

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART, USB
Peripherals	POR
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f326-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.3. Typical Connections for the C8051F326

Figure 1.4. Typical Connections for the C8051F327

3. Global DC Electrical Characteristics

Table 3.1. Global DC Electrical Characteristics

-40 to +85 °C, 25 MHz System Clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
I/O Supply Voltage (VIO) ^{1,2}		1.8	3.3	3.6	V
Core Supply Voltage (VDD) ³		2.7	3.3	3.6	V
Core Supply Current with CPU Active	VDD = 3.3 V, Clock = 24 MHz VDD = 3.3 V, Clock = 3 MHz VDD = 3.3 V, Clock = 32 kHz		11 1.9 20		mA mA μA
Core Supply Current with CPU Inactive (not accessing Flash)	VDD = 3.3 V, Clock = 24 MHz VDD = 3.3 V, Clock = 3 MHz VDD = 3.3 V, Clock = 32 kHz	 	4.4 0.83 13		mA mA μA
Digital Supply Current (sus- pend mode or shutdown mode)	Oscillator not running	_	< 0.1	_	μA
Digital Supply RAM Data Reten- tion Voltage		_	1.5	_	V
SYSCLK (System Clock) ⁴		0		25	MHz
T _{SYSH} (SYSCLK High Time)		18			ns
T _{SYSL} (SYSCLK Low Time)		18			ns
Specified Operating Tempera- ture Range		-40		+85	°C

Notes:

1. The I/O Supply Voltage (VIO) must be less than or equal to the Core Supply Voltage (VDD).

2. For C8051F327 devices, VIO is internally connected to VDD.

3. USB Requires 3.0 V Minimum Core Supply Voltage (VDD).

4. SYSCLK must be at least 32 kHz to enable debugging.

C8051F326/7

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (2s complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

C8051F326/7

SFR	Definition	6.7.	IE:	Interrug	ot Enable
		· · · ·			

R/W	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value		
EA			ES0	ET1	EX1	ET0	EX0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
						(bit	addressabl	e) 0xA8		
						,		,		
Bit7:	EA: Enable /	All Interrupt	S.							
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-									
	tings.									
	0: Disable all interrupt sources.									
	1: Enable ea	ich interrup	t according	to its individ	lual mask s	setting.				
Bit6–5:	Unused. Rea	ad = 00b. V	/rite = don't	care.						
Bit4:	ES0: Enable	UART0 Int	errupt.							
	This bit sets	the maskin	g of the UA	RT0 interru	pt.					
	0: Disable U	ARIO Interi	rupt.							
D:40.	1: Enable U/		upt.							
BI(3)	ETT: Enable	the meekin	errupt. a of the Tim	or 1 interru	nt					
	0: Disable al	Timor 1 in	g of the fill		μ.					
	1. Enable int		ests deners	ated by the	TF1 flag					
Bit2 [.]	EX1: Enable	External Ir	terrunt 1		n nag.					
DRE:	This bit sets	the maskin	a of Externa	al Interrupt	1					
	0: Disable ex	cternal inter	rupt 1.							
	1: Enable int	errupt requ	ests genera	ated by the	/INT1 input.					
Bit1:	ET0: Enable	Timer 0 Int	terrupt.	,	•					
	This bit sets	the maskin	g of the Tim	ner 0 interru	pt.					
	0: Disable al	l Timer 0 in	terrupt.							
	1: Enable int	errupt requ	ests genera	ated by the	TF0 flag.					
Bit0:	EX0: Enable	External Ir	nterrupt 0.							
	This bit sets	the maskin	g of Externa	al Interrupt	Э.					
	0: Disable ex	cternal inter	rupt 0.							
	1: Enable interrupt requests generated by the /INT0 input.									

