
Microchip Technology - PIC18LF4439T-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 32

Program Memory Size 12KB (6K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 640 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4439t-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf4439t-i-ml-4426619
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX39
NOTES:
DS30485A-page 22 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

5.5 Writing to FLASH Program

Memory
The minimum programming block is 4 words or 8 bytes.
Word or byte programming is not supported.

Table Writes are used internally to load the holding reg-
isters needed to program the FLASH memory. There
are 8 holding registers used by the Table Writes for
programming.

Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction has to be executed 8 times for
each programming operation. All of the Table Write

operations will essentially be short writes, because only
the holding registers are written. At the end of updating
8 registers, the EECON1 register must be written to, to
start the programming operation with a long write.

The long write is necessary for programming the inter-
nal FLASH. Instruction execution is halted while in a
long write cycle. The long write will be terminated by
the internal programming timer.

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump rated to operate over the voltage range of
the device for byte or word operations.

FIGURE 5-5: TABLE WRITES TO FLASH PROGRAM MEMORY

5.5.1 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read 64 bytes into RAM.
2. Update data values in RAM as necessary.
3. Load Table Pointer with address being erased.
4. Do the row erase procedure.
5. Load Table Pointer with address of first byte

being written.
6. Write the first 8 bytes into the holding registers

with auto-increment (TBLWT*+ or TBLWT+*).
7. Set EEPGD bit to point to program memory,

clear the CFGS bit to access program memory,
and set WREN to enable byte writes.

8. Disable interrupts.
9. Write 55h to EECON2.

10. Write AAh to EECON2.
11. Set the WR bit. This will begin the write cycle.
12. The CPU will stall for duration of the write (about

2 ms using internal timer).
13. Re-enable interrupts.
14. Repeat steps 6-14 seven times, to write

64 bytes.
15. Verify the memory (Table Read).

This procedure will require about 18 ms to update one
row of 64 bytes of memory. An example of the required
code is given in Example 5-3.

Holding Register

TABLAT

Holding Register

TBLPTR = xxxxx7

Holding Register

TBLPTR = xxxxx1

Holding Register

TBLPTR = xxxxx0

8 8 8 8

Write Register

TBLPTR = xxxxx2

Program Memory

Note: Before setting the WR bit, the table pointer
address needs to be within the intended
address range of the 8 bytes in the holding
registers.
 2002 Microchip Technology Inc. Preliminary DS30485A-page 57

PIC18FXX39
8.2 PIR Registers
The PIR registers contain the individual flag bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are two Peripheral Interrupt
Flag registers (PIR1, PIR2).

REGISTER 8-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

Note 1: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit, GIE (INTCON<7>).

2: User software should ensure the appropri-
ate interrupt flag bits are cleared prior to
enabling an interrupt, and after servicing
that interrupt.

R/W-0 R/W-0 R-0 R-0 R/W-0 U-0 R/W-0 R/W-0
PSPIF(1) ADIF RCIF TXIF SSPIF — TMR2IF(2) TMR1IF

 bit 7 bit 0

bit 7 PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed (must be cleared in software)
0 = The A/D conversion is not complete

bit 5 RCIF: USART Receive Interrupt Flag bit
1 = The USART receive buffer, RCREG, is full (cleared when RCREG is read)
0 = The USART receive buffer is empty

bit 4 TXIF: USART Transmit Interrupt Flag bit (see Section 17.0 for details on TXIF functionality)
1 = The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)
0 = The USART transmit buffer is full

bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive

bit 2 Unimplemented: Read as ‘0’
bit 1 TMR2IF(2): TMR2 to PR2 Match Interrupt Flag bit

1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflowed (must be cleared in software)
0 = MR1 register did not overflow

Note 1: This bit is reserved on PIC18F2X39 devices; always maintain this bit clear.
2: This bit is reserved for use by the ProMPT kernel; do not alter its value.

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS30485A-page 74 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39
REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
— — — EEIF BCLIF LVDIF TMR3IF —

 bit 7 bit 0

bit 7-5 Unimplemented: Read as '0'
bit 4 EEIF: Data EEPROM/FLASH Write Operation Interrupt Flag bit

1 = The write operation is complete (must be cleared in software)
0 = The write operation is not complete, or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit
1 = A bus collision occurred (must be cleared in software)
0 = No bus collision occurred

bit 2 LVDIF: Low Voltage Detect Interrupt Flag bit
1 = A low voltage condition occurred (must be cleared in software)
0 = The device voltage is above the Low Voltage Detect trip point

bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit
1 = TMR3 register overflowed (must be cleared in software)
0 = TMR3 register did not overflow

bit 0 Unimplemented: Read as ‘0’

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
 2002 Microchip Technology Inc. Preliminary DS30485A-page 75

