

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4439-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC18FXX39 DEVICE FEATURES

Features	PIC18F2439	PIC18F2539	PIC18F4439	PIC18F4539
Operating Frequency	DC - 40 MHz			
Program Memory (Bytes)	12K	24K	12K	24K
Program Memory (Instructions)	6144	12288	6144	12288
Data Memory (Bytes)	640	1408	640	1408
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	15	15	16	16
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	3	3	3	3
PWM Modules ⁽¹⁾	2	2	2	2
Single Phase Induction Motor Control	Yes	Yes	Yes	Yes
Serial Communications	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART
Parallel Communications	_		PSP	PSP
10-bit Analog-to-Digital Module	5 input channels	5 input channels	8 input channels	8 input channels
RESETS (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST)			
Programmable Low Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions	75 Instructions	75 Instructions	75 Instructions
Packages	28-pin DIP 28-pin SOIC	28-pin DIP 28-pin SOIC	40-pin DIP 44-pin TQFP 44-pin QFN	40-pin DIP 44-pin TQFP 44-pin QFN

Note 1: PWM modules are used exclusively in conjunction with the motor control kernel, and are not available for other applications.

TABLE 3-1:	TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)	_	Wake-up from
Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2ms	1024 Tosc + 2 ms	72 ms ⁽²⁾ + 1024 Tosc + 2 ms	1024 Tosc + 2 ms
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms ⁽²⁾ + 1024 Tosc	1024 Tosc
EC	72 ms	—	72 ms ⁽²⁾	—
External RC	72 ms	—	72 ms ⁽²⁾	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal power-up timer delay, if implemented.

REGISTER 3-1:	RCON REGISTER BITS AND POSITIONS
---------------	----------------------------------

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Note 1: Refer to Section 4.14 (page 50) for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	0u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

© 2002 Microchip Technology Inc.

FIGURE 4-6: DATA MEMORY MAP FOR PIC18FX539

5.4 Erasing FLASH Program memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control can larger blocks of program memory be bulk erased. Word erase in the FLASH array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased; TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the FLASH program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal FLASH. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

5.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load table pointer with address of row being erased.
- Set EEPGD bit to point to program memory, clear CFGS bit to access program memory, set WREN bit to enable writes, and set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

EXAMPLE 5-2: ERASING A FLASH PROGRAM MEMORY ROW

	MOVLW MOVWF MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE ADDR LOW	; ;	load TBLPTR with the base address of the memory block
	MOVWF	TBLPTRL		
ERASE ROW				
_	BSF	EECON1,EEPGD	;	point to FLASH program memory
	BCF	EECON1,CFGS	;	access FLASH program memory
	BSF	EECON1,WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON,GIE	;	disable interrupts
	MOVLW	55h		
Required	MOVWF	EECON2	;	write 55h
Sequence	MOVLW	AAh		
	MOVWF	EECON2	;	write AAh
	BSF	EECON1,WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on All Other RESETS
FF2h	INTCON	GIE/ GIEH	PEIE/ GIEL	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
FA9h	EEADR	EEPRON	EEPROM Address Register								0000 0000
FA8h	EEDATA	EEPROM	EEPROM Data Register								0000 0000
FA7h	EECON2	EEPROM	EEPROM Control Register2 (not a physical register)							—	_
FA6h	EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
FA2h	IPR2	_	_	_	EEIP	BCLIP	LVDIP	TMR3IP	_	1 1111	1 1111
FA1h	PIR2	_	_		EEIF	BCLIF	LVDIF	TMR3IF	_	0 0000	0 0000
FA0h	PIE2		_		EEIE	BCLIE	LVDIE	TMR3IE	_	0 0000	0 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values in power-of-2 increments, from 1:2 through 1:256, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) will clear the prescaler count.

Note: Writing to TMR0L when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control; it can be changed "on-the-fly" during program execution.

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (see Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TMR0L	Timer0 Modu	ule Low Byte F		xxxx xxxx	uuuu uuuu					
TMR0H	Timer0 Modu	ule High Byte I		0000 0000	0000 0000					
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	—	PORTA Data Direction Register								-111 1111

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

14.3 Software Interface

A sine table, stored in the ProMPT kernel, is used as the basis for synthesizing the DC bus using the PWM modules. The table values are accessed in sequence and scaled based on the frequency or the speed at which the motor is intended to run. The intended frequency input can be from an A/D channel or a digital value.

