


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | Coldfire V3                                                                     |
| Core Size                  | 32-Bit Single-Core                                                              |
| Speed                      | 240MHz                                                                          |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, SPI, SSI, UART/USART, USB, USB OTG |
| Peripherals                | DMA, LCD, PWM, WDT                                                              |
| Number of I/O              | 94                                                                              |
| Program Memory Size        | -                                                                               |
| Program Memory Type        | ROMIess                                                                         |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 32K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.4V ~ 3.6V                                                                     |
| Data Converters            | -                                                                               |
| Oscillator Type            | External                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 256-LBGA                                                                        |
| Supplier Device Package    | 256-MAPBGA (17x17)                                                              |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf53281cvm240                     |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



**Ordering Information** 

| Module                                           | MCF5327       | MCF5328       | MCF53281      | MCF5329       |
|--------------------------------------------------|---------------|---------------|---------------|---------------|
| LCD Controller                                   | •             | •             | •             | •             |
| SDR/DDR SDRAM Controller                         | ٠             | •             | •             | •             |
| USB 2.0 Host                                     | •             | •             | •             | •             |
| USB 2.0 On-the-Go                                | •             | •             | •             | •             |
| UTMI+ Low Pin Interface (ULPI)                   | _             | •             | •             | •             |
| Synchronous Serial Interface (SSI)               | •             | •             | •             | •             |
| Fast Ethernet Controller (FEC)                   |               | •             | •             | •             |
| Cryptography Hardware Accelerators               | _             | —             | —             | •             |
| Embedded Voice-over-IP System Solution           |               | —             | •             | —             |
| FlexCAN 2.0B communication module                | _             | —             | •             | •             |
| UARTs                                            | 3             | 3             | 3             | 3             |
| I <sup>2</sup> C                                 | •             | •             | •             | •             |
| QSPI                                             | ٠             | •             | •             | •             |
| PWM Module                                       | ٠             | •             | •             | •             |
| Real Time Clock                                  | •             | •             | •             | •             |
| 32-bit DMA Timers                                | 4             | 4             | 4             | 4             |
| Watchdog Timer (WDT)                             | ٠             | •             | •             | •             |
| Periodic Interrupt Timers (PIT)                  | 4             | 4             | 4             | 4             |
| Edge Port Module (EPORT)                         | •             | •             | •             | •             |
| Interrupt Controllers (INTC)                     | 2             | 2             | 2             | 2             |
| 16-channel Direct Memory Access (DMA)            | •             | •             | •             | •             |
| FlexBus External Interface                       | •             | •             | •             | •             |
| General Purpose I/O Module (GPIO)                | •             | •             | •             | •             |
| JTAG - IEEE <sup>®</sup> 1149.1 Test Access Port | •             | •             | •             | •             |
| Package                                          | 196<br>MAPBGA | 256<br>MAPBGA | 256<br>MAPBGA | 256<br>MAPBGA |

| Table 1. MCF532x Family | / Configurations | (continued) |
|-------------------------|------------------|-------------|
|-------------------------|------------------|-------------|

# 2 Ordering Information

## Table 2. Orderable Part Numbers

| Freescale Part<br>Number | Description                  | Package    | Speed   | Temperature                       |
|--------------------------|------------------------------|------------|---------|-----------------------------------|
| MCF5327CVM240            | MCF5327 RISC Microprocessor  | 196 MAPBGA | 240 MHz | $-40^{\circ}$ to +85 $^{\circ}$ C |
| MCF5328CVM240            | MCF5328 RISC Microprocessor  | 256 MAPBGA | 240 MHz | $-40^{\circ}$ to $+85^{\circ}$ C  |
| MCF53281CVM240           | MCF53281 RISC Microprocessor | 256 MAPBGA | 240 MHz | $-40^{\circ}$ to +85 $^{\circ}$ C |
| MCF5329CVM240            | MCF5329 RISC Microprocessor  | 256 MAPBGA | 240 MHz | $-40^{\circ}$ to +85 $^{\circ}$ C |



# 3 Hardware Design Considerations

## 3.1 PLL Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for PLL analog  $V_{DD}$  pins. The filter shown in Figure 2 should be connected between the board  $V_{DD}$  and the PLLV<sub>DD</sub> pins. The resistor and capacitors should be placed as close to the dedicated PLLV<sub>DD</sub> pin as possible.

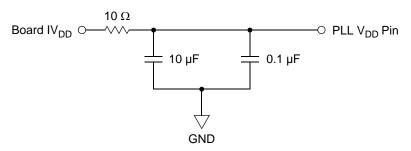



Figure 2. System PLL  $V_{DD}$  Power Filter

## 3.2 USB Power Filtering

To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be connected between the board  $EV_{DD}$  or  $IV_{DD}$  and each of the USBV<sub>DD</sub> pins. The resistor and capacitors should be placed as close to the dedicated USBV<sub>DD</sub> pin as possible.

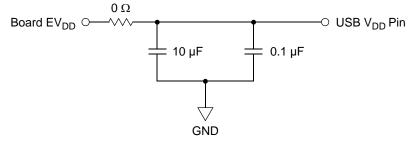



Figure 3. USB V<sub>DD</sub> Power Filter

### NOTE

In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.

## 3.3 Supply Voltage Sequencing and Separation Cautions

The relationship between SDV<sub>DD</sub> and EV<sub>DD</sub> is non-critical during power-up and power-down sequences. SDV<sub>DD</sub> (2.5V or 3.3V) and EV<sub>DD</sub> are specified relative to IV<sub>DD</sub>.

## 3.3.1 Power Up Sequence

If  $EV_{DD}/SDV_{DD}$  are powered up with  $IV_{DD}$  at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the  $EV_{DD}/SDV_{DD}$  to be in a high impedance state. There is no limit on how long after  $EV_{DD}/SDV_{DD}$  powers up before  $IV_{DD}$  must powered up.  $IV_{DD}$  should not lead the  $EV_{DD}$ ,  $SDV_{DD}$ , or  $PLLV_{DD}$  by more than 0.4 V during power ramp-up or there is



