

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	
	Not For New Designs
Core Processor	Coldfire V3
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	EBI/EMI, I ² C, SPI, SSI, UART/USART, USB, USB OTG
Peripherals	DMA, LCD, PWM, WDT
Number of I/O	94
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	<u>.</u>
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 3.6V
Data Converters	
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5327cvm240

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF532x Family Comparison

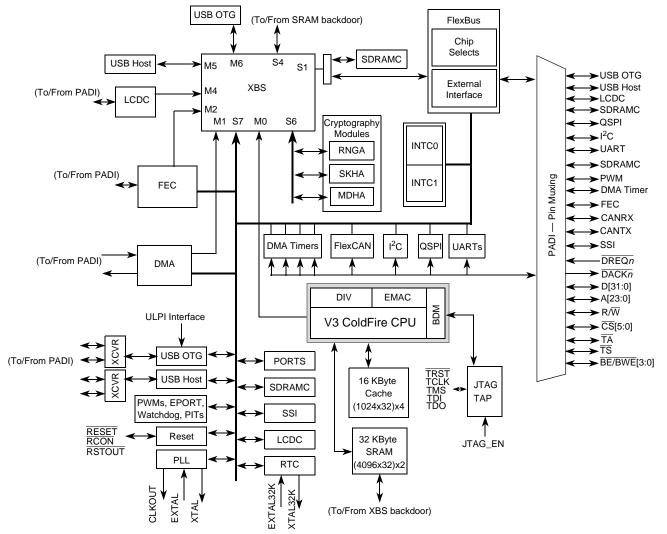


Figure 1. MCF5329 Block Diagram

1 MCF532x Family Comparison

The following table compares the various device derivatives available within the MCF532x family.

Table 1. MCF532x Family Configurations

Module	MCF5327	MCF5328	MCF53281	MCF5329		
ColdFire Version 3 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•		
Core (System) Clock	up to 240 MHz					
Peripheral and External Bus Clock (Core clock ÷ 3)	up to 80 MHz					
Performance (Dhrystone/2.1 MIPS)		up to	211			
Unified Cache	16 Kbytes					
Static RAM (SRAM)	32 Kbytes					

3 Hardware Design Considerations

3.1 PLL Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for PLL analog V_{DD} pins. The filter shown in Figure 2 should be connected between the board V_{DD} and the PLLV_{DD} pins. The resistor and capacitors should be placed as close to the dedicated PLLV_{DD} pin as possible.

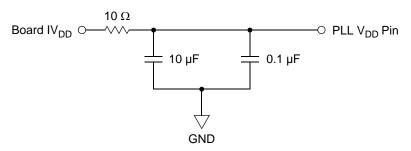


Figure 2. System PLL V_{DD} Power Filter

3.2 USB Power Filtering

To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be connected between the board EV_{DD} or IV_{DD} and each of the USBV_{DD} pins. The resistor and capacitors should be placed as close to the dedicated USBV_{DD} pin as possible.

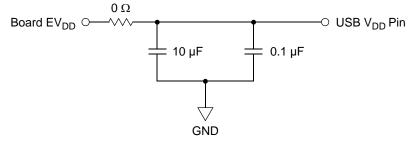


Figure 3. USB V_{DD} Power Filter

NOTE

In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.

3.3 Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 3.3V) and EV_{DD} are specified relative to IV_{DD}.

3.3.1 Power Up Sequence

If EV_{DD}/SDV_{DD} are powered up with IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must powered up. IV_{DD} should not lead the EV_{DD} , SDV_{DD} , or $PLLV_{DD}$ by more than 0.4 V during power ramp-up or there is