PIC18FXX39

8.6 INT0 Interrupt
External interrupts on the RB0/INT0, RB1/INT1 and
RB2/INT2 pins are edge triggered: either rising, if the
corresponding INTEDGx bit is set in the INTCON2 reg-
ister, or falling, if the INTEDGx bit is clear. When a valid
edge appears on the RBx/INTx pin, the corresponding
flag bit INTxF is set. This interrupt can be disabled by
clearing the corresponding enable bit INTxE. Flag bit
INTxF must be cleared in software in the Interrupt Ser-
vice Routine before re-enabling the interrupt. All exter-
nal interrupts (INT0, INT1 and INT2) can wake-up the
processor from SLEEP, if bit INTxE was set prior to
going into SLEEP. If the global interrupt enable bit GIE
is set, the processor will branch to the interrupt vector
following wake-up.

The INT0 interrupt is always configured as a high prior-
ity interrupt, and cannot be reconfigured. Interrupt pri-
ority for INT1 and INT2 is determined by the value
contained in the interrupt priority bits, INT1IP
(INTCON3<6>) and INT2IP (INTCON3<7>).

Because it is always configured as a high priority inter-
rupt, INT0 cannot be used in conjunction with the
ProMPT kernel; it must always be disabled
(INTCON<4> = 0). Failure to do this may result in
erratic operation of the motor control.

8.7 TMR0 Interrupt
In 8-bit mode (which is the default), an overflow in the
TMR0 register (FFh → 00h) will set flag bit TMR0IF. In
16-bit mode, an overflow in the TMR0H:TMR0L regis-
ter pair (FFFFh → 0000h) will set flag bit TMR0IF. The
interrupt can be enabled or disabled by setting or
clearing enable bit TMR0IE (INTCON<5>). Interrupt
priority for Timer0 is determined by the value contained
in the interrupt priority bit TMR0IP (INTCON2<2>). See
Section 10.0 for further details on the Timer0 module.

8.8 PORTB Interrupt-on-Change
An input change on PORTB<7:4> sets flag bit RBIF
(INTCON<0>). The interrupt can be enabled or dis-
abled by setting or clearing the enable bit RBIE
(INTCON<3>). Interrupt priority for PORTB interrupt-
on-change is determined by the value contained in the
interrupt priority bit RBIP (INTCON2<0>).

8.9 Context Saving During Interrupts
During an interrupt, the return PC value is saved on the
stack. Additionally, the WREG, STATUS and BSR regis-
ters are saved on the fast return stack. If a fast return
from interrupt is not used (see Section 4.3), the user
may need to save the WREG, STATUS and BSR regis-
ters in software. Depending on the user’s application,
other registers may also need to be saved. Example 8-1
saves and restores the WREG, STATUS and BSR
registers during an Interrupt Service Routine.

EXAMPLE 8-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM
MOVWF W_TEMP ; W_TEMP is in virtual bank
MOVFF STATUS, STATUS_TEMP ; STATUS_TEMP located anywhere
MOVFF BSR, BSR_TEMP ; BSR located anywhere
;
; USER ISR CODE
;
MOVFF BSR_TEMP, BSR ; Restore BSR
MOVF W_TEMP, W ; Restore WREG
MOVFF STATUS_TEMP,STATUS ; Restore STATUS
 2002 Microchip Technology Inc. Preliminary DS30485A-page 81

PIC18FXX39
REGISTER 9-1: TRISE REGISTER
R-0 R-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1
IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0

bit 7 bit 0

bit 7 IBF: Input Buffer Full Status bit
1 = A word has been received and waiting to be read by the CPU
0 = No word has been received

bit 6 OBF: Output Buffer Full Status bit
1 = The output buffer still holds a previously written word
0 = The output buffer has been read

bit 5 IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)
1 = A write occurred when a previously input word has not been read

(must be cleared in software)
0 = No overflow occurred

bit 4 PSPMODE: Parallel Slave Port Mode Select bit
1 = Parallel Slave Port mode
0 = General Purpose I/O mode

bit 3 Unimplemented: Read as '0'
bit 2 TRISE2: RE2 Direction Control bit

1 = Input
0 = Output

bit 1 TRISE1: RE1 Direction Control bit
1 = Input
0 = Output

bit 0 TRISE0: RE0 Direction Control bit
1 = Input
0 = Output

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS30485A-page 94 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

NOTES:
DS30485A-page 112 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

14.3 Software Interface
A sine table, stored in the ProMPT kernel, is used as
the basis for synthesizing the DC bus using the PWM
modules. The table values are accessed in sequence
and scaled based on the frequency or the speed at
which the motor is intended to run. The intended fre-
quency input can be from an A/D channel or a digital
value.

Parameters in the ProMPT modules can be accessed
using the pre-defined Application Program Interface
(API) methods. A list of the APIs is given in
Section 14.3.3.