**Pin Assignments and Reset States** 

| Signal Name       | GPIO         | Alternate 1              | Alternate 2 | Dir. <sup>1</sup> | Voltage<br>Domain | MCF5327<br>196<br>MAPBGA                                     | MCF5328<br>256<br>MAPBGA                                 | MCF53281<br>MCF5329<br>256<br>MAPBGA                     |  |
|-------------------|--------------|--------------------------|-------------|-------------------|-------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
|                   |              |                          | Mode Select | ion               |                   |                                                              |                                                          |                                                          |  |
| RCON <sup>2</sup> | _            | —                        | —           | Ι                 | EVDD              | M7                                                           | M8                                                       | M8                                                       |  |
| DRAMSEL           | _            |                          |             | I                 | EVDD              | G11                                                          | H12                                                      | H12                                                      |  |
|                   |              |                          | FlexBus     |                   |                   |                                                              |                                                          |                                                          |  |
| A[23:22]          | _            | FB_CS[5:4]               | —           | 0                 | SDVDD             | B11,C11                                                      | C13, D13                                                 | C13, D13                                                 |  |
| A[21:16]          | _            | _                        | _           | 0                 | SDVDD             | B12, A12,<br>D11, C12,<br>B13, A13                           | E13, A14,<br>B14, C14,<br>A15, B15                       | E13, A14,<br>B14, C14,<br>A15, B15                       |  |
| A[15:14]          | _            | SD_BA[1:0] <sup>3</sup>  | —           | 0                 | SDVDD             | A14, B14                                                     | D14, B16                                                 | D14, B16                                                 |  |
| A[13:11]          | _            | SD_A[13:11] <sup>3</sup> | —           | 0                 | SDVDD             | C13, C14,<br>D12                                             | C15, C16,<br>D15                                         | C15, C16,<br>D15                                         |  |
| A10               | —            | —                        | —           | 0                 | SDVDD             | D13                                                          | D16                                                      | D16                                                      |  |
| A[9:0]            | _            | SD_A[9:0] <sup>3</sup>   | _           | 0                 | SDVDD             | D14,<br>E11–14,<br>F11–F14,<br>G14                           | E14–E16,<br>F13–F16,<br>G16– G14                         | E14–E16,<br>F13–F16,<br>G16– G14                         |  |
| D[31:16]          | _            | SD_D[31:16] <sup>4</sup> | _           | I/O               | SDVDD             | H3–H1,<br>J4–J1, K1,<br>L4, M2, M3,<br>N1, N2, P1,<br>P2, N3 | M1–M4,<br>N1–N4, T3,<br>P4, R4, T4,<br>N5, P5, R5,<br>T5 | M1–M4,<br>N1–N4, T3,<br>P4, R4, T4,<br>N5, P5, R5,<br>T5 |  |
| D[15:1]           | _            | FB_D[31:17] <sup>4</sup> | _           | I/O               | SDVDD             | F4–F1,<br>G5–G2, L5,<br>N4, P4, M5,<br>N5, P5, L6            | J3–J1,<br>K4–K1, L2,<br>R6, N7, P7,<br>R7, T7, P8,<br>R8 | J3–J1,<br>K4–K1, L2,<br>R6, N7, P7,<br>R7, T7, P8,<br>R8 |  |
| D0 <sup>2</sup>   | —            | FB_D[16] <sup>4</sup>    | —           | I/O               | SDVDD             | M6                                                           | Т8                                                       | Т8                                                       |  |
| BE/BWE[3:0]       | PBE[3:0]     | SD_DQM[3:0] <sup>3</sup> | —           | 0                 | SDVDD             | H4, P3, G1,<br>M4                                            | L4, P6, L3,<br>N6                                        | L4, P6, L3,<br>N6                                        |  |
| ŌĒ                | PBUSCTL3     | —                        | —           | 0                 | SDVDD             | P6                                                           | R9                                                       | R9                                                       |  |
| TA <sup>2</sup>   | PBUSCTL2     | _                        |             | Ι                 | SDVDD             | G13                                                          | G13                                                      | G13                                                      |  |
| R/W               | PBUSCTL1     | _                        |             | 0                 | SDVDD             | N6                                                           | N8                                                       | N8                                                       |  |
| TS                | PBUSCTL0     | DACK0                    | —           | 0                 | SDVDD             | D2                                                           | H4                                                       | H4                                                       |  |
|                   | Chip Selects |                          |             |                   |                   |                                                              |                                                          |                                                          |  |
| FB_CS[5:4]        | PCS[5:4]     | —                        |             | 0                 | SDVDD             | _                                                            | B13, A13                                                 | B13, A13                                                 |  |
| FB_CS[3:1]        | PCS[3:1]     |                          |             | 0                 | SDVDD             | A11, D10,<br>C10                                             | A12, B12,<br>C12                                         | A12, B12,<br>C12                                         |  |
| FB_CS0            |              |                          |             | 0                 | SDVDD             | B10                                                          | D12                                                      | D12                                                      |  |

| Table 3. MCF5327/8/9 Signal Information and Muxing | (continued)       |
|----------------------------------------------------|-------------------|
|                                                    | , (00 min a 0 a / |