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	Voltage Domain	MCF5327 196 MAPBGA	MCF5328 256 MAPBGA	MCF53281 MCF5329 256 MAPBGA			
USB Host & USB On-the-Go											
USBOTG_M	_	_	_	I/O	USB VDD	G12	L15	L15			
USBOTG_P	_	_	_	I/O	USB VDD	H13	L16	L16			
USBHOST_M	—	_	_	I/O	USB VDD	K13	M15	M15			
USBHOST_P	—	_	_	I/O	USB VDD	J12	M16	M16			
		FlexCAN (MCF53281 & I	MCF5	329 only)					
		o not have dedicat or LCD_D16 for C	ANRX and I20								
			PWM					•			
PWM7	PPWM7	_	—	I/O	EVDD	_	H13	H13			
PWM5	PPWM5		—	I/O	EVDD		H14	H14			
PWM3	PPWM3	DT3OUT	DT3IN	I/O	EVDD	H14	H15	H15			
PWM1	PPWM1	DT2OUT	DT2IN	I/O	EVDD	J14	H16	H16			
			SSI								
SSI_MCLK	PSSI4		—	I/O	EVDD	—	G4	G4			
SSI_BCLK	PSSI3	U2CTS	PWM7	I/O	EVDD	_	F4	F4			
SSI_FS	PSSI2	U2RTS	PWM5	I/O	EVDD	_	G3	G3			
SSI_RXD ²	PSSI1	U2RXD	CANRX	I	EVDD	_	—	G2			
SSI_TXD ²	PSSI0	U2TXD	CANTX	0	EVDD	_	—	G1			
SSI_RXD ²	PSSI1	U2RXD	—	I	EVDD		G2	—			
SSI_TXD ²	PSSI0	U2TXD	—	0	EVDD		G1	—			
			l ² C		•						
I2C_SCL ²	PFECI2C1	CANTX	U2TXD	I/O	EVDD	—	—	F3			
I2C_SDA ²	PFECI2C0	CANRX	U2RXD	I/O	EVDD	—	—	F2			
I2C_SCL ²	PFECI2C1	_	U2TXD	I/O	EVDD	E3	F3	_			
I2C_SDA ²	PFECI2C0		U2RXD	I/O	EVDD	E4	F2	—			
			DMA								
DACK[1:0]	and DREQ[1:0] TS for DAC	do not have dedi K0, DT0IN for DR	cated bond pa EQ0, DT1IN f	ids. Pl or DAC	ease refe CK1, and	er to the followi	ing pins for mu Q1.	ıxing:			

Table 3. MCF5327/8/9 Signal Information and Muxing (continued)

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	Voltage Domain	MCF5327 196 MAPBGA	MCF5328 256 MAPBGA	MCF53281 MCF5329 256 MAPBGA		
QSPI										
QSPI_CS2	PQSPI5	U2RTS	_	0	EVDD	P10	T12	T12		
QSPI_CS1	PQSPI4	PWM7	USBOTG_ PU_EN	0	EVDD	L11	T13	T13		
QSPI_CS0	PQSPI3	PWM5	—	0	EVDD	—	P11	P11		
QSPI_CLK	PQSPI2	I2C_SCL ²	—	0	EVDD	N10	R12	R12		
QSPI_DIN	PQSPI1	U2CTS	—	I	EVDD	L10	N12	N12		
QSPI_DOUT	PQSPI0	I2C_SDA	_	0	EVDD	M10	P12	P12		
			UARTs							
U1CTS	PUARTL7	SSI_BCLK	—	Ι	EVDD	C9	D11	D11		
U1RTS	PUARTL6	SSI_FS	—	0	EVDD	D9	E10	E10		
U1TXD	PUARTL5	SSI_TXD ²	—	0	EVDD	A9	E11	E11		
U1RXD	PUARTL4	SSI_RXD ²	—	I	EVDD	A10	E12	E12		
UOCTS	PUARTL3	_	—	I	EVDD	P13	R15	R15		
UORTS	PUARTL2	_	—	0	EVDD	N12	T15	T15		
U0TXD	PUARTL1	_	_	0	EVDD	P12	T14	T14		
U0RXD	PUARTL0	_	—	I	EVDD	P11	R14	R14		
Note: The UART2 s	signals are multi	plexed on the QS	PI, SSI, DMA	Timers	s, and 120	C pins.				
			DMA Time	rs						
DT3IN	PTIMER3	DT3OUT	U2RXD	Ι	EVDD	C1	F1	F1		
DT2IN	PTIMER2	DT2OUT	U2TXD	I	EVDD	B1	E1	E1		
DT1IN	PTIMER1	DT1OUT	DACK1	I	EVDD	A1	E2	E2		
DT0IN	PTIMER0	DTOOUT	DREQ0 ²	I	EVDD	C2	E3	E3		
			BDM/JTAG	6	•					
JTAG_EN ⁷	_	_	—	Ι	EVDD	L12	M13	M13		
DSCLK	—	TRST ²	—	Ι	EVDD	N14	P15	P15		
PSTCLK	—	TCLK ²	—	0	EVDD	L7	Т9	Т9		
BKPT	—	TMS ²	—	I	EVDD	M12	R16	R16		
DSI	—	TDI ²	—	Ι	EVDD	K12	N14	N14		
DSO	—	TDO	—	0	EVDD	N9	N11	N11		
DDATA[3:0]	—	_	_	0	EVDD	N7, P7, L8, M8	N9, P9, N10, P10	N9, P9, N10, P10		