Parameters in the ProMPT modules can be accessed using the pre-defined Application Program Interface (API) methods. A list of the APIs is given in Section 14.3.3.

For example, to run the motor at 40 Hz, the user would invoke the PromMPT SetFrequency API:

i = ProMPT SetFrequency(40);

where i is an unsigned character variable. In this case, if i = 0 on return, the command has been successfully executed. If the frequency input is out of range, or if there is an error in setting the frequency, i is returned with a value of FFh.

Similarly, to check the frequency set by the ProMPT kernel, use the ProMPT_GetFrequency API:

i = ProMPT_GetFrequency(void);

where i is an unsigned character variable. Upon return from the ProMPT kernel, i will contain the frequency value in the ProMPT kernel.

14.3.1 THE V/F CURVE

The ProMPT kernel contains a default V/F curve stored in memory. The default curve is linear, as shown in Figure 14-2. Table 14-1 shows the data points used to construct the curve.

Users may require a different V/F curve for their application, based on the load on the motor, or based on the characteristics of the motor used. The curve can be changed in the application program using the API method SetVFCurve (X, Y), where X is the frequency and Y is the level of modulation of the DC bus voltage. As a rule, in customizing the curve, the input frequency corresponding to the point on the V/F curve that gives 100% modulation should match the motor's rated frequency. Similarly, full modulation should occur at the motor's rated input voltage. (See Figure 14-2 for details.)

Examples of the characteristics for V/F curves for typical motor applications are shown in Section 14-2 (page 115).

14.3.2 PARAMETERS DEFINED BY THE ProMPT API METHODS

Frequency: The frequency (in Hz) of the supply current for steady state motor operation.

Modulation: The level of modulation (in percentage) applied to the DC supply voltage by the PWM through the H-bridge to produce AC drive current.

Acceleration rate: The rate of increase of motor speed, achieved by ramping up the supply frequency. Expressed in Hz/s.

Deceleration rate: The rate of decrease of motor speed, achieved by ramping down the supply frequency. Expressed in Hz/s.

Boost: The mode for starting a stopped motor by varying the supply current frequency and modulation until steady state speed is reached. Boost is defined in terms of a frequency, a starting and ending modulation, and a time interval for the transition between the two.

PWM Frequency: The sampling rate (in kHz) at which the PWM module operates.

FIGURE 14-2: DEFAULT V/F CURVE FOR THE ProMPT KERNEL

TABLE 14-1:	DATA POINTS FOR THE
	DEFAULT V/F CURVE

Frequency (Hz)	% Modulation				
0	0				
8	14				
16	28				
24	42				
32	57				
40	71				
48	86				
56	100				
64	110				
72	133				
80	133				
88	133				
96	133				
104	133				
112	133				
120	133				
128	133				

16.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (IDLE state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the

SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the follow-ing write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 16-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

EXAMPLE 16-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

16.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is

sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 16-18).

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF- pin.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit, ADIF is set. The block diagram of the A/D module is shown in Figure 18-1.

FIGURE 18-1: A/D BLOCK DIAGRAM

© 2002 Microchip Technology Inc.

To calculate the minimum acquisition time, Equation 18-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 18-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 18-2: A/D MINIMUM CHARGING TIME

```
VHOLD = (VREF - (VREF/2048)) \cdot (1 - e^{(-Tc/CHOLD(RIC + RSS + RS))})
or
TC = -(120 \text{ pF})(1 \text{ k}\Omega + RSS + RS) \ln(1/2048)
```

Example 18-1 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

•	CHOLD	=	120 pF
•	Rs	=	2.5 kΩ
•	Conversion Error	\leq	1/2 LSb
•	Vdd	=	$5V \rightarrow Rss$ = 7 k Ω
•	Temperature	=	50°C (system max.)