### Pin Assignments and Reset States

| Signal Name       | GPIO               | Alternate 1          | Alternate 2    | Dir. <sup>1</sup> | Voltage<br>Domain | MCF5327<br>196<br>MAPBGA | MCF5328<br>256<br>MAPBGA | MCF53281<br>MCF5329<br>256<br>MAPBGA |
|-------------------|--------------------|----------------------|----------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------------------|
|                   | I                  | ;                    | SDRAM Contr    | oller             |                   |                          | I                        | I                                    |
| SD_A10            | _                  | —                    | _              | 0                 | SDVDD             | L2                       | P2                       | P2                                   |
| SD_CKE            | —                  |                      | —              | 0                 | SDVDD             | E1                       | H2                       | H2                                   |
| SD_CLK            | —                  |                      | _              | 0                 | SDVDD             | K3                       | R1                       | R1                                   |
| SD_CLK            | —                  |                      | —              | 0                 | SDVDD             | K2                       | R2                       | R2                                   |
| SD_CS1            | —                  |                      | —              | 0                 | SDVDD             | _                        | J4                       | J4                                   |
| SD_CS0            | —                  |                      | —              | 0                 | SDVDD             | E2                       | H1                       | H1                                   |
| SD_DQS3           | —                  |                      | —              | 0                 | SDVDD             | H5                       | L1                       | L1                                   |
| SD_DQS2           | —                  |                      | —              | 0                 | SDVDD             | K6                       | T6                       | T6                                   |
| SD_SCAS           | —                  |                      | —              | 0                 | SDVDD             | L3                       | P3                       | P3                                   |
| SD_SRAS           | —                  |                      | —              | 0                 | SDVDD             | M1                       | R3                       | R3                                   |
| SD_SDR_DQS        | —                  |                      | —              | 0                 | SDVDD             | K4                       | P1                       | P1                                   |
| SD_WE             | —                  |                      | —              | 0                 | SDVDD             | D1                       | H3                       | H3                                   |
|                   | 1                  | Ext                  | ernal Interrup | ts Po             | rt <sup>5</sup>   |                          |                          |                                      |
| IRQ7 <sup>2</sup> | PIRQ7 <sup>2</sup> | _                    | —              | Ι                 | EVDD              | J13                      | J13                      | J13                                  |
| IRQ6 <sup>2</sup> | PIRQ6 <sup>2</sup> | USBHOST_<br>VBUS_EN  | _              | I                 | EVDD              |                          | J14                      | J14                                  |
| IRQ5 <sup>2</sup> | PIRQ5 <sup>2</sup> | USBHOST_<br>VBUS_OC  |                | I                 | EVDD              |                          | J15                      | J15                                  |
| IRQ4 <sup>2</sup> | PIRQ4 <sup>2</sup> | SSI_MCLK             | —              | I                 | EVDD              | L13                      | J16                      | J16                                  |
| IRQ3 <sup>2</sup> | PIRQ3 <sup>2</sup> |                      | —              | Ι                 | EVDD              | M14                      | K14                      | K14                                  |
| IRQ2 <sup>2</sup> | PIRQ2 <sup>2</sup> | USB_CLKIN            | —              | Ι                 | EVDD              | M13                      | K15                      | K15                                  |
| IRQ1 <sup>2</sup> | PIRQ1 <sup>2</sup> | DREQ1 <sup>2</sup>   | SSI_CLKIN      | I                 | EVDD              | N13                      | K16                      | K16                                  |
|                   |                    |                      | FEC            | •                 |                   |                          |                          |                                      |
| FEC_MDC           | PFECI2C3           | I2C_SCL <sup>2</sup> | —              | 0                 | EVDD              | _                        | C1                       | C1                                   |
| FEC_MDIO          | PFECI2C2           | I2C_SDA <sup>2</sup> | _              | I/O               | EVDD              | _                        | C2                       | C2                                   |
| FEC_TXCLK         | PFECH7             |                      | —              | Ι                 | EVDD              |                          | A2                       | A2                                   |
| FEC_TXEN          | PFECH6             |                      | —              | 0                 | EVDD              |                          | B2                       | B2                                   |
| FEC_TXD0          | PFECH5             | ULPI_DATA0           | —              | 0                 | EVDD              | _                        | E4                       | E4                                   |
| FEC_COL           | PFECH4             | ULPI_CLK             | —              | Ι                 | EVDD              |                          | A8                       | A8                                   |
| FEC_RXCLK         | PFECH3             | ULPI_NXT             | —              | Ι                 | EVDD              | —                        | C8                       | C8                                   |
| FEC_RXDV          | PFECH2             | ULPI_STP             | —              | Ι                 | EVDD              | —                        | D8                       | D8                                   |
| FEC_RXD0          | PFECH1             | ULPI_DATA4           | —              | I                 | EVDD              | _                        | C6                       | C6                                   |

## Table 3. MCF5327/8/9 Signal Information and Muxing (continued)



### Pin Assignments and Reset States

| Signal Name              | GPIO                        | Alternate 1                            | Alternate 2                   | Dir. <sup>1</sup> | Voltage<br>Domain     | MCF5327<br>196<br>MAPBGA | MCF5328<br>256<br>MAPBGA | MCF53281<br>MCF5329<br>256<br>MAPBGA |  |
|--------------------------|-----------------------------|----------------------------------------|-------------------------------|-------------------|-----------------------|--------------------------|--------------------------|--------------------------------------|--|
| USB Host & USB On-the-Go |                             |                                        |                               |                   |                       |                          |                          |                                      |  |
| USBOTG_M                 | _                           | _                                      | _                             | I/O               | USB<br>VDD            | G12                      | L15                      | L15                                  |  |
| USBOTG_P                 | _                           | _                                      | _                             | I/O               | USB<br>VDD            | H13                      | L16                      | L16                                  |  |
| USBHOST_M                | —                           | _                                      | _                             | I/O               | USB<br>VDD            | K13                      | M15                      | M15                                  |  |
| USBHOST_P                | —                           | _                                      | _                             | I/O               | USB<br>VDD            | J12                      | M16                      | M16                                  |  |
|                          |                             | FlexCAN (                              | MCF53281 & I                  | MCF5              | 329 only              | )                        |                          |                                      |  |
|                          |                             | o not have dedicat<br>or LCD_D16 for C | ANRX and I20                  |                   |                       |                          |                          |                                      |  |
|                          |                             |                                        | PWM                           |                   |                       |                          |                          | •                                    |  |
| PWM7                     | PPWM7                       | _                                      | —                             | I/O               | EVDD                  | _                        | H13                      | H13                                  |  |
| PWM5                     | PPWM5                       |                                        | —                             | I/O               | EVDD                  |                          | H14                      | H14                                  |  |
| PWM3                     | PPWM3                       | DT3OUT                                 | DT3IN                         | I/O               | EVDD                  | H14                      | H15                      | H15                                  |  |
| PWM1                     | PPWM1                       | DT2OUT                                 | DT2IN                         | I/O               | EVDD                  | J14                      | H16                      | H16                                  |  |
|                          |                             |                                        | SSI                           |                   |                       |                          |                          |                                      |  |
| SSI_MCLK                 | PSSI4                       |                                        | —                             | I/O               | EVDD                  | —                        | G4                       | G4                                   |  |
| SSI_BCLK                 | PSSI3                       | U2CTS                                  | PWM7                          | I/O               | EVDD                  | _                        | F4                       | F4                                   |  |
| SSI_FS                   | PSSI2                       | U2RTS                                  | PWM5                          | I/O               | EVDD                  | _                        | G3                       | G3                                   |  |
| SSI_RXD <sup>2</sup>     | PSSI1                       | U2RXD                                  | CANRX                         | I                 | EVDD                  | _                        | —                        | G2                                   |  |
| SSI_TXD <sup>2</sup>     | PSSI0                       | U2TXD                                  | CANTX                         | 0                 | EVDD                  | _                        | —                        | G1                                   |  |
| SSI_RXD <sup>2</sup>     | PSSI1                       | U2RXD                                  | —                             | I                 | EVDD                  |                          | G2                       | —                                    |  |
| SSI_TXD <sup>2</sup>     | PSSI0                       | U2TXD                                  | —                             | 0                 | EVDD                  |                          | G1                       | —                                    |  |
|                          |                             |                                        | l <sup>2</sup> C              |                   | •                     |                          |                          |                                      |  |
| I2C_SCL <sup>2</sup>     | PFECI2C1                    | CANTX                                  | U2TXD                         | I/O               | EVDD                  | —                        | —                        | F3                                   |  |
| I2C_SDA <sup>2</sup>     | PFECI2C0                    | CANRX                                  | U2RXD                         | I/O               | EVDD                  | —                        | —                        | F2                                   |  |
| I2C_SCL <sup>2</sup>     | PFECI2C1                    | _                                      | U2TXD                         | I/O               | EVDD                  | E3                       | F3                       | _                                    |  |
| I2C_SDA <sup>2</sup>     | PFECI2C0                    |                                        | U2RXD                         | I/O               | EVDD                  | E4                       | F2                       | —                                    |  |
|                          |                             |                                        | DMA                           |                   |                       |                          |                          |                                      |  |
| DACK[1:0]                | and DREQ[1:0]<br>TS for DAC | do not have dedi<br>K0, DT0IN for DR   | cated bond pa<br>EQ0, DT1IN f | ids. Pl<br>or DAC | ease refe<br>CK1, and | er to the followi        | ing pins for mu<br>Q1.   | ıxing:                               |  |

## Table 3. MCF5327/8/9 Signal Information and Muxing (continued)



## NOTE

The parameters specified in this MCU document supersede any values found in the module specifications.