For example, to run the motor at 40 Hz, the user would
invoke the PromMPT_SetFrequency API:

i = ProMPT_SetFrequency(40);
where i is an unsigned character variable. In this case,
if i = 0 on return, the command has been successfully
executed. If the frequency input is out of range, or if
there is an error in setting the frequency, i is returned
with a value of FFh.

Similarly, to check the frequency set by the ProMPT
kernel, use the ProMPT_GetFrequency API:

i = ProMPT_GetFrequency(void);
where i is an unsigned character variable. Upon return
from the ProMPT kernel, i will contain the frequency
value in the ProMPT kernel.

14.3.1 THE V/F CURVE

The ProMPT kernel contains a default V/F curve stored
in memory. The default curve is linear, as shown in
Figure 14-2. Table 14-1 shows the data points used to
construct the curve.

Users may require a different V/F curve for their appli-
cation, based on the load on the motor, or based on the
characteristics of the motor used. The curve can be
changed in the application program using the API
method SetVFCurve(X,Y), where X is the frequency
and Y is the level of modulation of the DC bus voltage.
As a rule, in customizing the curve, the input frequency
corresponding to the point on the V/F curve that gives
100% modulation should match the motor’s rated fre-
quency. Similarly, full modulation should occur at the
motor’s rated input voltage. (See Figure 14-2 for
details.)

Examples of the characteristics for V/F curves for typi-
cal motor applications are shown in Section 14-2
(page 115).

14.3.2 PARAMETERS DEFINED BY THE
ProMPT API METHODS

Frequency: The frequency (in Hz) of the supply
current for steady state motor operation.

Modulation: The level of modulation (in percentage)
applied to the DC supply voltage by the PWM through
the H-bridge to produce AC drive current.

Acceleration rate: The rate of increase of motor
speed, achieved by ramping up the supply frequency.
Expressed in Hz/s.

Deceleration rate: The rate of decrease of motor
speed, achieved by ramping down the supply
frequency. Expressed in Hz/s.

Boost: The mode for starting a stopped motor by vary-
ing the supply current frequency and modulation until
steady state speed is reached. Boost is defined in
terms of a frequency, a starting and ending modulation,
and a time interval for the transition between the two.

PWM Frequency: The sampling rate (in kHz) at which
the PWM module operates.

FIGURE 14-2: DEFAULT V/F CURVE FOR
THE ProMPT KERNEL

TABLE 14-1: DATA POINTS FOR THE
DEFAULT V/F CURVE

Frequency (Hz) % Modulation

0 0
8 14

16 28
24 42
32 57
40 71
48 86
56 100
64 110
72 133
80 133
88 133
96 133

104 133
112 133
120 133
128 133

0

25

50

75

100

125

150

0 20 40 60 80 100 120 140

Input Frequency (Hz)

Vo
lta

ge
 M

od
ul

at
io

n
(%

)

frated of motor
should equal f at
100% modulation

Vrated of motor
should equal
at 100% modulation
DS30485A-page 114 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

unsigned char ProMPT_GetBoostTime()
Resources used: 1 stack level

Range of values: 0 to 255

Description: Returns the time in seconds for Boost mode.

unsigned char ProMPT_GetDecelRate()
Resources used: 1 stack level

Range of values: 0 to 255

Description: Returns the current deceleration rate in Hz/second.

unsigned char ProMPT_GetFrequency(void)
Resources used: 1 stack level

Range of values: 0 to 127

Description: Returns the current output frequency in Hz. This may not be the frequency commanded due to Boost or
Accel/Decel logic.

unsigned char ProMPT_GetModulation(void)
Resources used: Hardware Multiplier; 1 stack level

Range of values: 0 to 200

Description: Returns the current output modulation in %.

unsigned char ProMPT_GetParameter(unsigned char parameter)
Resources used: 1 stack level

Description: In addition to its pre-defined API methods, the ProMPT kernel allows the user to custom define up to 16
functions for control or communication purposes not covered by the ProMPT APIs. These parameters are used to com-
municate with motor control GUI evaluation tools, such as Microchip’s DashDriveMPTM. This method returns the current
value of any one of the parameters.

unsigned char ProMPT_GetVFCurve(unsigned char point)
Resources used: Hardware Multiplier; 1 stack level

Description: This function returns one of the 17 modulation values (in %) of the V/F curve. Each point represents a
frequency increment of 8 Hz, ranging from point 0 (0 Hz) to point 16 (128 Hz).

void ProMPT_Init(unsigned char PWMfrequency)
Resources used: 64 Bytes RAM; Timer2; PWM1 and PWM2; High Priority Interrupt Vector; Hardware Multiplier; fast
call/return; FSR 0; TBLPTR; 2 stack levels

PWMfrequency values: 0 or 1

Description: This function must be called before all other ProMPT methods, and it must be called only once. This
routine configures Timer2 and the PWM outputs.

When PWMfrequency is ‘0’, the module’s operating frequency is 9.75 kHz. When PWMfrequency is ‘1’, the module’s
operating frequency is 19.53 kHz.