Table 3. MCF5327/8/9	9 Signal Information	and Muxing (continued)

4.3 Pinout—196 MAPBGA

The pinout for the MCF5327CVM240 package is shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	DT1IN	LCD_ D4	LCD_ D5	LCD_ D9	LCD_ D13	LCD_ D17	LCD_FLM/ VSYNC	LCD_LP/ HSYNC	U1TXD	U1RXD	FB_CS3	A20	A16	A15	A
в	D2TIN	LCD_ D0	LCD_ D6	LCD_ D8	LCD_ D12	LCD_ D16	LCD_CON TRAST	LCD_ LSCLK	LCD_ SPL_SPR	FB_CS0	A23	A21	A17	A14	в
С	DT3IN	DT0IN	LCD_ D2	LCD_ D7	LCD_ D11	LCD_ D15	LCD_ CLS	LCD_ PS	U1CTS	FB_CS1	A22	A18	A13	A12	С
D	SD_WE	TS	LCD_ D1	LCD_ D3	LCD_ D10	LCD_ D14	LCD_ ACD/OE	LCD_ REV	U1RTS	FB_CS2	A19	A11	A10	A9	D
E	SD_CKE	SD_CS0	I2C_SCL	I2C_SDA	IVDD	EVDD	EVDD	SD_VDD	SD_VDD	TEST	A8	A7	A6	A5	Е
F	D12	D13	D14	D15	EVDD	EVDD	EVDD	SD_VDD	SD_VDD	SD_VDD	A4	A3	A2	A1	F
G	BE/ BWE1	D8	D9	D10	D11	VSS	VSS	VSS	VSS	USB OTG_VDD	DRAM SEL	USB OTG_M	TA	A0	G
н	D29	D30	D31	BE/ BWE3	SD_ DQS3	VSS	VSS	VSS	EVDD	PLL_ VDD	PLL_ VSS	USBHOST _VSS	USB OTG_P	PWM3	н
J	D25	D26	D27	D28	SD_VDD	SD_VDD	SD_VDD	EVDD	EVDD	IVDD	RESET	USB HOST_P	IRQ7	PWM1	J
к	D24	SD_CLK	SD_CLK	SD_DR_ DQS	IVDD	SD_ DQS2	SD_VDD	EVDD	EVDD	IVDD	EVDD	TDI/DSI	USB HOST_M	XTAL	к
L	FB_CLK	SD_A10	SD_CAS	D23	D7	D1	TCLK/ PSTCLK	DDATA1	PST1	QSPI_ DIN	QSPI_ CS1	JTAG_ EN	ĪRQ4	EXTAL	L
М	SD_RAS	D22	D21	BE/ BWE0	D4	D0	RCON	DDATA0	PST0	QSPI_ DOUT	EXTAL 32K	TMS/ BKPT	IRQ2	IRQ3	М
N	D20	D19	D16	D6	D3	R/W	DDATA3	PST3	TDO/ DSO	QSPI_ CLK	XTAL 32K	UORTS	IRQ1	TRST/ DSCLK	Ν
Ρ	D18	D17	BE/ BWE2	D5	D2	ŌĒ	DDATA2	PST2	VSS	QSPI_ CS2	UORXD	U0TXD	UOCTS	RSTOUT	Ρ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 5. MCF5327CVM240 Pinout Top View (196 MAPBGA)