SFR Definition 7.2. RSTSRC: Reset Source

D/M	D	D	D/M	P			D	Posot Value		
USBRSE	FERROR		SWRSF		MCDRSE	PORSE	PINRSE	Variable		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xEF		
Bit7:	USBRSF: USB Reset Flag									
	0: Read: Las	st reset was	s not a USB	reset; Writ	e: USB rese	ets disablec	1.			
D'IO	1: Read: Las	st reset was	s a USB res	et; Write: L	ISB resets e	enabled.				
Bito:	FERROR: FI	ash Error I	ndicator.	ach road/w	rito/orooo or	ror				
	1: Source of	last reset v	vas nulia Fi vas a Flash	road/writo/	ne/erase er	101.				
Bit5:	Unused, Rea	ad = 0. Writ	e = don't ca	ire.						
Bit4:	SWRSF: Sof	tware Rese	et Force and	d Flag.						
	0: Read: Sou	urce of last	reset was r	not a write to	o the SWRS	SF bit; Write	e: No Effec	t.		
	1: Read: Sou	urce of last	was a write	to the SWI	RSF bit; Wr i	ite: Forces	a system r	eset.		
Bit3:	Unused. Rea	ad = 0. Writ	e = don't ca	are.						
Bit2:	MCDRSF: M	issing Cloc	k Detector	Flag.	a Clask Dat			linging		
	Clock Detect	urce or last	reset was r	iot a missin	д Сюск Det	ector timeo	out; write: I	viissing		
	1: Read: Soi	urce of last	reset was a	a Missing C	lock Detecto	or timeout. V	Write: Miss	sing Clock		
	Detector ena	bled; trigge	ers a reset i	f a missing	clock condit	ion is detec	cted.	ing croon		
Bit1:	PORSF: Pov	ver-On / VE	DD Monitor	Reset Flag.						
	This bit is se	t anytime a	power-on r	eset occurs	s. Writing thi	s bit selects	s/deselects	the VDD		
	monitor as a	reset sourc	ce. Note: w	riting '1' to	this bit bef	ore the VD	D monitor	is enabled		
	and stabilize	ed can cau	ise a syste	m reset. Se	e register V	DMOCN (F	Figure 7.1).	itor io not o		
	U: Read: Las	st reset was	s not a powe	er-on or VD	D monitor re	eset; write:		itor is not a		
	1. Read. Las	st reset was	s a nower-o	n or VDD m	onitor reset	· all other re	eset flags i	ndetermi-		
	nate: Write:	VDD monit	or is a rese	t source.		, an other re	ooot nago n			
Bit0:	PINRSF: HW	/ Pin Reset	Flag.	_						
	0: Source of	last reset v	vas <u>not R</u> ST	Г pin.						
	1: Source of	last reset v	vas RST pir	۱.						
Noto: Do	not uso room	l-modify y	rito instru	tions on t	hie rogietor					
NOLE. DO	not use read	a-mouny-w			nis register	•				

8. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the C2 interface or by software using the MOVX instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operation is not required. Code execution is stalled during a Flash write/erase operation. Refer to Table 8.1 for complete Flash memory electrical characteristics.

8.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "15. C2 Interface" on page 135.

To ensure the integrity of Flash contents, it is strongly recommended that the on-chip VDD Monitor be enabled in any system that includes code that writes and/or erases Flash memory from software.

8.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in Figure 8.2.

8.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY); and (2) Setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed must be erased before a new value is written. The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set the PSEE bit (register PSCTL).
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
- Step 7. Clear the PSWE bit (register PSCTL).
- Step 8. Clear the PSEE bit (register PSCTI).

SFR Definition 8.2. FLKEY: Flash Lock and Key

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB7
Bits7–0:	FLKEY: Flas Write: This register remains lock timing of the must be writt system reset codes have I Read: When read, I 00: Flash is 01: The first 10: Flash is 11: Flash writ	th Lock and must be wi ed until this writes does ten for each t if the wron been written bits 1-0 indi write/erase key code h unlocked (w ites/erases	Key Regist ritten to before register is not matter, Flash write g codes are n correctly. icate the cu locked. as been writes/erase disabled ur	ter ore Flash w written to w , as long as e or erase o e written or rrent Flash itten (0xA5). s allowed). ntil the next	rites or eras ith the follo the codes a peration. Fl if a Flash of lock state.	ses can be wing key co re written ir ash will be peration is a	performed. des: 0xA5 order. The locked unt attempted I	. Flash , 0xF1. The e key codes il the next before the

SFR Definition 8.3. FLSCL: Flash Scale

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
FOSE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB6
Bits7: Bits6–0:	FOSE: Flash This bit enab sense amps cies below 1 0: Flash one 1: Flash one Reserved. R	n One-shot oles the Flaa are enable 0 MHz, disa -shot disab -shot enabl ead = 0. Mi	Enable sh read one d for a full c abling the F led. ed. ust Write 0.	e-shot. Whe lock cycle o lash one-sh	n the Flash during Flash lot will incre	one-shot d n reads. At s ase system	isabled, the system cloc i power con	Flash k frequen- sumption.