• VHOLD = 0V @ time = 0

EXAMPLE 18-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF							
Tempe	Temperature coefficient is only required for temperatures $> 25^{\circ}$ C.								
TACQ	=	$2 \ \mu s + TC + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$							
ТС	=	-CHOLD (RIC + RSS + RS) $\ln(1/2048)$ -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) $\ln(0.0004883)$ -120 pF (10.5 k Ω) $\ln(0.0004883)$ -1.26 μ s (-7.6246) 9.61 μ s							
TACQ	=	2 μs + 9.61 μs + [(50°C – 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs							

	R/P-1	U-0	<u>U-0</u>	<u>U-0</u>	U-0	R/P-1	U-0	R/P-1
	DEBUG	—		—	_	LVP	—	STVREN
	bit 7							bit 0
bit 7	DEBUG: Background Debugger Enable bit							
	1 = Backgr	round Debug	gger disable	d. RB6 and	RB7 configu	ired as gene	eral purpose	I/O pins.
	0 = Backgr	round Debug	gger enable	d. RB6 and I	RB7 are ded	licated to In-	Circuit Deb	Jg.
bit 6-3	Unimplem	ented: Rea	d as '0'					
bit 2	LVP: Low '	Voltage ICS	P Enable bit	t				
	1 = Low Vo	oltage ICSP	enabled					
	0 = Low Vo	oltage ICSP	disabled					
bit 1	Unimplem	ented: Rea	d as '0'					
bit 0	STVREN:	Stack Full/U	Inderflow Re	eset Enable I	oit			
	1 = Stack F	-ull/Underflo	w will cause	RESET				
	0 = Stack F	-ull/Underflo	ow will not ca	ause RESE1	-			
	Legend:							
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'
	- n = Value	when devic	e is unprogr	ammed	u = Uncł	nanged from	programme	ed state

REGISTER 20-4: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

20.2.2 WDT POSTSCALER

The WDT has a postscaler that can extend the WDT Reset period. The postscaler is selected at the time of the device programming, by the value written to the CONFIG2H configuration register.

FIGURE 20-1: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 20-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit		Bit 2	Bit 1	Bit 0
CONFIG2H	—	—	—	—	WDTPS2	WDTPS2	WDTPS0	WDTEN
RCON	IPEN	_	_	RI	TO PD PC		POR	BOR
WDTCON	—	_	_	—	_	_	_	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

ffff re com- sult is sult is fault). If					
ffff re com- sult is sult is fault). If					
ffff re com- sult is sult is fault). If					
ffff re com- sult is sult is fault). If					
ffff re com- sult is sult is fault). If					
re com- sult is sult is					
l be R value. De ue					
1					
Q4					
ite to ination					

CPFSEQ Compare f with W, skip if f = W							
Synt	ax:	[<i>label</i>] C	PFSEQ f	[,a]			
Оре	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Ope	ration:	(f) – (W), skip if (f) = (unsigned	(W) comparison))			
State	us Affected:	None					
Enco	oding:	0110	001a fff	ff ffff			
Des	cription:	Compares memory lo of W by pe subtraction	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.				
		If 'f' = W, t tion is disc	hen the fetch arded and a	NOP is			
		executed i	nstead, mak	ing this a			
		Access Ba	instruction. If ank will be se	lected, over-			
		riding the l	BSR value. If	'a' = 1, then			
		the bank w	/ill be selecte	ed as per the			
14/	-l	BSR value	e (default).				
vvor	ds:	1					
Cycles: 1(2)							
		by	a 2-word ins	struction.			
QC	Cycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
lf sl	(in:		Data	operation			
		Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
lf sl	kip and follow	ed by 2-wor	d instruction:	04			
	No	No	No	No.			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exa</u>	<u>mple</u> :	HERE NEQUAL EQUAL	CPFSEQ REG : :	÷, 0			
	Before Instru	iction					
	PC Addre	ess = HE	RE				
	W REG	= ? = ?					
	After Instruct	tion					
	If REG	= W;					
		= Ad	dress (EQUA	L)			
	PC	,	dress (NEQU	AL)			