## 5.1 Maximum Ratings

### Table 4. Absolute Maximum Ratings<sup>1, 2</sup>

| Rating                                                                                     | Symbol                                               | Value         | Unit |
|--------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|------|
| Core Supply Voltage                                                                        | IV <sub>DD</sub>                                     | – 0.5 to +2.0 | V    |
| CMOS Pad Supply Voltage                                                                    | EV <sub>DD</sub>                                     | – 0.3 to +4.0 | V    |
| DDR/Memory Pad Supply Voltage                                                              | SDV <sub>DD</sub>                                    | – 0.3 to +4.0 | V    |
| PLL Supply Voltage                                                                         | PLLV <sub>DD</sub>                                   | – 0.3 to +2.0 | V    |
| Digital Input Voltage <sup>3</sup>                                                         | V <sub>IN</sub>                                      | – 0.3 to +3.6 | V    |
| Instantaneous Maximum Current<br>Single pin limit (applies to all pins) <sup>3, 4, 5</sup> | Ι <sub>D</sub>                                       | 25            | mA   |
| Operating Temperature Range (Packaged)                                                     | T <sub>A</sub><br>(T <sub>L</sub> - T <sub>H</sub> ) | – 40 to +85   | °C   |
| Storage Temperature Range                                                                  | T <sub>stg</sub>                                     | – 55 to +150  | °C   |

<sup>1</sup> Functional operating conditions are given in Section 5.4, "DC Electrical Specifications." Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

- $^2$  This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V<sub>SS</sub> or EV<sub>DD</sub>).
- <sup>3</sup> Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.
- $^4$  All functional non-supply pins are internally clamped to V<sub>SS</sub> and EV<sub>DD</sub>.
- <sup>5</sup> Power supply must maintain regulation within operating  $EV_{DD}$  range during instantaneous and operating maximum current conditions. If positive injection current ( $V_{in} > EV_{DD}$ ) is greater than  $I_{DD}$ , the injection current may flow out of  $EV_{DD}$  and could result in external power supply going out of regulation. Ensure external  $EV_{DD}$  load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating  $EV_{DD}$  range during instantaneous and operating maximum current conditions.



## 5.2 Thermal Characteristics

| Characteristic                          |                         | Symbol         | 256MBGA           | 196MBGA           | Unit |
|-----------------------------------------|-------------------------|----------------|-------------------|-------------------|------|
| Junction to ambient, natural convection | Four layer board (2s2p) | $\theta_{JMA}$ | 37 <sup>1,2</sup> | 42 <sup>1,2</sup> | °C/W |
| Junction to ambient (@200 ft/min)       | Four layer board (2s2p) | $\theta_{JMA}$ | 34 <sup>1,2</sup> | 38 <sup>1,2</sup> | °C/W |
| Junction to board                       | —                       | $\theta_{JB}$  | 27 <sup>3</sup>   | 32 <sup>3</sup>   | °C/W |
| Junction to case                        | —                       | $\theta_{JC}$  | 16 <sup>4</sup>   | 19 <sup>4</sup>   | °C/W |
| Junction to top of package              | —                       | $\Psi_{jt}$    | 4 <sup>1,5</sup>  | 5 <sup>1,5</sup>  | °C/W |
| Maximum operating junction temperature  | —                       | Τj             | 105               | 105               | °C   |

#### **Table 5. Thermal Characteristics**

 $\theta_{JMA}$  and  $\Psi_{jt}$  parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of  $\theta_{JmA}$  and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the  $\Psi_{jt}$  parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- <sup>2</sup> Per JEDEC JESD51-6 with the board horizontal.
- <sup>3</sup> Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- <sup>4</sup> Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- <sup>5</sup> Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T<sub>J</sub>) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 Eqn. 1

Where:

| $T_A$            | = Ambient Temperature, °C                                         |
|------------------|-------------------------------------------------------------------|
| $Q_{\text{JMA}}$ | = Package Thermal Resistance, Junction-to-Ambient, °C/W           |
| $P_{D}$          | $= P_{INT} + P_{I/O}$                                             |
| $P_{INT}$        | = $I_{DD}$ $	imes$ IV <sub>DD</sub> , Watts - Chip Internal Power |
| P <sub>I/O</sub> | = Power Dissipation on Input and Output Pins - User Determined    |

For most applications  $P_{I/O} < P_{INT}$  and can be ignored. An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is:

Solving equations 1 and 2 for K gives:

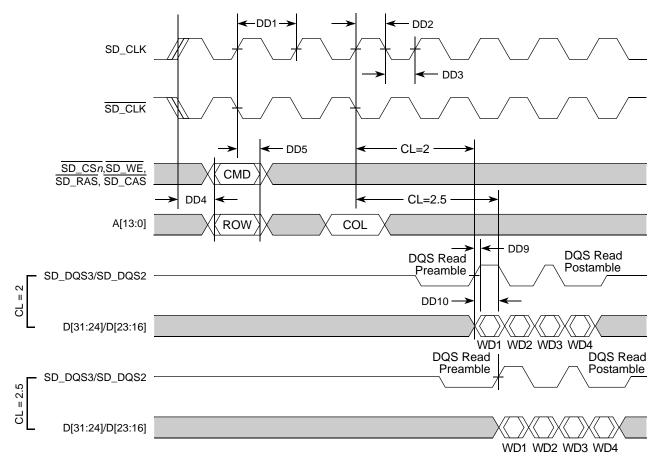
$$K = P_D \times (T_A \times 273^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3



| Characteristic                                                                                                                                                                                                                 | Symbol            | Min                                    | Max               | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|-------------------|------|
| SDRAM and FlexBus Output High Voltage<br>Mobile DDR/Bus Input High Voltage (nominal 1.8V)<br>DDR/Bus Pad Supply Voltage (nominal 2.5V)<br>SDR/Bus Pad Supply Voltage (nominal 3.3V)<br>I <sub>OH</sub> = -5.0 mA for all modes | SDV <sub>OH</sub> | SDV <sub>DD</sub> - 0.35<br>2.1<br>2.4 | _<br>_<br>_       | V    |
| SDRAM and FlexBus Output Low Voltage<br>Mobile DDR/Bus Input High Voltage (nominal 1.8V)<br>DDR/Bus Pad Supply Voltage (nominal 2.5V)<br>SDR/Bus Pad Supply Voltage (nominal 3.3V)<br>I <sub>OL</sub> = 5.0 mA for all modes   | SDV <sub>OL</sub> | <br>                                   | 0.3<br>0.3<br>0.5 | V    |
| Input Leakage Current<br>$V_{in} = V_{DD}$ or $V_{SS}$ , Input-only pins                                                                                                                                                       | l <sub>in</sub>   | -1.0                                   | 1.0               | μΑ   |
| Weak Internal Pull-Up Device Current, tested at V <sub>IL</sub> Max. <sup>1</sup>                                                                                                                                              | I <sub>APU</sub>  | -10                                    | -130              | μΑ   |
| Input Capacitance <sup>2</sup><br>All input-only pins<br>All input/output (three-state) pins                                                                                                                                   | C <sub>in</sub>   |                                        | 7<br>7            | pF   |