Note: Since the high priority interrupt is used, the fast call/return cannot be used by other routines.
DS30485A-page 118 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

void ProMPT_SetLineVoltage(unsigned char voltage)
Resources used: Hardware Multiplier; 0 stack levels

voltage range: 0 to 255

Description: Sets the line voltage for Automatic Voltage Compensation. The units for SetLineVoltage and
SetMotorVoltage must be the same for accurate operation. The values passed to SetMotorVoltage and
SetLineVoltage can be the same to disable voltage compensation.

void ProMPT_SetMotorVoltage(unsigned char voltage)
Resources used: Hardware Multiplier; 0 stack levels

voltage range: 0 to 255

Description: Sets the motor rating for Automatic Voltage Compensation. The units for SetLineVoltage and
SetMotorVoltage must be the same for accurate operation. The values passed to SetMotorVoltage and
SetLineVoltage can be the same to disable voltage compensation.

void ProMPT_SetParameter(unsigned char parameter, unsigned char value)
Resources used: 0 stack levels

parameter range:

Description: In addition to its pre-defined API methods, the ProMPT kernel allows the user to custom define up to 16
functions for control or communication purposes not covered by the ProMPT APIs. This function sets the value of the
specified user defined function.

void ProMPT_SetPWMfrequency(unsigned char PWMfrequency)
PWMfrequency values: 0 or 1

Resources used: Timer2; 1 stack level

Description: This sets and changes the PWM switching frequency. Typically, this is set with the Init() function.
When PWMfrequency is ‘0’, the module’s operating frequency is 9.75 kHz. When PWMfrequency is ‘1’, the module’s
operating frequency is 19.53 kHz.

void ProMPT_SetVFCurve(unsigned char point, unsigned char value)
Resources used: Hardware Multiplier; 0 stack level

point range: 0 to 16 (0 = 0 Hz, 1 = 8 Hz, 2 = 16 Hz……. 17 = 128 Hz)

value range: 0 to 200

Description: This sets one of the 17 modulation values (in %) for the V/F curve. Each point represents a frequency
increment of 8 Hz, ranging from point 0 (0 Hz) to point 16 (128 Hz).

unsigned char ProMPT_Tick(void)
Resources used: 1 stack level

Description: The value of the Tick timer flag becomes ‘1’ every 62.5 ms (1/16 second). This can be used for timing
applications. clearTick must be called in the timing routine when this is serviced.
DS30485A-page 120 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

16.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN
(SSPCON1<5>), must be set. To reset or reconfigure
SPI mode, clear the SSPEN bit, re-initialize the
SSPCON registers, and then set the SSPEN bit. This
configures the SDI, SDO, SCK, and SS pins as serial
port pins. For the pins to behave as the serial port func-
tion, some must have their data direction bits (in the
TRIS register) appropriately programmed. That is:

• SDI is automatically controlled by the SPI module
• SDO must have TRISC<5> bit cleared
• SCK (Master mode) must have TRISC<3> bit

cleared
• SCK (Slave mode) must have TRISC<3> bit set
• SS must have TRISC<4> bit set

Any serial port function that is not desired may be
overridden by programming the corresponding data
direction (TRIS) register to the opposite value.

16.3.4 TYPICAL CONNECTION

Figure 16-2 shows a typical connection between two
microcontrollers. The master controller (Processor 1)
initiates the data transfer by sending the SCK signal.
Data is shifted out of both shift registers on their pro-
grammed clock edge, and latched on the opposite
edge of the clock. Both processors should be pro-
grammed to the same Clock Polarity (CKP), then both
controllers would send and receive data at the same
time. Whether the data is meaningful (or dummy data)
depends on the application software. This leads to
three scenarios for data transmission:

• Master sends data — Slave sends dummy data
• Master sends data — Slave sends data
• Master sends dummy data — Slave sends data

FIGURE 16-2: SPI MASTER/SLAVE CONNECTION

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

MSb LSb

SDO

SDI

PROCESSOR 1

SCK

SPI Master SSPM3:SSPM0 = 00xxb

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

LSbMSb

SDI

SDO

PROCESSOR 2

SCK

SPI Slave SSPM3:SSPM0 = 010xb

Serial Clock
 2002 Microchip Technology Inc. Preliminary DS30485A-page 129

PIC18FXX39
20.2.2 WDT POSTSCALER

The WDT has a postscaler that can extend the WDT
Reset period. The postscaler is selected at the time of
the device programming, by the value written to the
CONFIG2H configuration register.