SLEEP	Enter SLEEP mode SUBFWB				Subtract	f from W wi	ith borrow			
Syntax:	[label]	SLEEP		Syntax:			[<i>label</i>] SUBFWB f[,d[,a]			
Operands:	None			Operands:		$0 \le f \le 25$	5			
Operation:	$00h \rightarrow W$	/DT,				d ∈ [0,1]				
	$0 \rightarrow \frac{WD}{TO}$	T postscaler,				a ∈ [0,1]				
	$1 \rightarrow \underline{10},$ $0 \rightarrow \underline{PD}$			Operation:		(VV) - (T)	$-(C) \rightarrow dest$			
Status Affected:				Status Affecte	ed:	N, OV, C, DC, Z				
Encoding:		0000 00	0.0 0.011	Encoding:		0101	01da ffi	ff ffff		
Encouring.	0000	0000 00		Description:		Subtract	register 'f' and	l carry flag		
Description:	I ne pow	er-down statu The time-out	IS DIT (PD) IS status bit			(borrow) method).	If 'd' is 0, the	result is		
	(TO) is s	et. Watchdog	Timer and			stored in	W. If 'd' is 1, t	he result is		
	its postso	caler are clea	ired.			stored in	register 'f' (de	fault). If 'a' is		
	The proc	essor is put i the oscillat			0, the Access Bank will be selected					
Wordo:	1		or stopped.			then the b	bank will be se	elected as		
Cyclos:	1					per the B	SR value (def	fault).		
	1			Words:		1				
	02	03	04	Cycles:		1				
Decode	No	Process	Go to	Q Cycle Activ	vity:					
	operation	Data	sleep	Q1		Q2	Q3	Q4		
				Decode	•	Read	Process Data	Write to destination		
Example:	SLEEP			European de Au			Dulu	destination		
Befo <u>re</u> Instru	iction			Example 1:		SUBFWB	REG, 1, 0			
$\frac{10}{PD} =$?			Before In	struc	tion = 3				
After Instruct	tion			W		= 2				
\overline{TO} =	1†			C After Inst	ruoti	= 1				
PD =	0			REG	lucin	= FF				
† If WDT cause	s wake-up, t	his bit is clea	red.	W		= 2				
				Z		= 0 = 0				
				N		= 1 ; re	sult is negative	e		
				Example 2:		SUBFWB	REG, 0, 0			
				Before In	struc	tion				
				W REG		= 2 = 5				
				С		= 1				
				After Inst	ructi	on = 2				
				W		= 3				
				C 7		= 1 = 0				
				∠ N		– 0 = 0 ;re	sult is positive			

; result is zero

REG, 1, 0

SUBFWB

0 =

Example 3:

Before Instruction REG

W

С

W

C Z N

After Instruction REG

= 1

= 2

= 0

= 2

= = 1 1

=

23.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 23-5: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 23-4: **EXTERNAL CLOCK TIMING REQUIREMENTS**

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO, -40°C to +85°C
		Oscillator Frequency ⁽¹⁾	DC	25	MHz	EC, ECIO, +85°C to +125°C
			4	25	MHz	HS osc
			4	10	MHz	HS + PLL osc, -40°C to +85°C
			4	6.25	MHz	HS + PLL osc, +85°C to +125°C
1	Tosc	External CLKI Period ⁽¹⁾	25	_	ns	EC, ECIO, -40°C to +85°C
		Oscillator Period	40	_	ns	EC, ECIO, +85°C to +125°C
			40	250	ns	HS osc
			100	250	ns	HS + PLL osc, -40°C to +85°C
			160	250	ns	HS + PLL osc, +85°C to +125°C
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	_	ns	Tcy = 4/Fosc, -40°C to +85°C
			160	—	ns	Tcy = 4/Fosc, +85°C to +125°C
3	TosL, TosH	External Clock in (OSC1) High or Low Time	10	—	ns	HS osc
4	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	7.5	ns	HS osc

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 23-5: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	Oscillator Frequency Range	4	—	10	MHz	HS mode only
—	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
—	t _{rc}	PLL Start-up Time (Lock Time)	—	—	2	ms	
—	ΔCLK	CLKO Stability (Jitter)	-2	—	+2	%	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 23-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 23-8: BROWN-OUT RESET TIMING