### Table 7. DC Electrical Specifications (continued)

1


Refer to the signals section for pins having weak internal pull-up devices. This parameter is characterized before qualification rather than 100% tested. 2

#### **Oscillator and PLL Electrical Characteristics** 5.5

| Num | Characteristic                                                                            | Symbol                                           | Min.<br>Value                                        | Max.<br>Value                                        | Unit       |
|-----|-------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------|
| 1   | PLL Reference Frequency Range<br>Crystal reference<br>External reference                  | f <sub>ref_crystal</sub><br>f <sub>ref_ext</sub> | 12<br>12                                             | 25 <sup>1</sup><br>40 <sup>1</sup>                   | MHz<br>MHz |
| 2   | Core frequency<br>CLKOUT Frequency <sup>2</sup>                                           | f <sub>sys</sub><br>f <sub>sys/3</sub>           | 488 x 10 <sup>-6</sup><br>163 x 10 <sup>-6</sup>     | 240<br>80                                            | MHz<br>MHz |
| 3   | Crystal Start-up Time <sup>3, 4</sup>                                                     | t <sub>cst</sub>                                 | —                                                    | 10                                                   | ms         |
| 4   | EXTAL Input High Voltage<br>Crystal Mode <sup>5</sup><br>All other modes (External, Limp) | V <sub>IHEXT</sub><br>V <sub>IHEXT</sub>         | V <sub>XTAL</sub> + 0.4<br>E <sub>VDD</sub> /2 + 0.4 | _                                                    | V<br>V     |
| 5   | EXTAL Input Low Voltage<br>Crystal Mode <sup>5</sup><br>All other modes (External, Limp)  | V <sub>ILEXT</sub><br>V <sub>ILEXT</sub>         | _                                                    | V <sub>XTAL</sub> – 0.4<br>E <sub>VDD</sub> /2 – 0.4 | V<br>V     |
| 7   | PLL Lock Time <sup>3, 6</sup>                                                             | t <sub>ipli</sub>                                | _                                                    | 50000                                                | CLKIN      |
| 8   | Duty Cycle of reference <sup>3</sup>                                                      | t <sub>dc</sub>                                  | 40                                                   | 60                                                   | %          |
| 9   | XTAL Current                                                                              | I <sub>XTAL</sub>                                | 1                                                    | 3                                                    | mA         |
| 10  | Total on-chip stray capacitance on XTAL                                                   | C <sub>S_XTAL</sub>                              |                                                      | 1.5                                                  | pF         |
| 11  | Total on-chip stray capacitance on EXTAL                                                  | C <sub>S_EXTAL</sub>                             |                                                      | 1.5                                                  | pF         |

### **Table 8. PLL Electrical Characteristics**







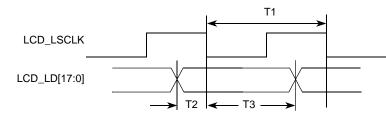
# 5.8 General Purpose I/O Timing

Table 12. GPIO Timing<sup>1</sup>

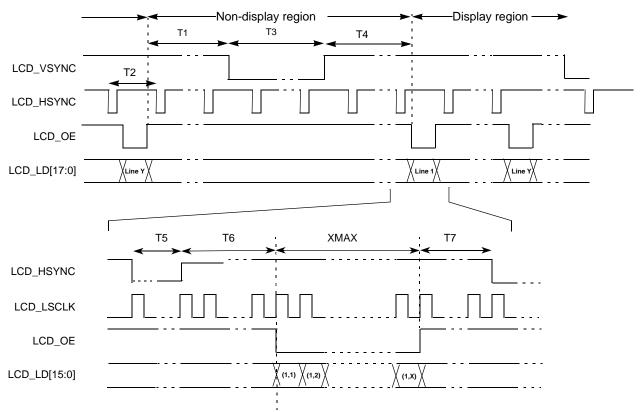
| Num | Characteristic                     | Symbol             | Min | Max | Unit |
|-----|------------------------------------|--------------------|-----|-----|------|
| G1  | FB_CLK High to GPIO Output Valid   | t <sub>CHPOV</sub> | _   | 10  | ns   |
| G2  | FB_CLK High to GPIO Output Invalid | t <sub>CHPOI</sub> | 1.5 | —   | ns   |
| G3  | GPIO Input Valid to FB_CLK High    | t <sub>PVCH</sub>  | 9   | —   | ns   |
| G4  | FB_CLK High to GPIO Input Invalid  | t <sub>CHPI</sub>  | 1.5 | —   | ns   |

<sup>1</sup> GPIO pins include: IRQ*n*, PWM, UART, FlexCAN, and Timer pins.




# 5.10 LCD Controller Timing Specifications

This sections lists the timing specifications for the LCD Controller.


| Table 1 | 4. LCD_ | LSCLK | Timing |
|---------|---------|-------|--------|
|---------|---------|-------|--------|

| Num | Parameter             | Minimum | Maximum | Unit |
|-----|-----------------------|---------|---------|------|
| T1  | LCD_LSCLK Period      | 25      | 2000    | ns   |
| T2  | Pixel data setup time | 11      | _       | ns   |
| Т3  | Pixel data up time    | 11      | _       | ns   |

Note: The pixel clock is equal to LCD\_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode with bus width is set and LCD\_LSCLK is equal to the pixel clock. When it is in monochrome with other bus width settings, LCD\_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD\_LSCLK and LCD\_LD signals can also be programmed.











| Num         | Description                                          | Minimum | Value              | Unit |
|-------------|------------------------------------------------------|---------|--------------------|------|
| T1          | LCD_SPL/LCD_SPR pulse width                          | —       | 1                  | Ts   |
| T2          | End of LCD_LD of line to beginning of LCD_HSYNC      | 1       | HWAIT1+1           | Ts   |
| Т3          | End of LCD_HSYNC to beginning of LCD_LD of line      | 4       | HWAIT2 + 4         | Ts   |
| T4          | LCD_CLS rise delay from end of LCD_LD of line        | 3       | CLS_RISE_DELAY+1   | Ts   |
| T5          | LCD_CLS pulse width                                  | 1       | CLS_HI_WIDTH+1     | Ts   |
| Т6          | LCD_PS rise delay from LCD_CLS negation              | 0       | PS_RISE_DELAY      | Ts   |
| T7          | LCD_REV toggle delay from last LCD_LD of line        | 1       | REV_TOGGLE_DELAY+1 | Ts   |
| Note: Falli | ng of LCD_SPL/LCD_SPR aligns with first LCD_LD of li | ne      |                    |      |

### Table 16. Sharp TFT Panel Timing

Note: Falling of LCD\_SPL/LCD\_SPR aligns with first LCD\_LD of line.