FIGURE 20-1: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 20-2: SUMMARY OF WATCHDOG TIMER REGISTERS

PostscalerWDT Timer

WDTEN

8 - to - 1 MUX WDTPS2:WDTPS0

WDT
Time-out

8

SWDTEN bit
Configuration bit

Note: WDPS2:WDPS0 are bits in register CONFIG2H.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CONFIG2H — — — — WDTPS2 WDTPS2 WDTPS0 WDTEN

RCON IPEN — — RI TO PD POR BOR
WDTCON — — — — — — — SWDTEN
Legend: Shaded cells are not used by the Watchdog Timer.
DS30485A-page 204 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

21.0 INSTRUCTION SET SUMMARY
The PIC18FXXX instruction set adds many enhance-
ments to the previous PICmicro instruction sets, while
maintaining an easy migration from these PICmicro
instruction sets.

Most instructions are a single program memory word
(16-bits), but there are three instructions that require
two program memory locations.

Each single word instruction is a 16-bit word divided
into an OPCODE, which specifies the instruction type
and one or more operands, which further specify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations
• Bit-oriented operations
• Literal operations
• Control operations

The PIC18FXXX instruction set summary in Table 21-2
lists byte-oriented, bit-oriented, literal and control
operations. Table 21-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The destination of the result

(specified by ‘d’)
3. The accessed memory

(specified by ‘a’)

The file register designator 'f' specifies which file
register is to be used by the instruction.

The destination designator ‘d’ specifies where the
result of the operation is to be placed. If 'd' is zero, the
result is placed in the WREG register. If 'd' is one, the
result is placed in the file register specified in the
instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The bit in the file register

(specified by ‘b’)
3. The accessed memory

(specified by ‘a’)

The bit field designator 'b' selects the number of the bit
affected by the operation, while the file register desig-
nator 'f' represents the number of the file in which the
bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register
(specified by ‘k’)

• The desired FSR register to load the literal value
into (specified by ‘f’)

• No operand required
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)
• The mode of the Call or Return instructions

(specified by ‘s’)
• The mode of the Table Read and Table Write

instructions (specified by ‘m’)
• No operand required

(specified by ‘—’)

All instructions are a single word, except for three dou-
ble-word instructions. These three instructions were
made double-word instructions, so that all the required
information is available in these 32 bits. In the second
word, the 4 MSbs are ‘1’s. If this second word is exe-
cuted as an instruction (by itself), it will execute as a
NOP.

All single word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 µs. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2 µs.
Two-word branch instructions (if true) would take 3 µs.

Figure 21-1 shows the general formats that the
instructions can have.

All examples use the format ‘nnh’ to represent a hexa-
decimal number, where ‘h’ signifies a hexadecimal
digit.

The Instruction Set Summary, shown in Table 21-2,
lists the instructions recognized by the Microchip
Assembler (MPASMTM).

Section 21.1 provides a description of each instruction.
 2002 Microchip Technology Inc. Preliminary DS30485A-page 211

PIC18FXX39

TABLE 21-2: PIC18FXXX INSTRUCTION SET

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ADDWFC
ANDWF
CLRF
COMF
CPFSEQ
CPFSGT
CPFSLT
DECF
DECFSZ
DCFSNZ
INCF
INCFSZ
INFSNZ
IORWF
MOVF
MOVFF

MOVWF
MULWF
NEGF
RLCF
RLNCF
RRCF
RRNCF
SETF
SUBFWB

SUBWF
SUBWFB

SWAPF
TSTFSZ
XORWF

f, d, a
f, d, a
f, d, a
f, a
f, d, a
f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
fs, fd

f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, a
f, d, a

f, d, a
f, d, a

f, d, a
f, a
f, d, a

Add WREG and f
Add WREG and Carry bit to f
AND WREG with f
Clear f
Complement f
Compare f with WREG, skip =
Compare f with WREG, skip >
Compare f with WREG, skip <
Decrement f
Decrement f, Skip if 0
Decrement f, Skip if Not 0
Increment f
Increment f, Skip if 0
Increment f, Skip if Not 0
Inclusive OR WREG with f
Move f
Move fs (source) to 1st word

fd (destination) 2nd word
Move WREG to f
Multiply WREG with f
Negate f
Rotate Left f through Carry
Rotate Left f (No Carry)
Rotate Right f through Carry
Rotate Right f (No Carry)
Set f
Subtract f from WREG with
 borrow
Subtract WREG from f
Subtract WREG from f with
 borrow
Swap nibbles in f
Test f, skip if 0
Exclusive OR WREG with f

1
1
1
1
1
1 (2 or 3)
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1
2

1
1
1
1
1
1
1
1
1

1
1

1
1 (2 or 3)
1

0010
0010
0001
0110
0001
0110
0110
0110
0000
0010
0100
0010
0011
0100
0001
0101
1100
1111
0110
0000
0110
0011
0100
0011
0100
0110
0101

0101
0101

0011
0110
0001

01da0
0da
01da
101a
11da
001a
010a
000a
01da
11da
11da
10da
11da
10da
00da
00da
ffff
ffff
111a
001a
110a
01da
01da
00da
00da
100a
01da