5 Electrical Characteristics

This document contains electrical specification tables and reference timing diagrams for the MCF5329 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5329.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

5.2 Thermal Characteristics

Characteristic	Symbol	256MBGA	196MBGA	Unit	
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	37 ^{1,2}	42 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	34 ^{1,2}	38 ^{1,2}	°C/W
Junction to board	—	θ_{JB}	27 ³	32 ³	°C/W
Junction to case	—	θ_{JC}	16 ⁴	19 ⁴	°C/W
Junction to top of package	—	Ψ_{jt}	4 ^{1,5}	5 ^{1,5}	°C/W
Maximum operating junction temperature	—	Τj	105	105	°C

Table 5. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 Eqn. 1

Where:

T_A	= Ambient Temperature, °C
Q_{JMA}	= Package Thermal Resistance, Junction-to-Ambient, °C/W
P_{D}	$= P_{INT} + P_{I/O}$
P_{INT}	= I_{DD} $ imes$ IV _{DD} , Watts - Chip Internal Power
P _{I/O}	= Power Dissipation on Input and Output Pins - User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 6.	ESD	Protection	Characteristics ^{1, 2}
----------	-----	------------	---------------------------------

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	IV _{DD}	1.4	1.6	V
PLL Supply Voltage	PLLV _{DD}	1.4	1.6	V
CMOS Pad Supply Voltage	EV _{DD}	3.0	3.6	V
SDRAM and FlexBus Supply Voltage Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{DD}	1.70 2.25 3.0	1.95 2.75 3.6	V
USB Supply Voltage	USBV _{DD}	3.0	3.6	V
CMOS Input High Voltage	EVIH	2	EV _{DD} + 0.3	V
CMOS Input Low Voltage	EV _{IL}	V _{SS} – 0.3	0.8	V
CMOS Output High Voltage $I_{OH} = -5.0 \text{ mA}$	EV _{OH}	EV _{DD -} 0.4	—	V
CMOS Output Low Voltage I _{OL} = 5.0 mA	EV _{OL}	—	0.4	V
SDRAM and FlexBus Input High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{IH}	1.35 1.7 2	$\begin{array}{c} \text{SDV}_{\text{DD}} + 0.3\\ \text{SDV}_{\text{DD}} + 0.3\\ \text{SDV}_{\text{DD}} + 0.3 \end{array}$	V
SDRAM and FlexBus Input Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{IL}	V _{SS} - 0.3 V _{SS} - 0.3 V _{SS} - 0.3	0.45 0.8 0.8	V

Table 7. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
SDRAM and FlexBus Output High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) I _{OH} = -5.0 mA for all modes	SDV _{OH}	SDV _{DD} - 0.35 2.1 2.4	_ _ _	V
SDRAM and FlexBus Output Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) I _{OL} = 5.0 mA for all modes	SDV _{OL}	 	0.3 0.3 0.5	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	1.0	μΑ
Weak Internal Pull-Up Device Current, tested at V _{IL} Max. ¹	I _{APU}	-10	-130	μΑ
Input Capacitance ² All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

Table 7. DC Electrical Specifications (continued)

1

Refer to the signals section for pins having weak internal pull-up devices. This parameter is characterized before qualification rather than 100% tested. 2

Oscillator and PLL Electrical Characteristics 5.5

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	12 12	25 ¹ 40 ¹	MHz MHz
2	Core frequency CLKOUT Frequency ²	f _{sys} f _{sys/3}	488 x 10 ⁻⁶ 163 x 10 ⁻⁶	240 80	MHz MHz
3	Crystal Start-up Time ^{3, 4}	t _{cst}	—	10	ms
4	EXTAL Input High Voltage Crystal Mode ⁵ All other modes (External, Limp)	V _{IHEXT} V _{IHEXT}	V _{XTAL} + 0.4 E _{VDD} /2 + 0.4	_	V V
5	EXTAL Input Low Voltage Crystal Mode ⁵ All other modes (External, Limp)	V _{ILEXT} V _{ILEXT}	_	V _{XTAL} – 0.4 E _{VDD} /2 – 0.4	V V
7	PLL Lock Time ^{3, 6}	t _{ipli}	_	50000	CLKIN
8	Duty Cycle of reference ³	t _{dc}	40	60	%
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}		1.5	pF
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}		1.5	pF