Note: Falling of LCD\_PS aligns with rising edge of LCD\_CLS.

Note: LCD\_REV toggles in every LCD\_HSYN period.

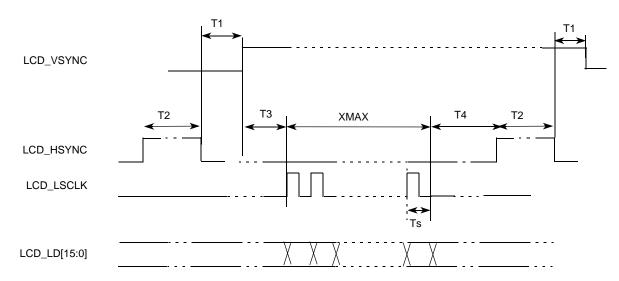



Figure 18. Non-TFT Mode Panel Timing

| Table 17. Non-TFT Mode Panel Timin | Table 17 | . Non-TFT | Mode | Panel | Timing |
|------------------------------------|----------|-----------|------|-------|--------|
|------------------------------------|----------|-----------|------|-------|--------|

| Num | Description                  | Minimum | Value             | Unit |
|-----|------------------------------|---------|-------------------|------|
| T1  | LCD_HSYNC to LCD_VSYNC delay | 2       | HWAIT2 + 2        | Tpix |
| T2  | LCD_HSYNC pulse width        | 1       | HWIDTH + 1        | Тріх |
| Т3  | LCD_VSYNC to LCD_LSCLK       | _       | $0 \le T3 \le Ts$ | —    |
| T4  | LCD_LSCLK to LCD_HSYNC       | 1       | HWAIT1 + 1        | Тріх |

Note: Ts is the LCD\_LSCLK period while Tpix is the pixel clock period. LCD\_VSYNC, LCD\_HSYNC and LCD\_LSCLK can be programmed as active high or active low. In Figure 18, all three signals are active high. When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width = 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively.



| Num | Description                                  | Symbol | Min | Max | Units |
|-----|----------------------------------------------|--------|-----|-----|-------|
| S6  | SSI_BCLK to SSI_FS output invalid            |        | -2  | _   | ns    |
| S7  | SSI_BCLK to SSI_TXD valid                    |        | _   | 15  | ns    |
| S8  | SSI_BCLK to SSI_TXD invalid / high impedence |        | -4  | —   | ns    |
| S9  | SSI_RXD / SSI_FS input setup before SSI_BCLK |        | 15  | —   | ns    |
| S10 | SSI_RXD / SSI_FS input hold after SSI_BCLK   |        | 0   | —   | ns    |

## Table 19. SSI Timing – Master Modes<sup>1</sup> (continued)

<sup>1</sup> All timings specified with a capactive load of 25pF.

<sup>2</sup> SSI\_MCLK can be generated from SSI\_CLKIN or a divided version of the internal system clock (SYSCLK).

<sup>3</sup> SSI\_BCLK can be derived from SSI\_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the minimum divider is 6. If the SSI\_CLKIN input is used, the programmable dividers must be set to ensure that SSI\_BCLK does not exceed 4 x f<sub>SYS</sub>.

| Num | Description                                                 | Symbol            | Min               | Мах | Units             |
|-----|-------------------------------------------------------------|-------------------|-------------------|-----|-------------------|
| S11 | SSI_BCLK cycle time                                         | t <sub>BCLK</sub> | $8 	imes t_{SYS}$ | _   | ns                |
| S12 | SSI_BCLK pulse width high/low                               |                   | 45%               | 55% | t <sub>BCLK</sub> |
| S13 | SSI_FS input setup before SSI_BCLK                          |                   | 10                |     | ns                |
| S14 | SSI_FS input hold after SSI_BCLK                            |                   | 3                 | _   | ns                |
| S15 | SSI_BCLK to SSI_TXD/SSI_FS output valid                     |                   | —                 | 15  | ns                |
| S16 | SSI_BCLK to SSI_TXD/SSI_FS output invalid/high<br>impedence |                   | -2                | _   | ns                |
| S17 | SSI_RXD setup before SSI_BCLK                               |                   | 10                | _   | ns                |
| S18 | SSI_RXD hold after SSI_BCLK                                 |                   | 3                 | _   | ns                |

Table 20. SSI Timing – Slave Modes<sup>1</sup>

<sup>1</sup> All timings specified with a capactive load of 25pF.



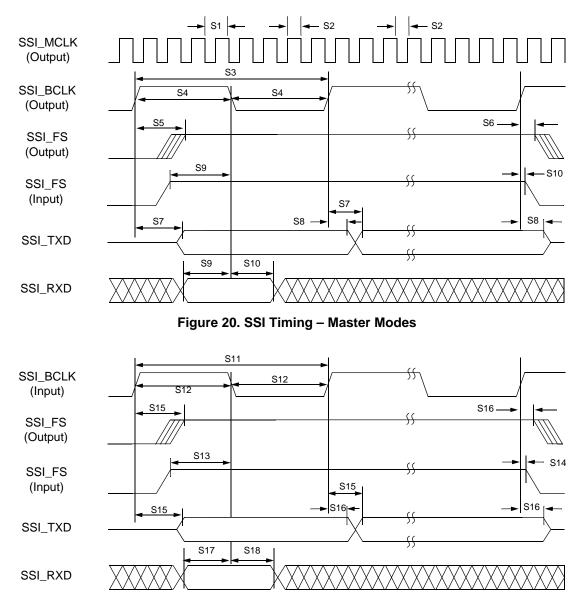



Figure 21. SSI Timing – Slave Modes

# 5.14 I<sup>2</sup>C Input/Output Timing Specifications

Table 21 lists specifications for the  $I^2C$  input timing parameters shown in Figure 22.