11da
10da

10da
011a
10da

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

C, DC, Z, OV, N
C, DC, Z, OV, N
Z, N
Z
Z, N
None
None
None
C, DC, Z, OV, N
None
None
C, DC, Z, OV, N
None
None
Z, N
Z, N
None

None
None
C, DC, Z, OV, N
C, Z, N
Z, N
C, Z, N
Z, N
None
C, DC, Z, OV, N

C, DC, Z, OV, N
C, DC, Z, OV, N

None
None
Z, N

1, 2
1, 2
1,2
2
1, 2
4
4
1, 2
1, 2, 3, 4
1, 2, 3, 4
1, 2
1, 2, 3, 4
4
1, 2
1, 2
1

1, 2

1, 2

1, 2

1, 2

4
1, 2

BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
BTFSC
BTFSS
BTG

f, b, a
f, b, a
f, b, a
f, b, a
f, d, a

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
Bit Toggle f

1
1
1 (2 or 3)
1 (2 or 3)
1

1001
1000
1011
1010
0111

bbba
bbba
bbba
bbba
bbba

ffff
ffff
ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff

None
None
None
None
None

1, 2
1, 2
3, 4
3, 4
1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an
external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is

executed as a NOP.
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the

first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory
locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.
DS30485A-page 214 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39

ANDWF AND W with f

Syntax: [label] ANDWF f [,d [,a]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .AND. (f) → dest

Status Affected: N,Z

Encoding: 0001 01da ffff ffff

Description: The contents of W are AND’ed with
register 'f'. If 'd' is 0, the result is
stored in W. If 'd' is 1, the result is
stored back in register 'f' (default). If
‘a’ is 0, the Access Bank will be
selected. If ‘a’ is 1, the BSR will not
be overridden (default).

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write to
destination

Example: ANDWF REG, 0, 0

Before Instruction
W = 0x17
REG = 0xC2

After Instruction
W = 0x02
REG = 0xC2

BC Branch if Carry

Syntax: [label] BC n

Operands: -128 ≤ n ≤ 127

Operation: if carry bit is ‘1’
 (PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0010 nnnn nnnn

Description: If the Carry bit is ‘1’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC+2+2n. This instruction is then
a two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

'n'
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
'n'

Process
Data

No
operation

Example: HERE BC 5

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 1;

PC = address (HERE+12)
If Carry = 0;

PC = address (HERE+2)
 2002 Microchip Technology Inc. Preliminary DS30485A-page 219

PIC18FXX39

COMF Complement f

Syntax: [label] COMF f [,d [,a]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: → dest

Status Affected: N, Z

Encoding: 0001 11da ffff ffff

Description: The contents of register 'f' are com-
plemented. If 'd' is 0, the result is
stored in W. If 'd' is 1, the result is
stored back in register 'f' (default). If
‘a’ is 0, the Access Bank will be
selected, overriding the BSR value.
If ‘a’ = 1, then the bank will be
selected as per the BSR value
(default).

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write to
destination

Example: COMF REG, 0, 0

Before Instruction
REG = 0x13

After Instruction
REG = 0x13
W = 0xEC

(f)

CPFSEQ Compare f with W, skip if f = W

Syntax: [label] CPFSEQ f [,a]

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (f) – (W),
skip if (f) = (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 001a ffff ffff

Description: Compares the contents of data
memory location 'f' to the contents
of W by performing an unsigned
subtraction.
If 'f' = W, then the fetched instruc-
tion is discarded and a NOP is
executed instead, making this a
two-cycle instruction. If ‘a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ‘a’ = 1, then
the bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSEQ REG, 0
NEQUAL :
EQUAL :

Before Instruction
PC Address = HERE

W = ?
REG = ?

After Instruction
If REG = W;

PC = Address (EQUAL)
If REG ≠ W;

PC = Address (NEQUAL)
DS30485A-page 228 Preliminary  2002 Microchip Technology Inc.

PIC18FXX39
22.0 DEVELOPMENT SUPPORT
The PICmicro® microcontrollers are supported with a
full range of hardware and software development tools:

• Integrated Development Environment
- MPLAB® IDE Software

• Assemblers/Compilers/Linkers
- MPASMTM Assembler
- MPLAB C17 and MPLAB C18 C Compilers
- MPLINKTM Object Linker/

MPLIBTM Object Librarian
• Simulators

- MPLAB SIM Software Simulator
• Emulators

- MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC™ In-Circuit Emulator

• In-Circuit Debugger
- MPLAB ICD

• Device Programmers
- PRO MATE® II Universal Device Programmer
- PICSTART® Plus Entry-Level Development

Programmer
• Low Cost Demonstration Boards

- PICDEMTM 1 Demonstration Board
- PICDEM 2 Demonstration Board
- PICDEM 3 Demonstration Board
- PICDEM 17 Demonstration Board
- KEELOQ® Demonstration Board