Table 8. PLL Electrical Characteristics

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
12	Crystal capacitive load	CL		See crystal spec	
13	Discrete load capacitance for XTAL	C _{L_XTAL}		2*C _L – C _{S_XTAL} – C _{PCB_XTAL} 7	pF
14	Discrete load capacitance for EXTAL	C _{L_EXTAL}		2*C _L C _{S_EXTAL} - C _{PCB_EXTAL} ⁷	pF
17	CLKOUT Period Jitter, ^{3, 4, 7, 8, 9} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}		10 TBD	% f _{sys/3} % f _{sys/3}
18	Frequency Modulation Range Limit ^{3, 10, 11} (f _{sys} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/3}
19	VCO Frequency. f _{vco} = (f _{ref *} PFD)/4	f _{vco}	350	540	MHz

Table 8. PLL Electrical Characteristics (continued)

¹ The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.

² All internal registers retain data at 0 Hz.

³ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

⁵ This parameter is guaranteed by design rather than 100% tested.

⁶ This specification is the PLL lock time only and does not include oscillator start-up time.

 7 $\,C_{PCB}\,_{EXTAL}$ and C_{PCB}_{XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

⁹ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.

¹⁰ Modulation percentage applies over an interval of 10 μ s, or equivalently the modulation rate is 100 KHz.

¹¹ Modulation range determined by hardware design.

5.6 External Interface Timing Characteristics

Table 9 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.

All other timing relationships can be derived from these values. Timings listed in Table 9 are shown in Figure 7 and Figure 8.

Num	Characteristic	Symbol	Min	Max	Unit
DD8	Data and Data Mask Output Hold (DQS>DQ) Relative to DQS (DDR Write Mode) ⁶	t _{DQDMI}	1.0	_	ns
DD9	Input Data Skew Relative to DQS (Input Setup) ⁷	t _{DVDQ}	—	1	ns
DD10	Input Data Hold Relative to DQS ⁸	t _{DIDQ}	0.25 × SD_CLK + 0.5ns	_	ns
DD11	DQS falling edge from SDCLK rising (output hold time)	t _{DQLSDCH}	0.5	—	ns
DD12	DQS input read preamble width	t _{DQRPRE}	0.9	1.1	SD_CLK
DD13	DQS input read postamble width	t _{DQRPST}	0.4	0.6	SD_CLK
DD14	DQS output write preamble width	t _{DQWPRE}	0.25		SD_CLK
DD15	DQS output write postamble width	t _{DQWPST}	0.4	0.6	SD_CLK

Table 11. DDR Timing Specifications (continued)

¹ SD_CLK is one SDRAM clock in (ns).

- ² Pulse width high plus pulse width low cannot exceed min and max clock period.
- ³ Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and voltage variations.
- ⁴ This specification relates to the required input setup time of today's DDR memories. The processor's output setup should be larger than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
- ⁵ The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- ⁶ This specification relates to the required hold time of today's DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
- ⁷ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁸ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