9.2. Accessing USB FIFO Space

The upper 256 bytes of XRAM functions as USB FIFO space. Figure 9.2 shows an expanded view of the FIFO space and user XRAM. FIFO space is accessed via USB FIFO registers; see Section "12.5. FIFO Management" on page 95 for more information on accessing these FIFOs. The FIFO block operates on the USB clock domain; thus the USB clock must be active when accessing FIFO space.

Important Note: The USB clock must be active when accessing FIFO space.

Figure 9.2. XRAM Memory Map Expanded View

SFR D	efinition	9.1.	EMI0CN:	External	Memory	Interface	Control
-		-					

R/W	R/W	R/W	R/W	R/W	R/W		R/W	Reset Value
	-	-	-	-		FOSLLI	FOSELO	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xAA
Bits7–3 Bits2–0	Unused. Rea PGSEL[1:0]: The XRAM F address whe RAM. The u the entire 64	ad = 00000 XRAM Pag Page Select en using an oper 6-bits a k external o	0b. Write = ge Select Bi t Bits provid 8-bit MOV> are "don't ca data memor	don't care. its. e the high t < command ares", so the y address s	byte of the 1 , effectively e 1k addres pace.	6-bit exterr selecting a s block is re	nal data me 256-byte p epeated mo	mory age of odulo over

10.1.1. Adjusting the Internal Oscillator on C8051F326/7 Devices

The OSCICL reset value is factory calibrated to result in a 12 MHz internal oscillator with a $\pm 1.5\%$ accuracy; this frequency is suitable for use as the USB clock (see Section "10.5. System and USB Clock Selection" on page 76). Software may adjust the frequency of the internal oscillator using the OSCICL register.

Important Note: Once the internal oscillator frequency has been modified, the internal oscillator may not be used as the USB clock as described in Section "10.5. System and USB Clock Selection" on page 76. The internal oscillator frequency will reset to its original factory-calibrated frequency following any device reset, at which point the oscillator is suitable for use as the USB clock.

10.1.2. Internal Oscillator Suspend Mode

The internal oscillator may be placed in Suspend mode by writing '1' to the SUSPEND bit in register OSCICN. In Suspend mode, the internal oscillator is stopped until a non-idle USB event is detected (Section "12. Universal Serial Bus Controller (USB0)" on page 87) or VBUS matches the polarity selected by the VBPOL bit in register REG0CN (Section "5.2. VBUS Detection" on page 31). Note that the USB transceiver must be enabled or in Suspend mode for a USB event to be detected.

SFR Definition 10.1. OSCICN: Internal Oscillator Control

R/W	R	R/W	R	R/W	R/W	R/W	R/W	Reset Value		
IOSCEN	IFRDY	SUSPEND		—	_	IFCN1	IFCN0	11000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xB2		
Bit7:	Bit7: IOSCEN: Internal Oscillator Enable Bit.									
	1: Internal O	Scillator Engl	Jieu.							
Bit6 [.]	IFRDY Inter	rnal Oscillator	Frequenc	ev Ready F	lag					
Dito:	0: Internal O	scillator is no	t running	at program	med freque	ency.				
	1: Internal O	scillator is rur	nning at p	rogrammed	frequency	<i>.</i>				
Bit5:	SUSPEND:	Force Susper	nd	-						
	Writing a '1'	to this bit will	force the	internal os	cillator to b	e stopped.	The oscilla	tor will be re-		
	started on th	ne next non-id	le USB ev	/ent (i.e., R	ESUME si	gnaling) or	VBUS inter	rrupt event		
Dito 4 2:	(See SFR De	etinition 5.1). $d = 0.00 h$ W	rito - don	t ooro						
DIIS4-2. Bits1_0:		au = 0000. W ternal Oscillat		i Care.	l Rite					
Dits 1-0.		derived from	Internal (Oscillator d	ivided by 8	ł				
	01: SYSCI k	C derived from	Internal (Oscillator d	ivided by 4	/. L				
	10: SYSCLK	C derived from	Internal (Oscillator d	ivided by 2					
	11: SYSCLK derived from Internal Oscillator divided by 1.									

