

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8490-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin	Buffer	Description					
Pin Name	TQFP	Туре	Туре	Description					
				PORTA is a bidirectional I/O port.					
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog input 0.					
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.					
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (Low) input. SEG16 output for LCD.					
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (High) input. SEG17 output for LCD.					
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST/OD ST Analog	Digital I/O. Open-drain when configured as output. Timer0 external clock input. SEG14 output for LCD.					
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 4. Low-Voltage Detect input. SEG15 output for LCD.					
RA6				See the OSC2/CLKO/RA6 pin.					
RA7				See the OSC1/CLKI/RA7 pin.					
I = Input P = Power	t Trigger input			CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) tion bit, CCP2MX, is set.					

TABLE 1-2:	PIC18F6X90 PINOUT I/O DESCRIPTIONS (CONTINUED)	

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

D' Nov	Pin Number	Pin Buffer						
Pin Name	TQFP	Туре	Туре	Description				
				PORTE is a bidirectional I/O port.				
LCDBIAS1 LCDBIAS1	4	I	Analog	BIAS1 input for LCD.				
LCDBIAS2 LCDBIAS2	3	I	Analog	BIAS2 input for LCD.				
LCDBIAS3 LCDBIAS3	78	I	Analog	BIAS3 input for LCD.				
COM0 COM0	77	0	Analog	COM0 output for LCD.				
RE4/COM1 RE4 COM1	76	I/O O	ST Analog	Digital I/O. COM1 output for LCD.				
RE5/COM2 RE5 COM2	75	I/O O	ST Analog	Digital I/O. COM2 output for LCD.				
RE6/COM3 RE6 COM3	74	I/O O	ST Analog	Digital I/O. COM3 output for LCD.				
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	73	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.				
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output P = Power OD = Open-Drain (no P diode to VDD) Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.								

TABLE 1-3 :	PIC18F8X90 PINOUT I/O DESCRIPTIONS (CONTINUED)
--------------------	--

efault assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.6.5.1 Compensating with the AUSART

An adjustment may be required when the AUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value

is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the Timers

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, then the internal oscillator block is running too fast. To compensate, decrement the OSTUNE register. If the measured time is much less than the calculated time, then the internal oscillator block is running too slow. To compensate, increment the OSTUNE register.

REGISTER 2-1: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	1 = 31.2		uency Source Select bit rom 8 MHz INTOSC source (di ctly from INTRC internal oscilla	•
bit 6		Frequency Multiplier PLL for enabled for INTOSC (4 MHz disabled		
bit 5	Unimple	mented: Read as '0'		

bit 4-0 **TUN4:TUN0:** Frequency Tuning bits

```
01111 = Maximum frequency

00001

00000 = Center frequency. Oscillator module is running at the calibrated frequency.

11111

10000 = Minimum frequency
```

Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and read as '0'. See Section 2.6.4 "PLL in INTOSC Modes" for details.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt		
ADRESH	6X90	8X90	XXXX XXXX	นนนน นนนน	นนนน นนนน		
ADRESL	6X90	8X90	XXXX XXXX	uuuu uuuu	uuuu uuuu		
ADCON0	6X90	8X90	00 0000	00 0000	uu uuuu		
ADCON1	6X90	8X90	00 0000	00 0000	uu uuuu		
ADCON2	6X90	8X90	0-00 0000	0-00 0000	u-uu uuuu		
CCPR1H	6X90	8X90	XXXX XXXX	นนนน นนนน	นนนน นนนน		
CCPR1L	6X90	8X90	XXXX XXXX	นนนน นนนน	սսսս սսսս		
CCP1CON	6X90	8X90	00 0000	00 0000	uu uuuu		
CCPR2H	6X90	8X90	XXXX XXXX	นนนน นนนน	นนนน นนนน		
CCPR2L	6X90	8X90	XXXX XXXX	นนนน นนนน	սսսս սսսս		
CCP2CON	6X90	8X90	00 0000	00 0000	uu uuuu		
CVRCON	6X90	8X90	000- 0000	000- 0000	uuu- uuuu		
CMCON	6X90	8X90	0000 0111	0000 0111	นนนน นนนน		
TMR3H	6X90	8X90	XXXX XXXX	นนนน นนนน	นนนน นนนน		
TMR3L	6X90	8X90	XXXX XXXX	นนนน นนนน	սսսս սսսս		
T3CON	6X90	8X90	0000 0000	սսսս սսսս	սսսս սսսս		
SPBRG1	6X90	8X90	0000 0000	0000 0000	սսսս սսսս		
RCREG1	6X90	8X90	0000 0000	0000 0000	սսսս սսսս		
TXREG1	6X90	8X90	0000 0000	0000 0000	սսսս սսսս		
TXSTA1	6X90	8X90	0000 0010	0000 0010	սսսս սսսս		
RCSTA1	6X90	8X90	0000 000x	0000 000x	սսսս սսսս		
IPR3	6X90	8X90	-111	-111	-uuu		
PIR3	6X90	8X90	-000	-000	-uuu (1)		
PIE3	6X90	8X90	-000	-000	-uuu		
IPR2	6X90	8X90	11 1111	11 1111	uu uuuu		
PIR2	6X90	8X90	00 0000	00 0000	uu uuuu (1)		
PIE2	6X90	8X90	00 0000	00 0000	uu uuuu		
IPR1	6X90	8X90	-111 1111	-111 1111	-uuu uuuu		
PIR1	6X90	8X90	-000 0000	-000 0000	-uuu uuuu (1)		
PIE1	6X90	8X90	-000 0000	-000 0000	-uuu uuuu		
OSCTUNE	6X90	8X90	00-0 0000	00-0 0000	uu-u uuuu		

TABLE 4-4:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)
------------	---

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

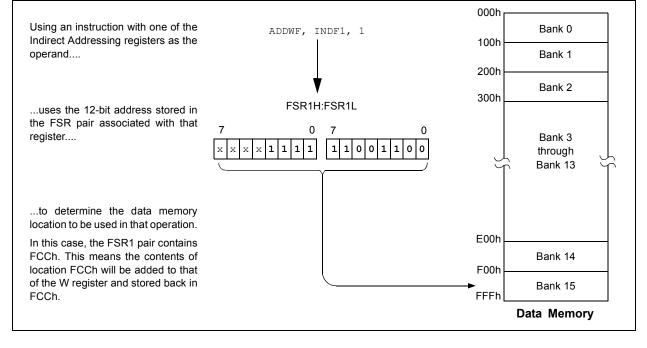
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: These registers are cleared on POR and unchanged on BOR.


5.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

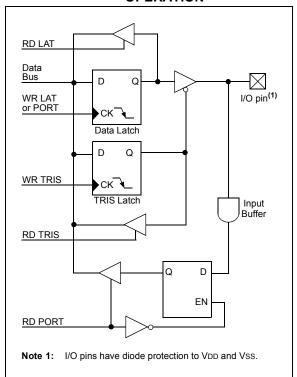
Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING

9.0 I/O PORTS

Depending on the device selected and features enabled, there are up to nine ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The Data Latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 9-1.

FIGURE 9-1: GENERIC I/O PORT OPERATION

9.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and the LCD segment drive to become the RA4/T0CKI/SEG14 pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 23.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of pins RA3:RA0 and RA5 as A/D converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

The RA4/T0CKI/SEG14 pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

RA5:RA2 are also multiplexed with LCD segment drives controlled by bits in the LCDSE1 and LCDSE2 registers. I/O port functions are only available when the segments are disabled.