## Table 21. I<sup>2</sup>C Input Timing Specifications between SCL and SDA

| Num | Characteristic                                                                    | Min | Мах | Units            |
|-----|-----------------------------------------------------------------------------------|-----|-----|------------------|
| 1   | Start condition hold time                                                         | 2   | —   | t <sub>cyc</sub> |
| 12  | Clock low period                                                                  | 8   | —   | t <sub>cyc</sub> |
| 13  | I2C_SCL/I2C_SDA rise time ( $V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$ ) | _   | 1   | ms               |
| 14  | Data hold time                                                                    | 0   | —   | ns               |



| Num | Characteristic                                                                    | Min | Мах | Units            |
|-----|-----------------------------------------------------------------------------------|-----|-----|------------------|
| 15  | I2C_SCL/I2C_SDA fall time ( $V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$ ) | _   | 1   | ms               |
| 16  | Clock high time                                                                   | 4   |     | t <sub>cyc</sub> |
| 17  | Data setup time                                                                   | 0   | _   | ns               |
| 18  | Start condition setup time (for repeated start condition only)                    | 2   | _   | t <sub>cyc</sub> |
| 19  | Stop condition setup time                                                         | 2   | _   | t <sub>cyc</sub> |

 Table 21. I<sup>2</sup>C Input Timing Specifications between SCL and SDA (continued)

Table 22 lists specifications for the  $I^2C$  output timing parameters shown in Figure 22.

## Table 22. I<sup>2</sup>C Output Timing Specifications between SCL and SDA

| Num             | Characteristic                                                                 | Min | Max | Units            |
|-----------------|--------------------------------------------------------------------------------|-----|-----|------------------|
| 11 <sup>1</sup> | Start condition hold time                                                      | 6   | _   | t <sub>cyc</sub> |
| l2 <sup>1</sup> | Clock low period                                                               | 10  | _   | t <sub>cyc</sub> |
| 13 <sup>2</sup> | I2C_SCL/I2C_SDA rise time (V <sub>IL</sub> = 0.5 V to V <sub>IH</sub> = 2.4 V) |     |     | μs               |
| 14 <sup>1</sup> | Data hold time                                                                 | 7   | _   | t <sub>cyc</sub> |
| 15 <sup>3</sup> | I2C_SCL/I2C_SDA fall time (V <sub>IH</sub> = 2.4 V to V <sub>IL</sub> = 0.5 V) | _   | 3   | ns               |
| 16 <sup>1</sup> | Clock high time                                                                | 10  |     | t <sub>cyc</sub> |
| 17 <sup>1</sup> | Data setup time                                                                | 2   | _   | t <sub>cyc</sub> |
| 18 <sup>1</sup> | Start condition setup time (for repeated start condition only)                 | 20  | _   | t <sub>cyc</sub> |
| 19 <sup>1</sup> | Stop condition setup time                                                      | 10  | _   | t <sub>cyc</sub> |

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 22. The  $I^2C$  interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 22 are minimum values.

<sup>2</sup> Because I2C\_SCL and I2C\_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C\_SCL or I2C\_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

<sup>3</sup> Specified at a nominal 50-pF load.

1

Figure 22 shows timing for the values in Table 22 and Table 21.

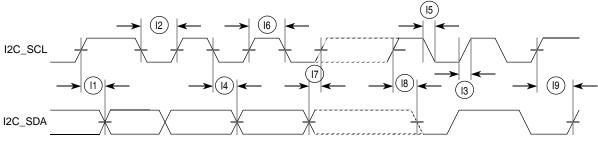



Figure 22. I<sup>2</sup>C Input/Output Timings





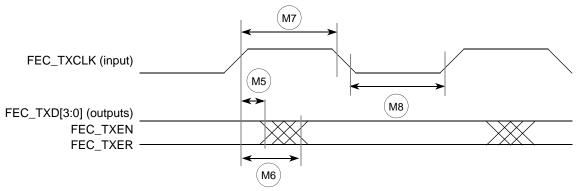



Figure 24. MII Transmit Signal Timing Diagram

## 5.15.3 MII Async Inputs Signal Timing

Table 25 lists MII asynchronous inputs signal timing.

Table 25. MII Async Inputs Signal Timing

| Num | Characteristic                       | Min | Мах | Unit             |
|-----|--------------------------------------|-----|-----|------------------|
| M9  | FEC_CRS, FEC_COL minimum pulse width | 1.5 |     | FEC_TXCLK period |



Figure 25. MII Async Inputs Timing Diagram

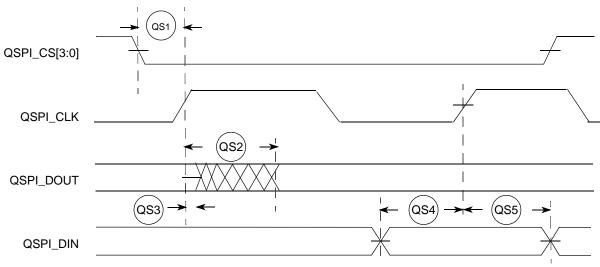

## 5.15.4 MII Serial Management Channel Timing

Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Table 26. MII Serial Management Channel Timing

| Num | Characteristic                                                              | Min | Max | Unit           |
|-----|-----------------------------------------------------------------------------|-----|-----|----------------|
| M10 | FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay) | 0   | _   | ns             |
| M11 | FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)              | _   | 25  | ns             |
| M12 | FEC_MDIO (input) to FEC_MDC rising edge setup                               | 10  |     | ns             |
| M13 | FEC_MDIO (input) to FEC_MDC rising edge hold                                | 0   | —   | ns             |
| M14 | FEC_MDC pulse width high                                                    | 40% | 60% | FEC_MDC period |
| M15 | FEC_MDC pulse width low                                                     | 40% | 60% | FEC_MDC period |





### Figure 27. QSPI Timing

# 5.18 JTAG and Boundary Scan Timing

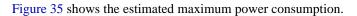
## Table 29. JTAG and Boundary Scan Timing