10.5. System and USB Clock Selection

The internal oscillator requires little start-up time and may be selected as the system or USB clock immediately following the OSCICN write that enables the internal oscillator. If the external clock is selected as the system or USB clock, then startup times may vary based on the specifications of the external clock.

10.5.1. System Clock Selection

The CLKSL[2:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[2:0] must be set to 001b for the system clock to run from the external clock; however the external clock may still clock certain peripherals (timers, UART, USB) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external clock, low frequency oscillator, and 4x Clock Multiplier so long as the selected oscillator is enabled and can provide a stable clock.

10.5.2. USB Clock Selection

The USBCLK[1:0] bits in register CLKSEL select which oscillator source is used as the USB clock. The USB clock may be derived from the 4x Clock Multiplier output, internal oscillator divided by 2, or an external clock. The USB clock source may also be turned off. The USB clock must be 48 MHz when operating USB0 as a Full Speed Function; the USB clock must be 6 MHz when operating USB0 as a Low Speed Function. See Figure 10.5 for USB clock selection options.

Some example USB clock configurations for Full and Low Speed mode are given below:

Internal Oscillator							
Clock Signal Input Source Selection Register Bit Setting							
USB Clock	Clock Multiplier	USBCLK = 00b					
Clock Multiplier Input	Internal Oscillator*	MULSEL = 0b					
Internal Oscillator	Divide by 1	IFCN = 11b					
External Clock							
Clock Signal	Input Source Selection	Register Bit Settings					
USB Clock	Clock Multiplier	USBCLK = 10b					
Clock Multiplier Input	External Clock	MULSEL = 1b					
Port I/O	12 MHz CMOS Clock	INPUTEN = 1b (GPI-					
		OCN.6)					
*Note: Clock Recovery must	be enabled for this configuratio	n.					

Table 10.1. Typical USB Full Speed Clock Settings

Table 10.2. Typical USB Low Speed Clock Settings

Internal Oscillator							
Clock Signal Input Source Selection Register Bit Settin							
USB Clock	Internal Oscillator / 2	USBCLK = 01b					
Internal Oscillator	Divide by 1	IFCN = 11b					
External Clock							
Clock Signal	Input Source Selection	Register Bit Settings					
USB Clock	External Clock	USBCLK = 10b					
Port I/O	6 MHz CMOS Clock	INPUTEN = 1b (GPI- OCN.6)					

SFR Definition 11.4. P2: Port2

R/W	R/W	R/W P2.5	R/W P2.4	R/W P2.3	R/W P2.2	R/W P2.1	R/W P2.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
Bits7–6: Bits5–0:	Unused. Rea P2.[5:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alwa 0: P2.n pin is 1: P2.n pin is	ad = 00b. W ut appears of Output. n Output (hi ys reads '0' s logic low. s logic high.	/rite = don't on I/O pins. gh impedar if INPUTE!	care. nce if corres N = '0'. Othe	ponding P2 prwise, diree	2MDOUT.n I ctly reads P	bit = 0). Port pin.	

SFR Definition 11.5. P2MDOUT: Port2 Output Mode

SFR Definition 11.6. P3: Port3

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
				_	_		P3.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bi	t addressable) 0xB0
Bits7–1: Bit0:	Unused. Rea P3.0 Write - Outp 0: Logic Low 1: Logic Higl Read - Alwa 0: P3.n pin is 1: P3.n pin is	ad = 00000 ut appears v Output. n Output (hi ys reads '0' s logic low. s logic high.	00b. Write = on I/O pins. igh impedar if INPUTEI	= don't care nce if corres N = '0'. Othe	ponding P3 erwise, dire	BMDOUT.n ctly reads F	bit = 0). Port pin.	