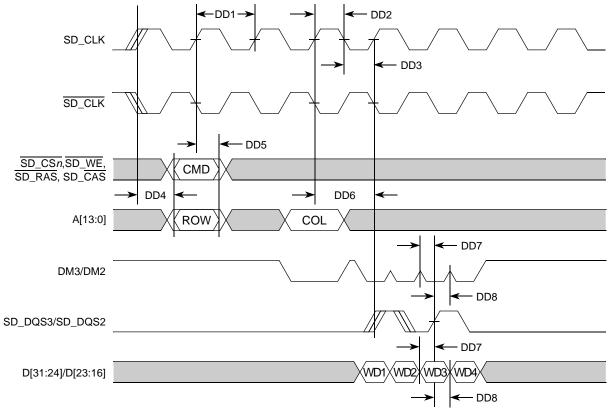


Figure 11. DDR Write Timing

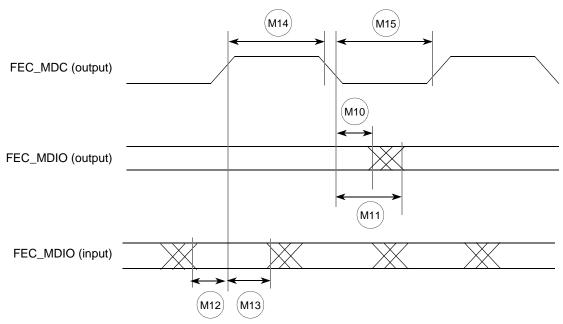


Figure 26. MII Serial Management Channel Timing Diagram

5.16 32-Bit Timer Module Timing Specifications

Table 27 lists timer module AC timings.

Table 27. Timer Module AC Timing Specifications

Name	Characteristic	Min	Max	Unit
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3	—	t _{CYC}
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1	—	t _{CYC}

5.17 **QSPI Electrical Specifications**

Table 28 lists QSPI timings.

Table 28. QSPI Modules AC Timing Specifications

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)	2		ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9		ns

					-	-	
Mode	Voltage	58 MHz (Typ) ³	64 MHz (Typ) ³	72 MHz (Typ) ³	80 MHz (Typ) ³	80 MHz (Peak) ⁴	Units
Stop Mode 3 (Stop 11) ⁵	3.3 V	3.9	3.92	4.0	4.0	4.0	
	1.5 V	1.04	1.04	1.04	1.04	1.08	
Stop Mode 2 (Stop 10) ⁴	3.3 V	4.69	4.72	4.8	4.8	4.8	
	1.5 V	2.69	2.69	2.70	2.70	2.75	
Stop Mode 1(Stop 01) ⁴	3.3 V	4.72	4.73	4.81	4.81	4.81	
	1.5 V	15.28	16.44	17.85	19.91	20.42	
Stop Mode 0 (Stop 00) ⁴	3.3 V	21.65	21.68	24.33	26.13	26.16	mA
	1.5 V	15.47	16.63	18.06	20.12	20.67	
Wait/Doze	3.3 V	22.49	22.52	25.21	27.03	39.8	
Wall/D02e	1.5 V	26.79	28.85	30.81	34.47	97.4	
Run	3.3 V	33.61	33.61	42.3	50.5	62.6	
Rull	1.5 V	56.3	60.7	65.4	73.4	132.3	

 Table 31. Current Consumption in Low-Power Modes^{1,2}

¹ All values are measured with a 3.30V EV_{DD}, 3.30V SDV_{DD} and 1.5V IV_{DD} power supplies. Tests performed at room temperature with pins configured for high drive strength.

² Refer to the Power Management chapter in the MCF532x Reference Manual for more information on low-power modes.

³ All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port off before entering low power mode. All code executed from flash.

⁴ All peripheral clocks on before entering low power mode. All code is executed from flash.

⁵ See the description of the low-power control register (LCPR) in the *MCF532x Reference Manual* for more information on stop modes 0–3.

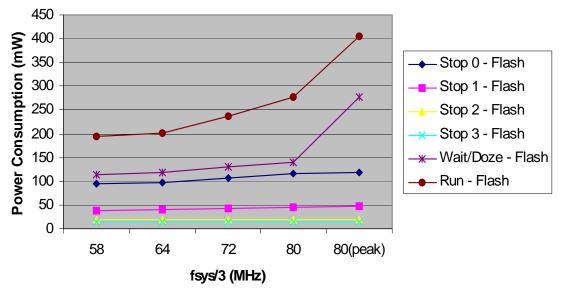
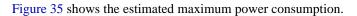
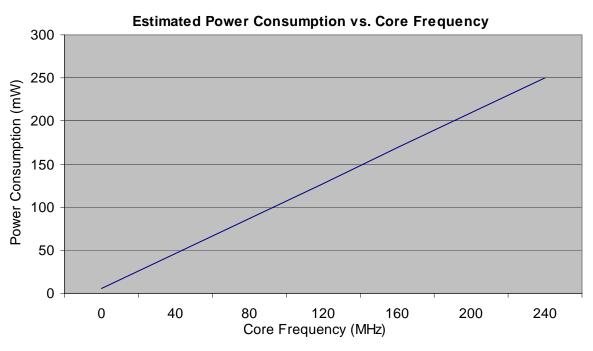
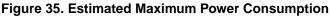


Figure 34. Current Consumption in Low-Power Modes

Current Consumption


f _{sys/3} Frequency	Voltage	Typical ² Active (Flash)	Peak ³	Unit
1.333 MHz	3.3V	7.73	7.74	
1.555 WILLZ	1.5V	2.87	3.56	
2.666 MHz	3.3V	8.57	8.60	
2.000 MILIZ	1.5V	4.37	5.52	
58 MHz	3.3V	40.10	49.3	
	1.5V	65.90	91.70	mA
64 MHz	3.3V	44.40	54.0	
	1.5V	69.50	97.0	
72 MHz	3.3V	53.6	63.7	
	1.5V	74.6	104.7	
80 MHz	3.3V	63.0	73.7	1
	1.5V	79.6	112.9	


 Table 32. Typical Active Current Consumption Specifications¹


¹ All values are measured with a 3.30 V EV_{DD}, 3.30 V SDV_{DD} and 1.5 V IV_{DD} power supplies. Tests performed at room temperature with pins configured for high drive strength.

² CPU polling a status register. All peripheral clocks except UARTO, FlexBus, INTCO, reset controller, PLL, and edge port disabled.

³ Peak current measured while running a while(1) loop with all modules active.

7 Package Information

This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices.

NOTE

The mechanical drawings are the latest revisions at the time of publication of this document. The most up-to-date mechanical drawings can be found at the product summary page located at http://www.freescale.com/coldfire.

7.1 Package Dimensions—256 MAPBGA

Figure 36 shows MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 package dimensions.

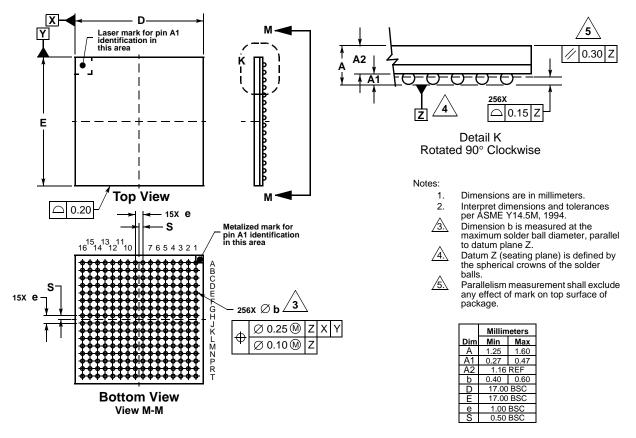


Figure 36. 256 MAPBGA Package Outline

Package Information

7.2 Package Dimensions—196 MAPBGA

Figure 37 shows the MCF5327CVM240 package dimensions.

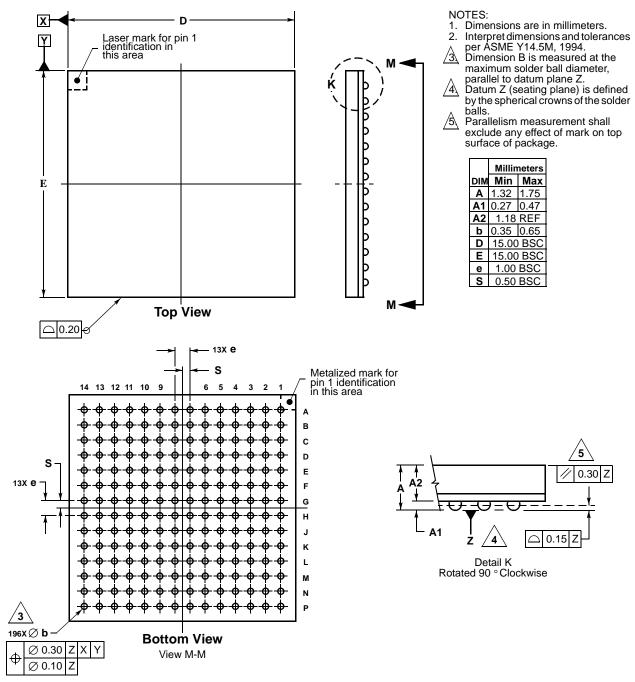


Figure 37. 196 MAPBGA Package Dimensions (Case No. 1128A-01)

