

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8490t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for program memory are rated to last for approximately a thousand erase/write cycles. Data retention without refresh is conservatively estimated to be greater than 100 years.
- Extended Instruction Set: The PIC18F6390/6490/8390/8490 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages such as C.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include Automatic Baud Rate Detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world, without using an external crystal (or its accompanying power requirement).
- 10-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduces code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing a time-out range from 4 ms to over 10 minutes that is stable across operating voltage and temperature.

1.3 Details on Individual Family Members

Devices in the PIC18F6390/6490/8390/8490 family are available in 64-pin (PIC18F6X90) and 80-pin (PIC18F8X90) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2, respectively.

The devices are differentiated from each other in three ways:

- 1. I/O Ports: 7 bidirectional ports on 64-pin devices; 9 bidirectional ports on 80-pin devices.
- LCD Pixels: 128 (32 SEGs x 4 COMs) pixels can be driven by 64-pin devices; 192 (48 SEGs x 4 COMs) pixels can be driven by 80-pin devices.
- 3. Flash Program Memory: 8 Kbytes for PIC18FX390 devices; 16 Kbytes for PIC18FX490.

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F6390/6490/8390/8490 family are available as both standard and low-voltage devices. Standard devices with Flash memory, designated with an "F" in the part number (such as PIC18F6390), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6490), function over an extended VDD range of 2.0V to 5.5V.

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2									
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OSCFIF	CMIF			BCLIF	HLVDIF	TMR3IF	CCP2IF		
bit 7							bit (
l ogond:									
Legenu. R = Readabl	le hit	W = Writable I	hit	I I = I Inimplen	nented hit rea	d as '0'			
-n = Value ai		'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	nwn		
					arco		IOWIT		
bit 7	OSCFIF: Os	scillator Fail Inter	rupt Flag bit						
	1 = Device	oscillator failed,	clock input ha	s changed to IN	ITOSC (must l	be cleared in so	ftware)		
	0 = Device	clock operating		C C			,		
bit 6	CMIF: Com	parator Interrupt	Flag bit						
	1 = Compa	rator input has ch	nanged (must	be cleared in so	oftware)				
	0 = Compa	0 = Comparator input has not changed							
bit 5-4	Unimpleme	nted: Read as '0)'						
bit 3	BCLIF: Bus	Collision Interru	ot Flag bit						
	1 = A bus c	ollision occurred	(must be clea	red in software)				
	0 = No bus	0 = No bus collision occurred							
bit 2	HLVDIF: Hi	gh/Low-Voltage E	Detect Interrup	t Flag bit					
	1 = A low-v	1 = A low-voltage condition occurred (must be cleared in software)							
		U = The device voltage is above the Low-Voltage Detect trip point							
Dit 1		/IR3 Overflow Inte	errupt Flag bit		>				
	1 = 1MR3 r 0 = TMR3 r	egister overnowe	erflow	eared in soπwai	re)				
bit 0	CCP2IF: CC	CP2 Interrupt Flag	a bit						
	Capture mo	de:	y ~						
	1 = A TMR	1/TMR3 register	capture occur	red (must be cle	eared in softwa	are)			
	0 = No TMF	0 = No TMR1/TMR3 register capture occurred							
	Compare m	<u>ode:</u>							
	1 = A TMR 0 = No TMF	1/TMR3 register (R1/TMR3 register	compare mato r compare ma	h occurred (mu tch occurred	ist be cleared	in software)			
	PWM mode	:							
	Unused in the	nis mode.							

8.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 8-13: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	 Enable priority levels on interrupts
	 Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: Software BOR Enable bit
	For details of bit operation and Reset state, see Register 4-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 4-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 4-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 4-1.
bit 1	POR: Power-on Reset Status bit
	For details of bit operation, see Register 4-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 4-1.

Pin Name	Function	TRIS Setting	I/O	Buffer	Description
RA0/AN0	RA0	0	0	DIG	LATA<0> data output. Not affected by analog pin setting.
		1	I	TTL	PORTA<0> data input. Reads '0' on POR.
	AN0	1	I	ANA	A/D input channel 0. Default configuration on POR.
RA1/AN1	RA1	0	0	DIG	LATA<1> data output. Not affected by analog pin setting.
		1	I	TTL	PORTA<1> data input. Reads '0' on POR.
	AN1	1	I	ANA	A/D input channel 1. Default configuration on POR.
RA2/AN2/VREF-/ RA2 0 SEG16 0		0	DIG	LATA<2> data output. Not affected by analog pin setting; disabled when LCD segment enabled.	
		1	I	TTL	PORTA<2> data input. Reads '0' on POR.
	AN2	1	I	ANA	A/D input channel 2. Default configuration on POR.
	VREF-	1	I	ANA	A/D low reference voltage input.
	SEG16	х	0	ANA	Segment 16 analog output for LCD.
RA3/AN3/VREF+/ SEG17	RA3	0	0	DIG	LATA<3> data output. Output is unaffected by analog pin setting; disabled when LCD segment enabled.
		1	I	TTL	PORTA<3> data input. Reads '0' on POR.
	AN3	1	I	ANA	A/D input channel 3. Default configuration on POR.
	VREF+	1	I	ANA	A/D high reference voltage input.
	SEG17	х	0	ANA	Segment 17 analog output for LCD. Disables all other digital outputs.
RA4/T0CKI/	RA4	0	0	DIG	LATA<4> data output; disabled when LCD segment enabled.
SEG14		1	I	ST	PORTA<4> data input.
	TOCKI		I	ST	Timer0 clock input.
	SEG14	х	0	ANA	Segment 14 analog output for LCD.
RA5/AN4/ HLVDIN/SEG15	RA5	0	0	DIG	LATA<5> data output. Not affected by analog pin setting; disabled when LCD segment enabled.
		1	I	TTL	PORTA<5> data input. Reads '0' on POR.
	AN4	1	I	ANA	A/D input channel 5. Default configuration on POR.
	HLVDIN	1	I	ANA	High/Low-Voltage Detect external trip point input.
	SEG15	х	0	ANA	Segment 15 analog output for LCD.
OSC2/CLKO/RA6	OSC2	х	0	ANA	Main oscillator feedback output connection (XT, HS and LP modes).
	CLKO	х	0	DIG	System cycle clock output (Fosc/4) in all oscillator modes except RCIO, INTIO2 and ECIO.
	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.
		1	I	TTL	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.
OSC1/CLKI/RA7	OSC1	х	I	ANA	Main oscillator input connection, all modes except INTIO.
	CLKI	х	I	ANA	Main clock input connection, all modes except INTIO.
	RA7	0	0	DIG	LATA<7> data output. Available only in INTIO modes; otherwise reads as '0'.
		1	I	TTL	PORTA<7> data input. Available only in INTIO modes; otherwise reads as '0'.

TABLE 9-1:PORTA FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

9.4 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins a	re					
	configured as digital inputs.						

PORTD is also multiplexed with LCD segment drives controlled by the LCDSE0 register. I/O port functions are only available when the segments are disabled.

EXAMP	LE 9-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by ; clearing output . data latches
CLRF	LATD	; Alternate method ; to clear output
MOVLW	OCFh	; data latenes ; Value used to ; initialize data
MOVWF	TRISD	; direction ; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs

TABLE 9-7: POR	TD FUNCTIONS
----------------	--------------

IABLE 01.	IONID				
Pin Name	Function	TRIS Setting	I/O	Buffer	Description
RD0/SEG0	RD0	0	0	DIG	LATD<0> data output; disabled when LCD segment enabled.
		1	I	ST	PORTD<0> data input.
	SEG0	х	0	ANA	Segment 0 analog output for LCD.
RD1/SEG1	RD1 0 O DIG LATD<1> data output; disabled when LCD seg		LATD<1> data output; disabled when LCD segment enabled.		
		1	I	ST	PORTD<1> data input.
	SEG1	x	0	ANA	Segment 1 analog output for LCD.
RD2/SEG2	RD2	0	0	DIG	LATD<2> data output; disabled when LCD segment enabled.
		1	I	ST	PORTD<2> data input.
	SEG2	х	0	ANA	Segment 2 analog output for LCD.
RD3/SEG3	RD3	0	0	DIG	LATD<3> data output; disabled when LCD segment enabled.
_		1	I	ST	PORTD<3> data input.
	SEG3	х	0	ANA	Segment 3 analog output for LCD.
RD4/SEG4	RD4	0	0	DIG	LATD<4> data output; disabled when LCD segment enabled.
		1	I	ST	PORTD<4> data input.
	SEG4	х	0	ANA	Segment 4 analog output for LCD module.
RD5/SEG5	RD5	0	0	DIG	LATD<5> data output; disabled when LCD segment enabled.
		1	Ι	ST	PORTD<5> data input.
	SEG5	х	0	ANA	Segment 5 analog output for LCD.
RD6/SEG6	RD6	0	0	DIG	LATD<6> data output; disabled when LCD segment enabled.
		1	Ι	ST	PORTD<6> data input.
	SEG6	х	0	ANA	Segment 6 analog output for LCD.
RD7/SEG7	RD7	0	0	DIG	LATD<7> data output; disabled when LCD segment enabled.
		1	Ι	ST	PORTD<7> data input.
	SEG7	х	0	ANA	Segment 7 analog output for LCD.

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,

 $\rm x$ = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 9-13: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TRISF	PORTF Da	PORTF Data Direction Register							62
PORTF	Read POR	TF Data Lat	ch/Write P	ORTF Data	a Latch				62
LATF	LATF Data	LATF Data Output Register							62
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	61
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	61
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	61
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	64
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	64

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTF.

15.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The MSSP consists of a Transmit/Receive Shift register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 15-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

15.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 15-23).

15.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

15.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-24).

15.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 15-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	—						_			_			
1.2	—	_	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_		

TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES

			S	YNC = 0, E	BRGH = (o, BRG16 =	0			
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51	
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12	
2.4	2.404	0.16	25	2.403	-0.16	12	—	—	—	
9.6	8.929	-6.99	6	_	_	_	—	_	_	
19.2	20.833	8.51	2	—		_	—		—	
57.6	62.500	8.51	0	_	_	_	—	_	_	
115.2	62.500	-45.75	0	—		_	—		—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	—		_		_	_	_	_		—	_	_	
1.2	—	—	—	—	—	—	—	—	—	—	—	—	
2.4	—	_	_	_	_	_	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

			S	YNC = 0, E	BRGH = 1	L, BRG16 =	0			
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3		_		_		_	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9615	-0.16	12	—	—	—	
19.2	19.231	0.16	12	—	—	—	—		—	
57.6	62.500	8.51	3	—			—	—	—	
115.2	125.000	8.51	1	—		_	—	_	—	

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Foso	: = 40.00	0 MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fos	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665	
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415	
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207	
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4		_	_	

TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

			S	YNC = 0, E	BRGH = (), BRG16 =	1			
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	—	_	—	
19.2	19.231	0.16	12	_	_	_	—	_	_	
57.6	62.500	8.51	3	—		_	—		—	
115.2	125.000	8.51	1	—	—		—	—	_	

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fos	c = 4.000) MHz	Fos	c = 2.000) MHz	Fosc = 1.000 MHz						
(K)	(K) Actual % SPBRG Rate (K) % value Error (decimal		SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832				
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207				
2.4	2.404	0.16	415	2.403	-0.16	207	2403	-0.16	103				
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25				
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12				
57.6	58.824	2.12	16	55.555	3.55	8	—	—	—				
115.2	111.111	-3.55	8	—	_	_	—	_	—				

© 2007 Microchip Technology Inc.

18.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 12 inputs for the PIC18F6X90/8X90 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 18-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 18-2, configures the functions of the port pins. The ADCON2 register, shown in Register 18-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 18-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 7-6	Unimplement	ted: Read as '	0,				
bit 5-2	CHS3:CHS0:	Analog Chann	el Select bits				
	0000 = Chanr	nel 0 (AN0)					
	0001 = Chanr	nel 1 (AN1)					
	0010 = Chanr						
	0011 - Chan	101 3 (AN3) 101 4 (AN4)					
	0100 = Channel 0101 = Channel 0100	nel 5 (AN5)					
	0110 = Chan	nel 6 (AN6)					
	0111 = Chanr	nel 7 (AN7)					
	1000 = Chan r	nel 8 (AN8)					
	1001 = Chanr	nel 9 (AN9)					
	1010 = Chanr	nel 10 (AN10)					
	1011 = Chan r	nel 11 (AN11)					
	1100 = Unim	plemented ⁽¹⁾					
	1101 = Unim						
	1110 = Unimp	blemented ⁽¹⁾					
			_				
bit 1	GO/DONE: A	D Conversion	Status bit				
	When ADON	<u>= 1:</u>					
	1 = A/D conv	ersion in progr	ess				
h # 0		h hit					
		יוו µוע איז איז איז איז איז אונע	an ablad				
	$\perp = A/D \text{ conve}$	erter module is	disabled				
			uisableu				

Note 1: Performing a conversion on unimplemented channels will return a floating input measurement.

18.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 18-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding) capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 18-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 18-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 18-1: ACQUISITION TIME

TACQ =	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient	l
=	TAMP + TC + TCOFF	

EQUATION 18-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/2048)

EQUATION 18-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (50°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25°C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 5.03 μs
TACQ	=	0.2 μs + 5 μs + 1.2 μs 6.4 μs

Mnemonic, Operands				16-Bit Instruction Word				Status	
		Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS	L	•				•	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

INCF	SZ	Incremen	Increment f, Skip if 0					
Syntax:		INCFSZ	INCFSZ f {,d {,a}}					
Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Opera	ation:	(f) + 1 \rightarrow d skip if resu	est, It = 0					
Status	s Affected:	None						
Enco	ding:	0011	11da	fff	f	ffff		
Desci	ription:	The conter incremente placed in V placed bac If the result which is all and a NOP it a two-cyc If 'a' is '0', f GPR bank. If 'a' is '0' a set is enab in Indexed mode when Section 24 Bit-Oriente Literal Off	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Word	e.	1	Set mode		actum	0.		
Cycle	o.	1(2)						
Cycle		Note: 3	cycles if s a 2-word	kip ar instri	nd foll uction	owed		
Q Cy	cle Activity:							
F	Q1	Q2	Q3			Q4		
	Decode	Read	Proces	SS	Wr	ite to		
lf oki	n .	register T	Data		dest	Ination		
11 511	μ. Ο1	02	03			∩4		
Г	No	No	No			No		
	operation	operation	operati	on	ope	ration		
lf ski	p and followe	d by 2-word ir	struction:					
г	Q1	Q2	Q3			Q4		
	No	No	No	o n	000	No		
Ē	No	No	operati	011	ope	No		
	operation	operation	operati	on	ope	ration		
<u>Exam</u>	<u>iple:</u>	HERE NZERO ZERO	HERE INCFSZ CNT, 1, 0 NZERO : ZERO :					
E	Before Instruc PC	tion = Addres	S (HERE))				
,	CNT If CNT PC If CNT	= CNT + = 0; = Addres ≠ 0;	1 S (ZERO))				

INFS	SNZ	Increm	Increment f, Skip if not 0				
Synta	ax:	INFSNZ	∠ f {,d {,a}}				
Oper	ands:	0 ≤ f ≤ 2 d ∈ [0,1 a ∈ [0,1	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Oper	ation:	(f) + 1 – skip if re	→ dest, esult ≠ 0				
Statu	is Affected:	None					
Enco	oding:	0100	10da ff	ff ffff			
Desc	ription:	The cor increme placed i placed I If the re	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).				
		instructi discarde instead, instructi	ion which is alread ed and a NOP is e. , making it a two-c ion.	dy fetched is xecuted cycle			
		If 'a' is ' If 'a' is ' GPR ba	0', the Access Ba 1', the BSR is use ank.	nk is selected. d to select the			
		If 'a' is ' set is er in Index mode w Section Bit-Orie	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
		Literal	Offset Mode" for	details.			
Word	ls:	1					
Cycle	es:	1(2) Note:	3 cycles if skip a by a 2-word insti	nd followed ruction.			
QC		02	03	04			
	Decode	Read	Process	Write to			
		register '	f' Data	destination			
lf sk	ip:						
	Q1	Q2	Q3	Q4			
	No	No	No	No			
lfek	in and followe	d by 2-wor	d instruction:	operation			
11 31	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operatio	n operation	operation			
	No	No	No	No			
	operation	operatio	n operation	operation			
<u>Exan</u>	nple:	HERE ZERO NZERO	HERE INFSNZ REG, 1, 0 ZERO NZERO				
	Before Instruc	tion					
	PC After Instruction	= Add	IESS (HERE)				
	REG	= REC	G + 1				
	If REG PC	≠ 0; = Add	ress (NZERO)				
	lf REG PC	= 0; = Add	ress (ZERO)				

XORW	/F	Exclusive	Exclusive OR W with f				
Syntax		XORWF	f {,d {,a}}				
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operati	ion:	(W) .XOR.	(f) \rightarrow dest				
Status	Affected:	N, Z					
Encodi	ng:	0001	10da f	fff	ffff		
Descrip	otion:	Exclusive (register 'f'. in W. If 'd' i in the regis If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode whee Section 24 Bit-Orient Off	DR the conte If 'd' is '0', the s '1', the resu ster 'f' (defau the Access E the BSR is us and the exter led, this instr Literal Offse never $f \le 95$ - 1.2.3 "Byte-C content of the content b (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ents of e resul ult is stu- lt). Bank is sed to nded in ruction t Addre (5Fh). Driente cons in	W with t is stored ored back selected. select the struction operates essing See ed and Indexed		
Words [.]		1					
Cycles		1					
Q Cvc	le Activity:	·					
,	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Process Data	۷ des	Vrite to stination		
Examp	le:	XORWF	REG, 1, 0				
Be	efore Instruc REG W ter Instructic REG W	tion = AFh = B5h on = 1Ah = B5h	, _, _				

26.2 DC Characteristics: Power-Down and Supply Current PIC18F6390/6490/8390/8490 (Industrial) PIC18LF6390/6490/8390/8490 (Industrial) (Continued)

PIC18LF6390/6490/8390/8490 (Industrial)			ard Ope	rating C	Conditions (un -40°C ≤	less otherwise TA ≤ +85°C for i	e stated) ndustrial	
PIC18F6390/6490/8390/8490 (Industrial)			ard Ope	rating C	Conditions (un -40°C ≤	less otherwise TA ≤ +85°C for i	e stated) ndustrial	
Param Device			Max	Units	Conditions			
	Supply Current (IDD) ⁽²⁾							
	All devices	7.5	16	mA	-40°C		Fosc = 4 MHz.	
		7.4	15	mA	+25°C	VDD = 4.2V	16 MHz internal (PRI_RUN HS+PLL)	
		7.3	14	mA	+85°C			
	All devices	10	21	mA	-40°C		Fosc = 4 MHz, 16 MHz internal	
		10	20	mA	+25°C	VDD = 5.0V		
		9.7	19	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	17	35	mA	-40°C		Fosc = 10 MHz,	
		17	35	mA	+25°C	VDD = 4.2V	40 MHz internal	
		17	35	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	23	40	mA	-40°C		Fosc = 10 MHz,	
		23	40	mA	+25°C	VDD = 5.0V	40 MHz internal	
		23	40	mA	+85°C		(PRI_RUN HS+PLL)	

Legend: Shading of rows is to assist in readability of the table.

- **Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
 - 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Low-power Timer1 oscillator selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

Top-of-Stack Access	
TSTFSZ	
Two-Speed Start-up	
Two-Word Instructions	
Example Cases	70
TXSTA1 Register	
BRGH Bit	201
TXSTA2 Register	
BRGH Bit	
v	
Voltage Reference Specifications	

W

Watchdog Timer (WDT)	
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	. 185, 186, 187, 190
WCOL Status Flag	. 185, 186, 187, 190
WWW Address	
WWW, On-Line Support	5
x	
XORI W	335
XORWF	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com