12.1. Endpoint Addressing

A total of three endpoint pipes are available. The control endpoint (Endpoint0) always functions as a bi-directional IN/OUT endpoint. Endpoint 1 is implemented as a 64 byte IN pipe and a 128 byte OUT pipe:

Endpoint	Associated Pipes	USB Protocol Address
Endpoint0	Endpoint0 IN	0x00
Lindpolitio	Endpoint0 OUT	0x00
Endpoint1	Endpoint1 IN	0x81
спаропит	Endpoint1 OUT	0x01

Table 12.1. Endpoint Addressing Scheme

12.2. USB Transceiver

The USB Transceiver is configured via the USB0XCN register shown in Figure 12.1. This configuration includes Transceiver enable/disable, pullup resistor enable/disable, and device speed selection (Full or Low Speed). When bit SPEED = '1', USB0 operates as a Full Speed USB function, and the on-chip pullup resistor (if enabled) appears on the D+ pin. When bit SPEED = '0', USB0 operates as a Low Speed USB function, and the on-chip pullup resistor (if enabled) appears on the D+ pin. When bit SPEED = '0', USB0 operates as a Low Speed USB function, and the on-chip pullup resistor (if enabled) appears on the D- pin. Bits4-0 of register USB0XCN can be used for Transceiver testing as described in Figure 12.1. The pullup resistor is enabled only when VBUS is present (see Section "5.2. VBUS Detection" on page 31 for details on VBUS detection).

Important Note: The USB clock should be active before the Transceiver is enabled.

12.11. Configuring Endpoint1

Endpoint1 is configured and controlled through a set of control/status registers: IN registers EINCSRL and EINCSRH, and OUT registers EOUTCSRL and EOUTCSRH. The endpoint control/status registers are mapped into the USB register address space based on the contents of the INDEX register (Figure 12.4).

12.12. Controlling Endpoint1 IN

Endpoint1 IN is managed via USB registers EINCSRL and EINCSRH. The IN endpoint can be used for Interrupt, Bulk, or Isochronous transfers. Isochronous (ISO) mode is enabled by writing '1' to the ISO bit in register EINCSRH. Bulk and Interrupt transfers are handled identically by hardware.

An Endpoint1 IN interrupt is generated by any of the following conditions:

- 1. An IN packet is successfully transferred to the host.
- 2. Software writes '1' to the FLUSH bit (EINCSRL.3) when the target FIFO is not empty.
- 3. Hardware generates a STALL condition.

12.12.1.Endpoint1 IN Interrupt or Bulk Mode

When the ISO bit (EINCSRH.6) is logic 0, Endpoint1 operates in Bulk or Interrupt Mode. Once it has been configured to operate in Bulk/Interrupt IN mode (typically following an Endpoint0 SET_INTERFACE command), firmware should load an IN packet into the endpoint IN FIFO and set the INPRDY bit (EINCSRL.0). Upon reception of an IN token, hardware will transmit the data, clear the INPRDY bit, and generate an interrupt.

Writing '1' to INPRDY without writing any data to the endpoint FIFO will cause a zero-length packet to be transmitted upon reception of the next IN token.

A Bulk or Interrupt pipe can be shut down (or Halted) by writing '1' to the SDSTL bit (EINCSRL.4). While SDSTL = '1', hardware will respond to all IN requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EINCSRL.5) set to '1'. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically reset INPRDY to '0' when a packet slot is open in the endpoint FIFO. If double buffering is enabled for the target endpoint, it is possible for firmware to load two packets into the IN FIFO at a time. In this case, hardware will reset INPRDY to '0' immediately after firmware loads the first packet into the FIFO and sets INPRDY to '1'. An interrupt will not be generated in this case; an interrupt will only be generated when a data packet is transmitted.

When firmware writes '1' to the FCDT bit (EINCSRH.3), the data toggle for each IN packet will be toggled continuously, regardless of the handshake received from the host. This feature is typically used by Interrupt endpoints functioning as rate feedback communication for Isochronous endpoints. When FCDT = '0', the data toggle bit will only be toggled when an ACK is sent from the host in response to an IN packet.