TABLE 23-7:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	—	μS	
31	Twdt	Watchdog Timer Time-out Period (No Postscaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power up Timer Period	28	72	132	ms	
34	TIOZ	I/O high impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200	_	—	μS	$VDD \le BVDD$ (see D005)
36	Tivrst	Time for Internal Reference Voltage to become stable	—	20	500	μS	
37	Tlvd	Low Voltage Detect Pulse Width	200	—	—	μS	$V\text{DD} \leq V\text{LVD} \text{ (see D420)}$

PIC18F4X39 Pin Functions				
MCLR/VPP				
OSC1/CLKI				
OSC2/CLKO/RA614				
PWM116				
PWM216				
RA0/AN014				
RA1/AN114				
RA2/AN2/VREF				
RA3/AN3/VREF+14				
RA4/T0CKI				
RA5/AN4/SS/LVDIN14				
RB0/IN1				
RB1/IN11				
RB2/IN12				
RB3				
KB4				
RB5/PGM				
RB0/PGC				
RB7/PGD				
RUU/113UKI				
RC4/SDI/SDA				
RC5/SDO				
PC7/PX/DT 16				
RD1/PSP1 17				
RD2/PSP2 17				
RD3/PSP3 17				
RD4/PSP4 17				
RD5/PSP5 17				
RD6/PSP6 17				
RD7/PSP7 17				
RE0/AN5/RD 18				
RE1/AN6/WR				
RE2/AN7/CS				
VDD				
Vss				
PIC18FXX39 Voltage-Frequency Graph				
(Industrial)				
PIC18LFXX39 Voltage-Frequency Graph				
(Industrial)				
PICDEM 1 Low Cost PICmicro				
Demonstration Board255				
PICDEM 17 Demonstration Board256				
PICDEM 2 Low Cost PIC16CXX				
Demonstration Board255				
PICDEM 3 Low Cost PIC16CXXX				
Demonstration Board256				
PICSTART Plus Entry Level Development				
Programmer255				
PIE Registers				
Pinout I/O Descriptions				
PIC18F2X3911				
PIC18F4X39				
PIR Registers				
PLL Lock Time-out				
Pointer, FSR				
240				
POR. See Power-on Reset				

PORTA
Associated Registers 85
LATA Register 83
PORTA Register 83
TRISA Register 83
PORTB
Associated Registers 88
LATB Register 86
PORTB Register 86
RB0/INT Pin, External 81
RB7:RB4 Interrupt-on-Change Flag
(RBIF Bit) 86
TRISB Register 86
PORTC
Associated Registers 90
LATC Register 89
PORTC Register 89
RC3/SCK/SCL Pin 139
RC7/RX/DT Pin 168
TRISC Register
PORTD
Associated Registers92
LATD Register
Parallel Slave Port (PSP) Function
PORTD Register
TRISD Register
PORTE
Analog Port Pins95, 96
Associated Registers
LATE Register
PORTE Register
PSP Mode Select (PSPMODE Bit)
RE0/AN5/RD Pin
RE1/AN6/WR Pin95, 96
RE2/AN7/CS Pin95, 96
TRISE Register
Postscaler, WDT
Assignment (PSA Bit) 101
Rate Select (T0PS2:T0PS0 Bits) 101
Switching Between Timer0 and WDT 101
Power-down Mode. See SLEEP
Power-on Reset (POR)
Oscillator Start-up Timer (OST) 24
Power-up Timer (PWRT) 24
Prescaler, Timer0 101
Assignment (PSA Bit) 101
Rate Select (T0PS2:T0PS0 Bits) 101
Switching Between Timer0 and WDT 101
Prescaler, Timer2 124
PRO MATE II Universal Device Programmer 255
Product Identification System 319
Program Counter
PCL Register 36
PCLATH Register
PCLATU Register
Program Memory
Interrupt Vector 33
Map and Stack for PIC18FXX39
RESET Vector 33
Program Verification and Code Protection
Associated Registers 207
Configuration Register 210
Data EEPROM
Program Memory 208

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Microchip Technology Consulting (Shanghai)

Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road

Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao

Rm. B503, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India Microchip Technology Inc. India Liaison Office **Divyasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza

Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Microchip Ltd 505 Eskdale Road Winnersh Triangle Wokingham

Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

12/05/02