CLRF	PORTA	; Initialize PORTA by ; clearing output
		, creating output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVWF	07h	; Configure comparators
MOVWF	CMCON	; for digital input
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs

15.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON1<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = (Fosc/4) x (SSPADD + 1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

15.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I^2C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits

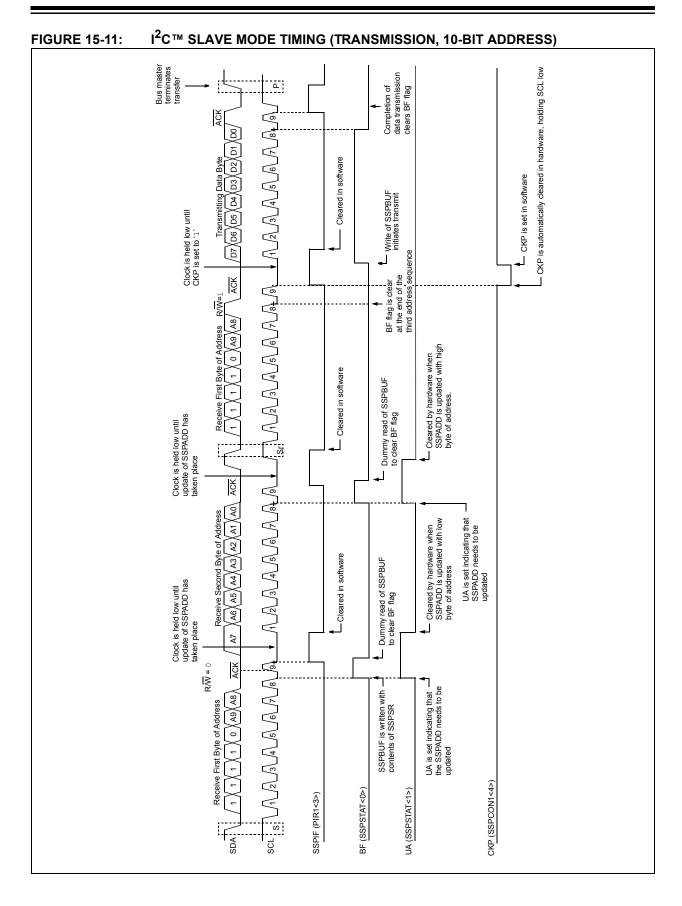
When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON1<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but the SSPIF bit (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101.


15.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-Bit Addressing mode is as follows, with steps 7 through 9 for the slave-transmitter:

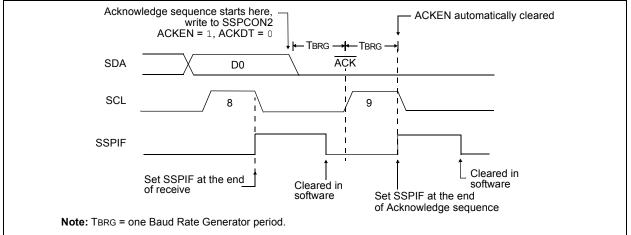
- 1. Receive first (high) byte of address (bits SSPIF, BF and UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit, UA.
- 6. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (SSPIF and BF bits are set).
- 9. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.

15.4.12 ACKNOWLEDGE SEQUENCE TIMING

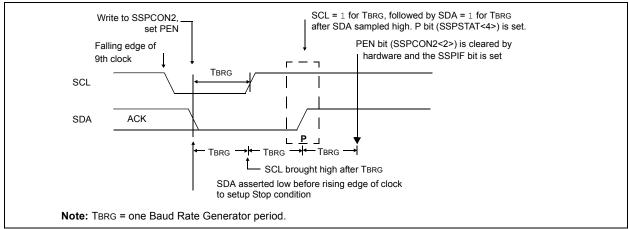
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 15-23).

15.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


15.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-24).


15.4.13.1 WCOL Status Flag

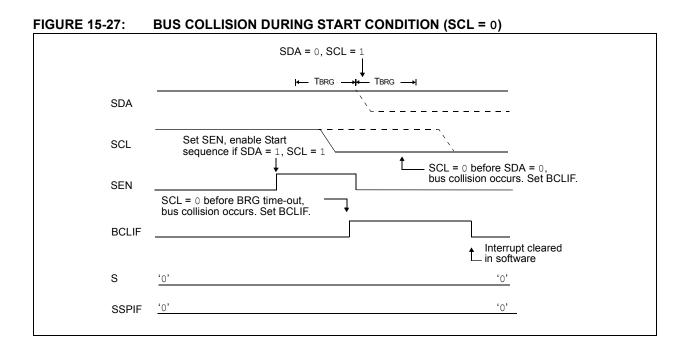

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-23: ACKNOWLEDGE SEQUENCE WAVEFORM

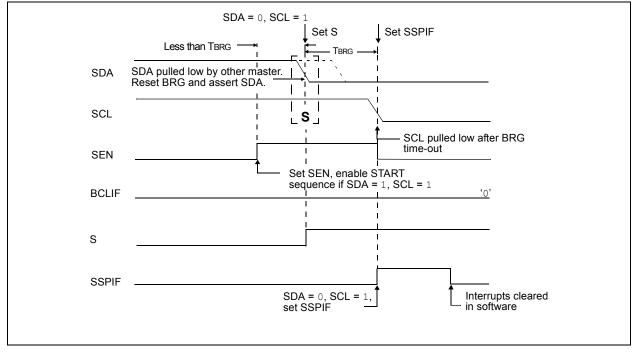


FIGURE 15-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

FIGURE 15-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

16.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

PIC18F6390/6490/8390/8490 devices have three serial I/O modules: the MSSP module, discussed in the previous chapter and two Universal Synchronous Asynchronous Receiver Transmitter (USART) modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

There are two distinct implementations of the USART module in these devices: the Enhanced USART (EUSART) discussed here and the Addressable USART discussed in the next chapter. For this device family, USART1 always refers to the EUSART, while USART2 is always the AUSART.

The EUSART and AUSART modules implement the same core features for serial communications; their basic operation is essentially the same. The EUSART module provides additional features, including Automatic Baud Rate Detection (ABD) and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of the EUSART are multiplexed with the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/DT1). In order to configure these pins as an EUSART:

- bit SPEN (RCSTA1<7>) must be set (= 1)
- bit TRISC<7> must be set (= 1)
- bit TRISC<6> must be set (= 1)
- **Note:** The USART control will automatically reconfigure the pin from input to output as needed.

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control Register 1 (TXSTA1)
- Receive Status and Control Register 1 (RCSTA1)
- Baud Rate Control Register 1 (BAUDCON1)

The registers are described in Register 16-1, Register 16-2 and Register 16-3.

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3				_			_			_		_
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_

TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0								
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	—		_
9.6	8.929	-6.99	6	_	_	_	_	_	_
19.2	20.833	8.51	2	_	_	_	_	_	_
57.6	62.500	8.51	0	—	_	_	—	_	_
115.2	62.500	-45.75	0	—	—		—	—	—

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Foso	: = 40.000) MHz	Fosc	= 20.00	0 MHz	Fosc	= 10.00	0 MHz	Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3		_		_		_	_			_	_	_
1.2	—	—	—	—	—	_	—	—	_	—	—	—
2.4	_	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	_	—

	SYNC = 0, BRGH = 1, BRG16 = 0								
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_			_	_		0.300	-0.16	207
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	0.16	25	9615	-0.16	12	—		—
19.2	19.231	0.16	12	—	_	_	—	_	_
57.6	62.500	8.51	3	—		_	—		—
115.2	125.000	8.51	1	—	_	—	—	_	—

REGISTER 18-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-q	R/W-q	R/W-q	R/W-q
_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'

bit 5	VCFG1: Voltage Reference Configuration bit (VREF- source) 1 = VREF- (AN2)
	0 = AVss
bit 4	VCFG0: Voltage Reference Configuration bit (VREF+ source) 1 = VREF+ (AN3) 0 = AVDD

bit 3-0 **PCFG3:PCFG0:** A/D Port Configuration Control bits:

PCFG3: PCFG0	AN11	AN10	AN9	AN8	AN7	ANG	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	А	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α
0010	А	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α
0011	А	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α
0100	D	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α
0101	D	D	Α	Α	Α	А	Α	Α	Α	Α	Α	Α
0110	D	D	D	Α	Α	А	Α	Α	Α	Α	Α	Α
0111	D	D	D	D	Α	А	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	А	Α	А	Α	Α	Α	А
1001	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	Α	Α	А
1101	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

19.2 Comparator Operation

A single comparator is shown in Figure 19-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 19-2 represent the uncertainty, due to input offsets and response time.

19.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 19-2).

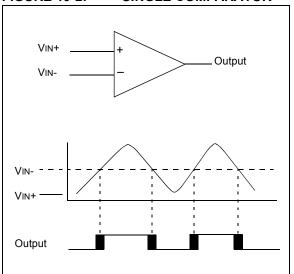


FIGURE 19-2: SINGLE COMPARATOR

19.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same, or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

19.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 20.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM2:CM0 = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

19.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (see Section 26.0 "Electrical Characteristics").

19.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RF2 and RF1 I/O pins. When enabled, multiplexers in the output path of the RF2 and RF1 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 19-3 shows the comparator output block diagram.

The TRISF bits will still function as an output enable/ disable for the RF2 and RF1 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

22.6 Pixel Control

The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Table 22-2 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

22.7 LCD Frame Frequency

The rate at which the COM and SEG outputs changes is called the LCD frame frequency

TABLE 22-4: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =				
Static	Clock Source/(4 x 1 x (LP3:LP0 + 1))				
1/2	Clock Source/(2 x 2 x (LP3:LP0 + 1))				
1/3	Clock Source/(1 x 3 x (LP3:LP0 + 1))				
1/4	Clock Source/(1 x 4 x (LP3:LP0 + 1))				

Note: Clock source is (Fosc/4)/8192, Timer1 Osc/32 or INTRC/32.

TABLE 22-5:APPROXIMATE FRAME
FREQUENCY (IN Hz) USING
Fosc @ 32 MHz,
TIMER1 @ 32.768 kHz OR
INTRC OSCILLATOR

LP3:LP0	Static	1/2	1/3	1/4
1	125	125	167	125
2	83	83	111	83
3	62	62	83	62
4	50	50	67	50
5	42	42	56	42
6	36	36	48	36
7	31	31	42	31

22.8 LCD Waveform Generation

LCD waveform generation is based on the philosophy that the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. The net DC voltage across any pixel should be zero.

The COM signal represents the time slice for each common, while the SEG contains the pixel data.

The pixel signal (COM-SEG) will have no DC component and it can take only one of the two rms values. The higher rms value will create a dark pixel and a lower rms value will create a clear pixel.

As the number of commons increases, the delta between the two rms values decreases. The delta represents the maximum contrast that the display can have.

The LCDs can be driven by two types of waveform: Type-A and Type-B. In Type-A waveform, the phase changes within each common type, whereas in Type-B waveform, the phase changes on each frame boundary. Thus, Type-A waveform maintains 0 VDc over a single frame, whereas Type-B waveform takes two frames.

Note 1:	If Sleep has to be executed with LCD
	Sleep enabled (LCDCON <slpen> is</slpen>
	'1'), then care must be taken to execute
	Sleep only when VDC on all the pixels is
	ʻ0'.

2: When the LCD clock source is (Fosc/4)/8192, if Sleep is executed irrespective of the LCDCON<SLPEN> setting, the LCD goes into Sleep. Thus, take care to see that VDc on all pixels is '0' when Sleep is executed.

Figure 22-4 through Figure 22-14 provide waveforms for static, half-multiplex, one-third-multiplex and quarter-multiplex drives for Type-A and Type-B waveforms.

BTG	Bit Toggle f	BOV	Branch if Overflow
Syntax:	BTG f, b {,a}	Syntax:	BOV n
Operands:	$0 \le f \le 255$	Operands:	$-128 \le n \le 127$
	0 ≤ b < 7 a ∈ [0,1]	Operation:	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC
Operation:	$(\overline{f}\overline{b}) \to f\overline{s}$	Status Affected:	None
Status Affected:	None	Encoding:	1110 0100 nnnn nnnn
Encoding: Description:	0111 bbba ffff fff Bit 'b' in data memory location 'f' is inverted.	Description:	If the Overflow bit is '1', then the program will branch. The 2's complement number '2n' is
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates		two-cycle instruction.
	in Indexed Literal Offset Addressing	Words:	1
	mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and	Cycles:	1(2)
	Bit-Oriented Instructions in Indexed	Q Cycle Activity:	
	Literal Offset Mode" for details.	If Jump:	
Words:	1	Q1	Q2 Q3 Q4
Cycles:	1	Decode	Read literalProcessWrite to PC'n'Data
Q Cycle Activity: Q1	Q2 Q3 Q4	No	No No No
Decode	Read Process Write	operation	operation operation operation
Decoue	register 'f' Data register 'f'	If No Jump:	
		Q1	Q2 Q3 Q4
Example:	BTG PORTC, 4, 0	Decode	Read literal Process No 'n' Data operation
Before Instru PORTC After Instructi PORTC	= 0111 0101 [75h] on:	Example: Before Instruc PC After Instructi If Overfit PC If Overfit PC	HERE BOV Jump ction = address (HERE) on bw = 1; = address (Jump) bw = 0;

ΒZ		Branch if	Zero				
Syntax:		BZ n	BZ n				
Operands:		-128 ≤ n ≤ ′	127				
Operation:			if Zero bit is '1', (PC) + 2 + 2n \rightarrow PC				
Status Affected:		None	None				
Encoding:		1110	0000	nnnn	nnnn		
Description:		will branch.	If the Zero bit is '1', then the program will branch.				
		added to th incremente instruction, PC + 2 + 2	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Word	ls:	1	1				
Cycles:		1(2)	1(2)				
QC	ycle Activity:						
lf Ju	imp:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces Data	s Wr	ite to PC		
	No	No	No		No		
	operation	operation	operatio	on o	peration		
lf No	o Jump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces Data	-	No peration		
			Data	0	Scration		
Example:		HERE	BZ J	ump			
Before Instruct PC After Instruction		= ad	dress (H	ERE)			
	If Zero PC If Zero	= 0;		ump)			
	PC	= ad	dress (H	ERE + :	∠)		

	Subroutir			
Syntax:	CALL k {,s}			
Operands:	$\begin{array}{l} 0 \leq k \leq 104 \\ s \in [0,1] \end{array}$	8575		
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if s = 1,} \\ (W) \rightarrow WS, \\ (STATUS) - \\ (BSR) \rightarrow B \end{array}$):1>; → STATL	JSS,	
Status Affected:	None			
Encoding:				
1st word (k<7:0>)	1110	110s	k ₇ kk	k kkk
2nd word(k<19:8>)	1111	k ₁₉ kkk	kkk.	k kkkk
	respective s STATUSS a update occ 20-bit value CALL is a	and BSR urs (defa e 'k' is loa	S. If 's' ult). Th ded int	= 0, no nen, the to PC<20:1
Words:	2	·	, motru	cuon.
Words: Cycles:	2 2	·	, moti d	
		·	, notra	
Cycles:		Q3		Q4
Cycles: Q Cycle Activity:	2	Q3 Push P stac	C to	
Cycles: Q Cycle Activity: Q1	2 Q2 Read literal	Push P	C to	Q4 Read litera 'k'<19:8>
Cycles: Q Cycle Activity: Q1 Decode	2 Q2 Read literal 'k'<7:0>,	Push Postacl	C to k	Q4 Read litera 'k'<19:8> Write to P
Cycles: Q Cycle Activity: Q1 Decode No operation Example:	2 Q2 Read literal 'k'<7:0>, No operation HERE	Push Postacl	C to k	Q4 Read litera 'k'<19:8> Write to Po No operation
Cycles: Q Cycle Activity: Q1 Decode No operation	2 Q2 Read literal 'k'<7:0>, No operation HERE tion = address	Push Push Push Push Push Push Push Push	C to k ion	Q4 Read litera 'k'<19:8> Write to Po No operation

APPENDIX A: REVISION HISTORY

Revision A (July 2004)

Original data sheet for PIC18F6390/6490/8390/8490 devices.

Revision B (August 2004)

Updated preliminary "electrical characteristics" data.

Revision C (November 2007)

Revised I^2C^{TM} Slave Mode Timing figure. Updated DC Power-Down and Supply Current table and package drawings.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F6390	PIC18F6490	PIC18F8390	PIC18F8490
Number of Pixels the LCD Driver can Drive	128 (4 x 32)	128 (4 x 32)	192 (4 x 48)	192 (4 x 48)
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Flash Program Memory	8 Kbytes	16 Kbytes	8 Kbytes	16 Kbytes
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

TABLE B-1: DEVICE DIFFERENCES

Reset	
MCLR Reset, during Power-Managed Modes	51
MCLR Reset, Normal Operation	51
Power-on Reset (POR)	51
Programmable Brown-out Reset (BOR)	51
Stack Full Reset	51
Stack Underflow Reset	51
Watchdog Timer (WDT) Reset	51
Resets	
RETFIE	326
RETLW	326
RETURN	327
Return Address Stack	
Return Stack Pointer (STKPTR)	67
Revision History	395
RLCF	327
RLNCF	328
RRCF	328
RRNCF	329

S

SCK	157
SDI	157
SDO	157
Serial Clock, SCK	157
Serial Data In (SDI)	
Serial Data Out (SDO)	157
Serial Peripheral Interface. See SPI Mode.	
SETF	329
Slave Select (SS)	
SLEEP	
Sleep	
OSC1 and OSC2 Pin States	39
Software Enabled BOR	
Software Simulator (MPLAB SIM)	
Special Event Trigger. See Compare (CCP Module).	
Special Features of the CPU	281
Special Function Registers	201 74
Map	
SPI Mode (MSSP)	. 1 4 - 1 3
Associated Registers	165
Bus Mode Compatibility	
Effects of a Reset	
Enabling SPI I/O	
Master Mode	
Master/Slave Connection	
Operation	
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Mode	
Slave Select	157
Slave Select Synchronization	
Sleep Operation	
SPI Clock	
Typical Connection	161
<u>SS</u>	157
SSPOV	187
SSPOV Status Flag	187
SSPSTAT Register	
R/W Bit	70, 171
Stack Full/Underflow Resets	
STATUS Register	
SUBFSR	
SUBFWB	
SUBLW	
ODETT	00 1

341
331
332
332

Т

T0CON Register		
PSA Bit		133
TOCS Bit		132
T0PS2:T0PS0 Bits		133
T0SE Bit		132
Table Pointer Operations (table)		88
Table Reads		
TBLRD		
TBLWT		
Time-out in Various Situations (table)		
Timer0		
16-Bit Mode Timer Reads and Writes		
Associated Registers		
Clock Source Edge Select (T0SE Bit)		
Clock Source Select (T0CS Bit)		
Operation		
Overflow Interrupt		133
Prescaler. See Prescaler, Timer0.		
Timer1		
16-Bit Read/Write Mode		
Associated Registers		
Interrupt		
Operation		
Oscillator	135,	137
Layout Considerations		138
Overflow Interrupt		135
Resetting, Using a Special Event Trigger		
Output (CCP)		138
TMR1H Register		
TMR1L Register		
Use as a Real-Time Clock		
Timer2		
Associated Registers		
Interrupt		
Operation		
Output		
PR2 Register		
TMR2 to PR2 Match Interrupt		
•		
Timer3		
16-Bit Read/Write Mode		
Associated Registers		
Operation		
Oscillator		
Overflow Interrupt	143,	145
Special Event Trigger (CCP)		145
TMR3H Register		143
TMR3L Register		143
Timing Diagrams		
A/D Conversion		385
Acknowledge Sequence		190
Asynchronous Reception		
Asynchronous Transmission		
Asynchronous Transmission	,	
(Back-to-Back)	207.	223
Automatic Baud Rate Calculation		
Auto-Wake-up Bit (WUE) During		_00
Normal Operation		210
Auto-Wake-up Bit (WUE) During Sleep		
Baud Rate Generator with Clock Arbitration		
BRG Overflow Sequence	•••••	200

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara, CA Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

10/05/07