12.12.2.Endpoint1 IN Isochronous Mode

When the ISO bit (EINCSRH.6) is set to '1', the target endpoint operates in Isochronous (ISO) mode. Once an endpoint has been configured for ISO IN mode, the host will send one IN token (data request) per frame; the location of data within each frame may vary. Therefore, it is recommended that double buffering be enabled when using Endpoint1 IN as an Isochronous endpoint.

12.13. Controlling Endpoint1 OUT

Endpoint1 OUT is managed via USB registers EOUTCSRL and EOUTCSRH. It can be used for Interrupt, Bulk, or Isochronous transfers. Isochronous (ISO) mode is enabled by writing '1' to the ISO bit in register EOUTCSRH. Bulk and Interrupt transfers are handled identically by hardware.

An Endpoint1 OUT interrupt may be generated by the following:

- 1. Hardware sets the OPRDY bit (EINCSRL.0) to '1'.
- 2. Hardware generates a STALL condition.

12.13.1.Endpoint1 OUT Interrupt or Bulk Mode

When the ISO bit (EOUTCSRH.6) is logic 0, Endpoint1 operates in Bulk or Interrupt mode. Once it has been configured to operate in Bulk/Interrupt OUT mode (typically following an Endpoint0 SET_INTER-FACE command), hardware will set the OPRDY bit (EOUTCSRL.0) to '1' and generate an interrupt upon reception of an OUT token and data packet. The number of bytes in the current OUT data packet (the packet ready to be unloaded from the FIFO) is given in the EOUTCNTH and EOUTCNTL registers. In response to this interrupt, firmware should unload the data packet from the OUT FIFO and reset the OPRDY bit to '0'.

A Bulk or Interrupt pipe can be shut down (or Halted) by writing '1' to the SDSTL bit (EOUTCSRL.5). While SDSTL = '1', hardware will respond to all OUT requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EOUTCSRL.6) set to '1'. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically set OPRDY when a packet is ready in the OUT FIFO. Note that if double buffering is enabled for Endpoint1, it is possible for two packets to be ready in the OUT FIFO at a time. In this case, hardware will set OPRDY to '1' immediately after firmware unloads the first packet and resets OPRDY to '0'. A second interrupt will be generated in this case.

12.13.2.Endpoint1 OUT Isochronous Mode

When the ISO bit (EOUTCSRH.6) is set to '1', Endpoint1 operates in Isochronous (ISO) mode. Once it has been configured for ISO OUT mode, the host will send exactly one data per USB frame; the location of the data packet within each frame may vary, however. Because of this, it is recommended that double buffering be enabled when Endpoint1 is used in Isochronous mode.

Each time a data packet is received, hardware will load the received data packet into the endpoint FIFO, set the OPRDY bit (EOUTCSRL.0) to '1', and generate an interrupt (if enabled). Firmware would typically use this interrupt to unload the data packet from the endpoint FIFO and reset the OPRDY bit to '0'.

If a data packet is received when there is no room in the endpoint FIFO, an interrupt will be generated and the OVRUN bit (EOUTCSRL.2) set to '1'. If USB0 receives an ISO data packet with a CRC error, the data packet will be loaded into the endpoint FIFO, OPRDY will be set to '1', an interrupt (if enabled) will be generated, and the DATAERR bit (EOUTCSRL.3) will be set to '1'. Software should check the DATAERR bit each time a data packet is unloaded from an ISO OUT endpoint FIFO.

Table 12.4. USB Transceiver Electrical Characteristics

 V_{DD} = 3.0 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameters	Symbol	Conditions	Min	Тур	Max	Units	
USB Operating Current		Full Speed	—	5.7	—	mA	
		Low Speed	—	1.5	—		
Transmitter		·					
Output High Voltage	V _{OH}		2.8	_		V	
Output Low Voltage	V _{OL}		—		0.8	V	
Output Crossover Point	V _{CRS}		1.3	_	2.0	V	
Output Impedance	Z _{DRV}	Driving High	_	38	_	W	
		Driving Low	—	38	—		
Pullup Resistance	R _{PU}	Full Speed (D+ Pullup)	1.425	1.5	1.575	kW	
		Low Speed (D– Pullup)	_	—	—		
Output Rise Time	Τ _R	Low Speed	75	_	300	ns	
		Full Speed	4	—	20		
Output Fall Time	Τ _Γ	Low Speed	75	_	300	ns	
		Full Speed	4	—	20		
Receiver							
Differential Input Sensitiv-	V _{DI}	(D+) – (D–)	0.2	_	—	V	
ity							
Differential Input Com-	V _{CM}		0.8	—	2.5	V	
mon Mode Range							
Input Leakage Current	١L	Pullups Disabled	_	<1.0	—	μA	
Note: Refer to the USB Specification for timing diagrams and symbol definitions.							