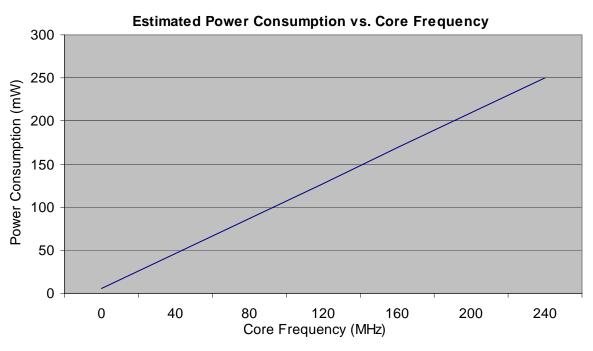
| Num | Characteristics <sup>1</sup>                       | Symbol              | Min | Max | Unit               |
|-----|----------------------------------------------------|---------------------|-----|-----|--------------------|
| J1  | TCLK Frequency of Operation                        | f <sub>JCYC</sub>   | DC  | 1/4 | f <sub>sys/3</sub> |
| J2  | TCLK Cycle Period                                  | t <sub>JCYC</sub>   | 4   | —   | t <sub>CYC</sub>   |
| J3  | TCLK Clock Pulse Width                             | t <sub>JCW</sub>    | 26  | —   | ns                 |
| J4  | TCLK Rise and Fall Times                           | t <sub>JCRF</sub>   | 0   | 3   | ns                 |
| J5  | Boundary Scan Input Data Setup Time to TCLK Rise   | t <sub>BSDST</sub>  | 4   | _   | ns                 |
| J6  | Boundary Scan Input Data Hold Time after TCLK Rise | t <sub>BSDHT</sub>  | 26  | _   | ns                 |
| J7  | TCLK Low to Boundary Scan Output Data Valid        | t <sub>BSDV</sub>   | 0   | 33  | ns                 |
| J8  | TCLK Low to Boundary Scan Output High Z            | t <sub>BSDZ</sub>   | 0   | 33  | ns                 |
| J9  | TMS, TDI Input Data Setup Time to TCLK Rise        | t <sub>TAPBST</sub> | 4   | _   | ns                 |
| J10 | TMS, TDI Input Data Hold Time after TCLK Rise      | t <sub>TAPBHT</sub> | 10  |     | ns                 |
| J11 | TCLK Low to TDO Data Valid                         | t <sub>TDODV</sub>  | 0   | 26  | ns                 |
| J12 | TCLK Low to TDO High Z                             | t <sub>TDODZ</sub>  | 0   | 8   | ns                 |
| J13 | TRST Assert Time                                   | t <sub>TRSTAT</sub> | 100 | —   | ns                 |
| J14 | TRST Setup Time (Negation) to TCLK High            | t <sub>TRSTST</sub> | 10  | —   | ns                 |

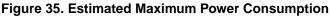
<sup>1</sup> JTAG\_EN is expected to be a static signal. Hence, specific timing is not associated with it.



**Current Consumption** 


| f <sub>sys/3</sub> Frequency | Voltage | Typical <sup>2</sup> Active<br>(Flash) | Peak <sup>3</sup> | Unit |
|------------------------------|---------|----------------------------------------|-------------------|------|
| 1.333 MHz                    | 3.3V    | 7.73                                   | 7.74              |      |
| 1.555 WILLZ                  | 1.5V    | 2.87                                   | 3.56              |      |
| 2.666 MHz                    | 3.3V    | 8.57                                   | 8.60              |      |
| 2.000 MILIZ                  | 1.5V    | 4.37                                   | 5.52              |      |
| 58 MHz                       | 3.3V    | 40.10                                  | 49.3              |      |
|                              | 1.5V    | 65.90                                  | 91.70             | mA   |
| 64 MHz                       | 3.3V    | 44.40                                  | 54.0              |      |
|                              | 1.5V    | 69.50                                  | 97.0              |      |
| 72 MHz                       | 3.3V    | 53.6                                   | 63.7              |      |
|                              | 1.5V    | 74.6                                   | 74.6 104.7        |      |
| 80 MHz                       | 3.3V    | 63.0                                   | 73.7              | 1    |
|                              | 1.5V    | 79.6                                   | 112.9             |      |


 Table 32. Typical Active Current Consumption Specifications<sup>1</sup>


<sup>1</sup> All values are measured with a 3.30 V EV<sub>DD</sub>, 3.30 V SDV<sub>DD</sub> and 1.5 V IV<sub>DD</sub> power supplies. Tests performed at room temperature with pins configured for high drive strength.

<sup>2</sup> CPU polling a status register. All peripheral clocks except UARTO, FlexBus, INTCO, reset controller, PLL, and edge port disabled.

<sup>3</sup> Peak current measured while running a while(1) loop with all modules active.











# 7 Package Information

This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices.

NOTE

The mechanical drawings are the latest revisions at the time of publication of this document. The most up-to-date mechanical drawings can be found at the product summary page located at http://www.freescale.com/coldfire.

## 7.1 Package Dimensions—256 MAPBGA

Figure 36 shows MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 package dimensions.

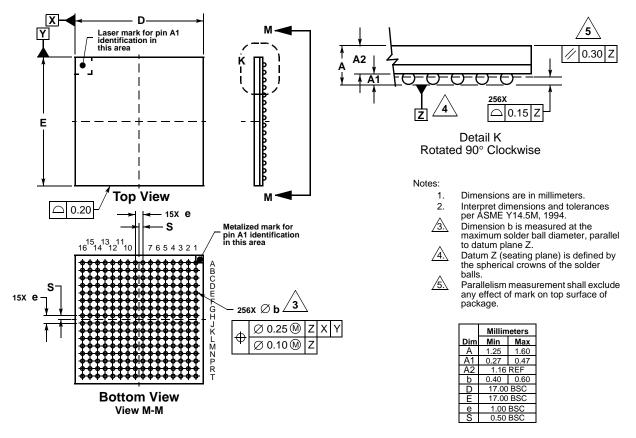



Figure 36. 256 MAPBGA Package Outline



Package Information

# 7.2 Package Dimensions—196 MAPBGA

Figure 37 shows the MCF5327CVM240 package dimensions.

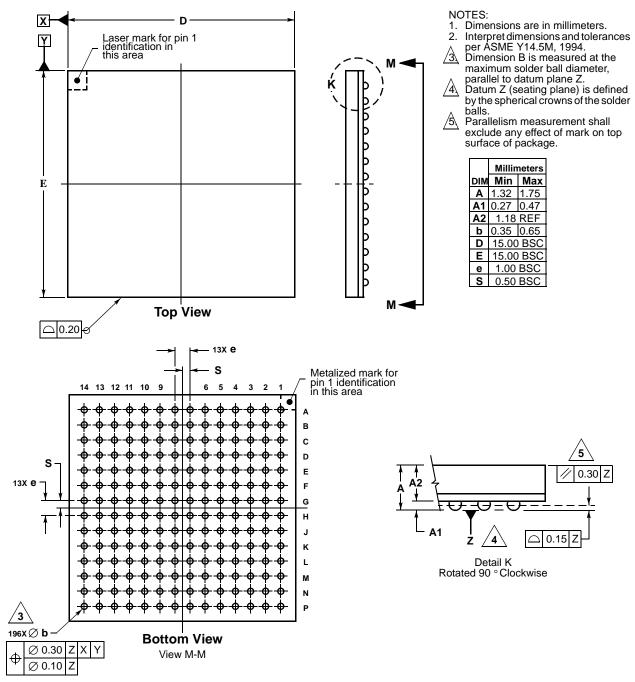



Figure 37. 196 MAPBGA Package Dimensions (Case No. 1128A-01)



#### How to Reach Us:

Home Page: www.freescale.com

#### Web Support:

http://www.freescale.com/support

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5329DS Rev. 5 11/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.

