-	first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

FIGURE 26-18: MASTER SSP I²C™ BUS DATA TIMING

Top-of-Stack Access	
TSTFSZ	
Two-Speed Start-up	
Two-Word Instructions	
Example Cases	70
TXSTA1 Register	
BRGH Bit	201
TXSTA2 Register	
BRGH Bit	
v	
Voltage Reference Specifications	

W

Watchdog Timer (WDT)	
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	. 185, 186, 187, 190
WCOL Status Flag	. 185, 186, 187, 190
WWW Address	
WWW, On-Line Support	5
x	
XORI W	335
XORWF	