22.1 MPLAB Integrated Development
Environment Software

The MPLAB IDE software brings an ease of software
development previously unseen in the 8-bit microcon-
troller market. The MPLAB IDE is a Windows® based
application that contains:

• An interface to debugging tools
- simulator
- programmer (sold separately)
- emulator (sold separately)
- in-circuit debugger (sold separately)

• A full-featured editor
• A project manager
• Customizable toolbar and key mapping
• A status bar
• On-line help

The MPLAB IDE allows you to:

• Edit your source files (either assembly or ‘C’)
• One touch assemble (or compile) and download

to PICmicro emulator and simulator tools (auto-
matically updates all project information)

• Debug using:
- source files
- absolute listing file
- machine code

The ability to use MPLAB IDE with multiple debugging
tools allows users to easily switch from the cost-
effective simulator to a full-featured emulator with
minimal retraining.

22.2 MPASM Assembler
The MPASM assembler is a full-featured universal
macro assembler for all PICmicro MCU’s.

The MPASM assembler has a command line interface
and a Windows shell. It can be used as a stand-alone
application on a Windows 3.x or greater system, or it
can be used through MPLAB IDE. The MPASM assem-
bler generates relocatable object files for the MPLINK
object linker, Intel® standard HEX files, MAP files to
detail memory usage and symbol reference, an abso-
lute LST file that contains source lines and generated
machine code, and a COD file for debugging.

The MPASM assembler features include:

• Integration into MPLAB IDE projects.
• User-defined macros to streamline assembly

code.
• Conditional assembly for multi-purpose source

files.
• Directives that allow complete control over the

assembly process.

22.3 MPLAB C17 and MPLAB C18
C Compilers

The MPLAB C17 and MPLAB C18 Code Development
Systems are complete ANSI ‘C’ compilers for
Microchip’s PIC17CXXX and PIC18CXXX family of
microcontrollers, respectively. These compilers provide
powerful integration capabilities and ease of use not
found with other compilers.

For easier source level debugging, the compilers pro-
vide symbol information that is compatible with the
MPLAB IDE memory display.
 2002 Microchip Technology Inc. Preliminary DS30485A-page 253

PIC18FXX39

TABLE 22-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC12CXXX

PIC14000

PIC16C5X

PIC16C6X

PIC16CXXX

PIC16F62X

PIC16C7X

PIC16C7XX

PIC16C8X/
PIC16F8X

PIC16F8XX

PIC16C9XX

PIC17C4X

PIC17C7XX

PIC18CXX2

PIC18FXXX

24CXX/
25CXX/
93CXX

HCSXXX

MCRFXXX

MCP2510

Software Tools

M
PL

A
B

®
 In

te
gr

at
ed

D
ev

el
op

m
en

t E
nv

iro
nm

en
t

M
PL

A
B

®
 C

17
 C

 C
om

pi
le

r
M

PL
A

B
®
 C

18
 C

 C
om

pi
le

r
M

PA
SM

TM
 A

ss
em

bl
er

/
M

PL
IN

K
TM

 O
bj

ec
t L

in
ke

r

Emulators

M
PL

A
B

®
 IC

E
In

-C
irc

ui
t E

m
ul

at
or

**

IC
EP

IC
TM

 In
-C

irc
ui

t E
m

ul
at

or

 Debugger

M
PL

A
B

®
 IC

D
 In

-C
irc

ui
t

D
eb

ug
ge

r
*

*

Programmers

PI
C

ST
A

R
T®

 P
lu

s
En

tr
y

Le
ve

l
D

ev
el

op
m

en
t P

ro
gr

am
m

er
**

PR
O

 M
A

TE
®
 II

U

ni
ve

rs
al

 D
ev

ic
e

Pr
og

ra
m

m
er

**

Demo Boards and Eval Kits

PI
C

D
EM

TM
 1

 D
em

on
st

ra
tio

n
B

oa
rd

†

PI
C

D
EM

TM
 2

 D
em

on
st

ra
tio

n
B

oa
rd

†
†

PI
C

D
EM

TM
 3

 D
em

on
st

ra
tio

n
B

oa
rd

PI
C

D
EM

TM
 1

4A
 D

em
on

st
ra

tio
n

B
oa

rd
PI

C
D

EM
TM

 1
7

D
em

on
st

ra
tio

n
B

oa
rd

K
EE

LO
Q

®
 Ev

al
ua

tio
n

K
it

K
EE

LO
Q

®
 T

ra
ns

po
nd

er
 K

it
m

ic
ro

ID
TM

 P
ro

gr
am

m
er

’s
 K

it
12

5
kH

z
m

ic
ro

ID
TM

D

ev
el

op
er

’s
 K

it
12

5
kH

z
A

nt
ic

ol
lis

io
n

m
ic

ro
ID

TM

D
ev

el
op

er
’s

 K
it

13
.5

6
M

H
z

A
nt

ic
ol

lis
io

n
m

ic
ro

ID
TM

 D
ev

el
op

er
’s

 K
it

M
C

P2
51

0
C

A
N

 D
ev

el
op

er
’s

 K
it

*
C

on
ta

ct
 th

e
M

ic
ro

ch
ip

 T
ec

hn
ol

og
y

In
c.

 w
eb

 s
ite

 a
t w

w
w

.m
ic

ro
ch

ip
.c

om
 fo

r i
nf

or
m

at
io

n
on

 h
ow

 to
 u

se
 th

e
M

P
LA

B
®
 IC

D
 In

-C
irc

ui
t D

eb
ug

ge
r (

D
V

16
40

01
) w

ith
 P

IC
16

C
62

, 6
3,

 6
4,

 6
5,

 7
2,

 7
3,

 7
4,

 7
6,

 7
7.

**
C

on
ta

ct
 M

ic
ro

ch
ip

 T
ec

hn
ol

og
y

In
c.

 fo
r a

va
ila

bi
lit

y
da

te
.

†
D

ev
el

op
m

en
t t

oo
l i

s
av

ai
la

bl
e

on
 s

el
ec

t d
ev

ic
es

.

 2002 Microchip Technology Inc. Preliminary DS30485A-page 257

PIC18FXX39

FIGURE 23-6: CLKO AND I/O TIMING

TABLE 23-6: CLKO AND I/O TIMING REQUIREMENTS

Param.
No. Symbol Characteristic Min Typ Max Units Conditions

10 TosH2ckL OSC1↑ to CLKO↓ — 75 200 ns (Note 1)
11 TosH2ckH OSC1↑ to CLKO↑ — 75 200 ns (Note 1)
12 TckR CLKO rise time — 35 100 ns (Note 1)
13 TckF CLKO fall time — 35 100 ns (Note 1)
14 TckL2ioV CLKO↓ to Port out valid — — 0.5 TCY + 20 ns (Note 1)
15 TioV2ckH Port in valid before CLKO ↑ 0.25 TCY + 25 — — ns (Note 1)
16 TckH2ioI Port in hold after CLKO ↑ 0 — — ns (Note 1)
17 TosH2ioV OSC1↑ (Q1 cycle) to Port out valid — 50 150 ns

18 TosH2ioI OSC1↑ (Q2 cycle) to Port
input invalid (I/O in hold time)

PIC18FXXXX 100 — — ns
18A PIC18LFXXXX 200 — — ns

19 TioV2osH Port input valid to OSC1↑ (I/O in setup time) 0 — — ns
20 TioR Port output rise time PIC18FXXXX — 10 25 ns

20A PIC18LFXXXX — — 60 ns VDD = 2V
21 TioF Port output fall time PIC18FXXXX — 10 25 ns

21A PIC18LFXXXX — — 60 ns VDD = 2V
22†† TINP INT pin high or low time TCY — — ns
23†† TRBP RB7:RB4 change INT high or low time TCY — — ns
24†† TRCP RC7:RC4 change INT high or low time 20 ns

†† These parameters are asynchronous events not related to any internal clock edges.
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.

Note: Refer to Figure 23-4 for load conditions.

OSC1

CLKO

I/O Pin
(input)

I/O Pin
(output)

Q4 Q1 Q2 Q3

10

13
14

17

20, 21

19 18

15

11

12

16

Old Value New Value
 2002 Microchip Technology Inc. Preliminary DS30485A-page 271

 2002 Microchip Technology Inc. Preliminary DS30485A-page 319

PIC18FXX39

PIC18FXX39 PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Sales and Support

PART NO. − X /XX XXX

PatternPackageTemperature
Range

Device

Device PIC18FXX39(1), PIC18FXX39T(2);

VDD range 4.2V to 5.5V
PIC18LFXX39(1), PIC18LFXX39T(2);

VDD range 2.0V to 5.5V

Temperature
Range

I = -40°C to +85°C (Industrial)
E = -40°C to +125°C (Extended)

Package ML = QFN (Quad Flatpack, No Leads)
P = PDIP
PT = TQFP (Plastic Thin Quad Flatpack)
SO = SOIC
SP = Skinny Plastic DIP

Pattern QTP, SQTP, Code or Special Requirements
(blank otherwise)

Examples:
a) PIC18LF4539 - I/P 301 = Industrial

temp., PDIP package, Extended VDD
limits, QTP pattern #301.

b) PIC18LF2439 - I/SO = Industrial temp.,
SOIC package, Extended VDD limits.

c) PIC18F4439 - E/P = Extended temp.,
PDIP package, normal VDD limits.

Note 1: F = Standard Voltage range
LF = Wide Voltage Range

2: T = in tape and reel - SOIC,
QFN, and TQFP
packages only.

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