8 Revision History

Table 33	. MCF5329DS	Document	Revision	History
----------	-------------	----------	----------	---------

Rev. No.	Substantive Changes	Date of Release
0	Initial release.	11/2005
0.1	 Added not to Section 7, "Package Information." Added top view and bottom view where appropriate in mechanical drawings and pinout figures. Figure 6: Corrected "FB_CLK (75MHz)" label to "FB_CLK (80MHz)" 	3/2006
1	 Corrected MCF5327 196MAPBGA ball map locations in Table 5 for the following signals: RCON, D1, D0, OE, R/W, SD_DQS2, PSTCLK, DDATA[3:0], PST[3:0], EVDD, IVDD, and SD_VDD. Figure 5 was correct. Updated thermal characteristic values in Table 5. Updated DC electricals values in Table 7. Updated Section 3.3, "Supply Voltage Sequencing and Separation Cautions" and subsections. Updated and added Oscillator/PLL characteristics in Table 8. Table 9: Swapped min/max for FB1; Removed FB8 & FB9. Updated SDRAM write timing diagram, Figure 9. Table 11: Added values for frequency of operation and DD1. Reworded first paragraph in Section 5.12, "ULPI Timing Specification." Updated Figure 19. Replaced figure & table Section 5.13, "SSI Timing Specifications," with slave & master mode versions. Removed second sentence from Section 5.15.2, "MII Transmit Signal Timing," regarding no minimum frequency requirement for TXCLK. Removed third and fourth paragraphs from Section 5.15.2, "MII Transmit Signal Timing," as this feature is not supported on this device. Updated figure & table Section 5.19, "Debug AC Timing Specifications." Renamed & moved previous version's Section 5.5 "Power Consumption" to Section 6, "Current Consumption." Added additional real-world data to this section as well. 	7/2007
2	 Added MCF53281 device information throughout: features list, family configuration table, ordering information table, signals description table, and relevant package diagram titles Remove Footnote 1 from Table 11. Changed document type from Advance Information to Technical Data. 	8/2007
3	 Corrected MCF53281 in features list table. This device contains CAN, but does not feature the cryptography accelerators. In pin-multiplexing table, moved MCF53281 label from the MCF5328 column to the MCF5329 column, because this device contains CAN output signals. 	10/2007

Revision History

Rev. No.	Substantive Changes	Date of Release
4	 Corrected pinouts in Signal Information and Pin-Muxing table for 196 MAPBGA device: Changed D[15:1] entry from "F4–F1, G4–G2" to "F4–F1, G5–G2" Changed DSO/TDO entry from "P9" to "N9" Corrected D0 spec in Table 30 from 1.5 x t_{sys} to 2 x t_{sys} for min and max balues. Updated FlexBus read and write timing diagrams in Figure 7 and Figure 8. Removed footnote 2 from the IRQ[7:1] alternate functions USBHOST VBUS_EN, USBHOST VBUS_OC, SSI_MCLK, USB_CLKIN, and SSI_CLKIN signals in Signal Information and Pin-Muxing table. Updated pinouts for 196 MAPBGA device, MCF5327CVM240 in both Figure 5 and Table 2. The following locations are affected: G10–12, H12–14, J11–14, K12–13, L12–13, M12–14, N13. The following signals are affected: USBOTG_VDD, USBHOST_VSS, USBOTG_M, USBOTG_P, USBHOST_M, USBHOST_P, DRAMSEL, PWM3, PWM1, IRQ[7,4,3,2,1], RESET, TDI/DSI, JTAG_EN, TMS/BKPT. 	4/2008
5	 Changed the following specs in Table 10 and Table 11: Minimum frequency of operation from TBD to 60MHz Maximum clock period from TBD to 16.67 ns 	11/2008

Table 33. MCF5329DS Document Revision History (continued)

Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5329DS Rev. 5 11/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.