	Target Baud Rate (bps)	Actual Baud Rate (bps)	Baud Rate Error	Oscillator Divide Factor	SB1PS[1:0] (Prescaler Bits)	Reload Value in SBRLH1:SBRLL1
	230400	230769	0.16%	52	11	0xFFE6
Ν	115200	115385	0.16%	104	11	0xFFCC
ΜH	57600	57692	0.16%	208	11	0xFF98
12	28800	28846	0.16%	416	11	0xFF30
下 11	14400	14388	0.08%	834	11	0xFE5F
loc	9600	9600	0.0%	1250	11	0xFD8F
ი ე	2400	2400	0.0%	5000	11	0xF63C
BR	1200	1200	0.0%	10000	11	0xEC78
	230400	230769	0.16%	104	11	0xFFCC
Ν	115200	115385	0.16%	208	11	0xFF98
МΗ	57600	57692	0.16%	416	11	0xFF30
24	28800	28777	0.08%	834	11	0xFE5F
下 11	14400	14406	0.04%	1666	11	0xFCBF
loc	9600	9600	0.0%	2500	11	0xFB1E
ი ე	2400	2400	0.0%	10000	11	0xEC78
BR	1200	1200	0.0%	20000	11	0xD8F0
	230400	230769	0.16%	208	11	0xFF98
Ν	115200	115385	0.16%	416	11	0xFF30
ΜH	57600	57554	0.08%	834	11	0xFE5F
48	28800	28812	0.04%	1666	11	0xFCBF
下 11	14400	14397	0.02%	3334	11	0xF97D
Sloc	9600	9600	0.0%	5000	11	0xF63C
0 0	2400	2400	0.0%	20000	11	0xD8F0
BR	1200	1200	0.0%	40000	11	0xB1E0

Table 13.1. Baud Rate Generator Settings for Standard Baud Rates

SF	R Definitio	on 13.5. S	BRLH0:	UART0	Baud Rate	Genera	tor High	Byte
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0v94
Bits7-0:	SBRLH0[7:0]]: High Byte	e of reload	value for L	JART0 Baud I	Rate Gen	erator.	5. UAJ4

SFR Definition 13.6. SBRLL0: UART0 Baud Rate Generator Low Byte

14.1.1. Mode 0: 13-bit Timer

Timer 0 and Timer 1 operate as 13-bit timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or GATE0 is logic 1 and the input signal /INT0 is active. Setting GATE0 to logic 1 allows the timer to be controlled by the external input signal /INT0, facilitating pulse width measurements. When GATE0 is set to logic 1, the /INT0 input pin is P0.2.

TR0	GATE0	/INT0	Timer				
0	Х	Х	Disabled				
1	0	Х	Enabled				
1	1	0 (P0.2 High)	Disabled				
1	1	1 (P0.2 Low)	Enabled				
X = Don't Care							

Table 14.2. Timer 0 Operation

See Table 6.4 on page 49 for detailed information on how GATE0 affects /INT0 functionality.

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled. TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1. See Section "6.3.2. External Interrupts" on page 49 for a complete description of /INT0 and /INT1.

Figure 14.1. T0 Mode 0 Block Diagram

14.1.2. Mode 1: 16-bit Timer

Mode 1 operation is the same as Mode 0, except that the timer registers use all 16 bits. The timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

14.1.3. Mode 2: 8-bit Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when GATE0 (TMOD.3) is logic 0 or when GATE0 is logic 1 and the input signal /INT0 is active (see Section "6.3.2. External Interrupts" on page 49 for details on the external input signals /INT0 and /INT1).

Figure 14.2. T0 Mode 2 Block Diagram

C8051F326/7

NOTES: