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Table 1-2 provides the functional version of the on-chip modules.

1.3 System Clock Distribution
Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock
inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module
function.

The following are the clocks used in this MCU:

• BUSCLK — The frequency of the bus is always half of MCGOUT.

• LPO — Independent 1-kHz clock that can be selected as the source for the COP and RTC modules.

• MCGOUT — Primary output of the MCG and is twice the bus frequency.

• MCGLCLK — Development tools can select this clock source to speed up BDC communications
in systems where BUSCLK is configured to run at a very slow frequency.

• MCGERCLK — External reference clock can be selected as the RTC clock source. It can also be
used as the alternate clock for the ADC and MSCAN.

• MCGIRCLK — Internal reference clock can be selected as the RTC clock source.

• MCGFFCLK — Fixed frequency clock can be selected as clock source for the TPM1 and TPM2.

• TPM1CLK — External input clock source for TPM1.

• TPM2CLK — External input clock source for TPM2.

Table 1-2. Module Versions

Module Version

Central Processor Unit (CPU) 3

Multi-Purpose Clock Generator (MCG) 1

Analog Comparator (ACMP) 3

Analog-to-Digital Converter (ADC) 1

Inter-Integrated Circuit (IIC) 2

Freescale’s CAN (MSCAN) 1

Serial Peripheral Interface (SPI) 3

Serial Communications Interface (SCI) 4

Real-Time Counter (RTC) 1

Timer Pulse Width Modulator (TPM) 31

1 3M05C and older masks have TPM version 2.

Debug Module (DBG) 2
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High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers
so they have been located outside the direct addressable memory space, starting at 0x1800.

0x0050 SPIC1 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE

0x0051 SPIC2 0 0 0 MODFEN BIDIROE 0 SPISWAI SPC0

0x0052 SPIBR 0 SPPR2 SPPR1 SPPR0 0 SPR2 SPR1 SPR0

0x0053 SPIS SPRF 0 SPTEF MODF 0 0 0 0

0x0054 Reserved 0 0 0 0 0 0 0 0

0x0055 SPID Bit 7 6 5 4 3 2 1 Bit 0

0x0056–
0x0057 Reserved —

—
—
—

—
—

—
—

—
—

—
—

—
—

—
—

0x0058 IICA AD7 AD6 AD5 AD4 AD3 AD2 AD1 0

0x0059 IICF MULT ICR

0x005A IICC1 IICEN IICIE MST TX TXAK RSTA 0 0

0x005B IICS TCF IAAS BUSY ARBL 0 SRW IICIF RXAK

0x005C IICD DATA

0x005D IICC2 GCAEN ADEXT 0 0 0 AD10 AD9 AD8

0x005E–
0x005F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

0x0060 TPM2SC TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

0x0061 TPM2CNTH Bit 15 14 13 12 11 10 9 Bit 8

0x0062 TPM2CNTL Bit 7 6 5 4 3 2 1 Bit 0

0x0063 TPM2MODH Bit 15 14 13 12 11 10 9 Bit 8

0x0064 TPM2MODL Bit 7 6 5 4 3 2 1 Bit 0

0x0065 TPM2C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0

0x0066 TPM2C0VH Bit 15 14 13 12 11 10 9 Bit 8

0x0067 TPM2C0VL Bit 7 6 5 4 3 2 1 Bit 0

0x0068 TPM2C1SC CH1F CH1IE MS1B MS1A ELS1B ELS1A 0 0

0x0069 TPM2C1VH Bit 15 14 13 12 11 10 9 Bit 8

0x006A TPM2C1VL Bit 7 6 5 4 3 2 1 Bit 0

0x006B Reserved — — — — — — — —

0x006C RTCSC RTIF RTCLKS RTIE RTCPS

0x006D RTCCNT RTCCNT

0x006E RTCMOD RTCMOD

0x006F Reserved — — — — — — — —

0x0070–
0x007F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

Table 4-2. Direct-Page Register Summary (Sheet 3 of 3)

Address
Register

Name
Bit 7 6 5 4 3 2 1 Bit 0
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Table 4-12. FPROT Register Field Descriptions

Field Description

7:6
EPS

EEPROM Protect Select Bits — This 2-bit field determines the protected EEPROM locations that cannot be
erased or programmed. See Table 4-13.

5:0
FPS

Flash Protect Select Bits — This 6-bit field determines the protected Flash locations that cannot be erased or
programmed. SeeTable 4-14.

Table 4-13. EEPROM Block Protection

EPS Address Area Protected Memory Size Protected (bytes) Number of Sectors Protected

0x3 N/A 0 0

0x2 0x17F0 - 0x17FF 32 4

0x1 0x17E0 - 0x17FF 64 8

0x0 0x17C0–0x17FF 128 16

Table 4-14. Flash Block Protection

FPS Address Area Protected Memory Size Protected (bytes) Number of Sectors Protected

0x3F N/A 0 0

0x3E 0xFA00–0xFFFF 1.5K 2

0x3D 0xF400–0xFFFF 3K 4

0x3C 0xEE00–0xFFFF 4.5K 6

0x3B 0xE800–0xFFFF 6K 8

... ... ... ...

0x37 0xD000–0xFFFF 12K 16

0x36 0xCA00–0xFFFF 13.5K 18

0x35 0xC400–0xFFFF 15K 20

0x34 0xBE00–0xFFFF 16.5K 22

... ... ... ...

0x2C 0x8E00–0xFFFF 28.5K 38

0x2B 0x8800–0xFFFF 30K 40

0x2A 0x8200–0xFFFF 31.5K 42

0x29 0x7C00–0xFFFF 33K 44

... ... ... ...

0x22 0x5200–0xFFFF 43.5K 58

0x21 0x4C00–0xFFFF 45K 60

0x20 0x4600–0xFFFF 46.5K 62

0x1F 0x4000–0xFFFF 48K 64

... ... ... ...



Chapter 5 Resets, Interrupts, and General System Control

MC9S08DZ60 Series Data Sheet, Rev. 4

82 Freescale Semiconductor

5.8.6 System Device Identification Register (SDIDH, SDIDL)

These high page read-only registers are included so host development systems can identify the HCS08
derivative and revision number. This allows the development software to recognize where specific memory
blocks, registers, and control bits are located in a target MCU.

Figure 5-7. System Device Identification Register — High (SDIDH)

7 6 5 4 3 2 1 0

R Reserved ID11 ID10 ID9 ID8

W

Reset: 01

1 The revision number that is hard coded into these bits reflects the current silicon revision level.

01 01 01 0 0 0 0

= Unimplemented or Reserved

Table 5-8. SDIDH Register Field Descriptions

Field Description

3:0
ID[11:8]

Part Identification Number — MC9S08DZ60 Series MCUs are hard-coded to the value 0x00E. See also ID bits
in Table 5-9.

7 6 5 4 3 2 1 0

R ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

W

Reset: 0 0 0 0 1 1 1 0

= Unimplemented or Reserved

Figure 5-8. System Device Identification Register — Low (SDIDL)

Table 5-9. SDIDL Register Field Descriptions

Field Description

7:0
ID[7:0]

Part Identification Number — MC9S08DZ60 Series MCUs are hard-coded to the value 0x00E. See also ID bits
in Table 5-8.
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6.5.7 Port G Registers

Port G is controlled by the registers listed below.

6.5.7.1 Port G Data Register (PTGD)

6.5.7.2 Port G Data Direction Register (PTGDD)

7 6 5 4 3 2 1 0

R 0 0
PTGD5 PTGD4 PTGD3 PTGD2 PTGD1 PTGD0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-42. Port G Data Register (PTGD)

Table 6-40. PTGD Register Field Descriptions

Field Description

5:0
PTGD[5:0]

Port G Data Register Bits — For port G pins that are inputs, reads return the logic level on the pin. For port G
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits of this register. For port G pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTGD to all 0s, but these 0s are not driven out the corresponding pins because reset also
configures all port pins as high-impedance inputs with pull-ups disabled.

7 6 5 4 3 2 1 0

R 0 0
PTGDD5 PTGDD4 PTGDD3 PTGDD2 PTGDD1 PTGDD0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-43. Port G Data Direction Register (PTGDD)

Table 6-41. PTGDD Register Field Descriptions

Field Description

5:0
PTGDD[5:0]

Data Direction for Port G Bits — These read/write bits control the direction of port G pins and what is read for
PTGD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port G bit n and PTGD reads return the contents of PTGDn.
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— If entering FEE, set RDIV appropriately, clear the IREFS bit to switch to the external reference,
and leave the CLKS bits at %00 so that the output of the FLL is selected as the system clock
source.

— If entering FBE, clear the IREFS bit to switch to the external reference and change the CLKS
bits to %10 so that the external reference clock is selected as the system clock source. The
RDIV bits should also be set appropriately here according to the external reference frequency
because although the FLL is bypassed, it is still on in FBE mode.

— The internal reference can optionally be kept running by setting the IRCLKEN bit. This is
useful if the application will switch back and forth between internal and external modes. For
minimum power consumption, leave the internal reference disabled while in an external clock
mode.

3. After the proper configuration bits have been set, wait for the affected bits in the MCGSC register
to be changed appropriately, reflecting that the MCG has moved into the proper mode.

— If ERCLKEN was set in step 1 or the MCG is in FEE, FBE, PEE, PBE, or BLPE mode, and
EREFS was also set in step 1, wait here for the OSCINIT bit to become set indicating that the
external clock source has finished its initialization cycles and stabilized. Typical crystal startup
times are given in Appendix A, “Electrical Characteristics”.

— If in FEE mode, check to make sure the IREFST bit is cleared and the LOCK bit is set before
moving on.

— If in FBE mode, check to make sure the IREFST bit is cleared, the LOCK bit is set, and the
CLKST bits have changed to %10 indicating the external reference clock has been
appropriately selected. Although the FLL is bypassed in FBE mode, it is still on and will lock
in FBE mode.

To change from FEI clock mode to FBI clock mode, follow this procedure:

1. Change the CLKS bits to %01 so that the internal reference clock is selected as the system clock
source.

2. Wait for the CLKST bits in the MCGSC register to change to %01, indicating that the internal
reference clock has been appropriately selected.

8.5.2 MCG Mode Switching

When switching between operational modes of the MCG, certain configuration bits must be changed in
order to properly move from one mode to another. Each time any of these bits are changed (PLLS, IREFS,
CLKS, or EREFS), the corresponding bits in the MCGSC register (PLLST, IREFST, CLKST, or
OSCINIT) must be checked before moving on in the application software.

Additionally, care must be taken to ensure that the reference clock divider (RDIV) is set properly for the
mode being switched to. For instance, in PEE mode, if using a 4 MHz crystal, RDIV must be set to %001
(divide-by-2) or %010 (divide -by-4) in order to divide the external reference down to the required
frequency between 1 and 2 MHz.

The RDIV and IREFS bits should always be set properly before changing the PLLS bit so that the FLL or
PLL clock has an appropriate reference clock frequency to switch to.
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Chapter 10
Analog-to-Digital Converter (S08ADC12V1)

10.1 Introduction
The 12-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation
within an integrated microcontroller system-on-chip.

NOTE
MC9S08DZ60 Series devices operate at a higher voltage range (2.7 V to
5.5 V) and do not include stop1 mode. Please ignore references to stop1.

10.1.1 Analog Power and Ground Signal Names

References to VDDAD and VSSAD in this chapter correspond to signals VDDA and VSSA, respectively.

10.1.2 Channel Assignments

NOTE
The ADC channel assignments for the MC9S08DZ60 Series devices are
shown in Table 10-1. Reserved channels convert to an unknown value.

This chapter shows bits for all S08ADC12V1 channels. MC9S08DZ60
Series MCUs do not use all of these channels. All bits corresponding to
channels that are not available on a device are reserved.
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When a conversion is aborted, the contents of the data registers, ADCRH and ADCRL, are not altered.
However, they continue to be the values transferred after the completion of the last successful conversion.
If the conversion was aborted by a reset, ADCRH and ADCRL return to their reset states.

10.4.4.4 Power Control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the
conversion clock source, the ADACK clock generator is also enabled.

Power consumption when active can be reduced by setting ADLPC. This results in a lower maximum value
for fADCK (see the electrical specifications).

10.4.4.5 Sample Time and Total Conversion Time

The total conversion time depends on the sample time (as determined by ADLSMP), the MCU bus
frequency, the conversion mode (8-bit, 10-bit or 12-bit), and the frequency of the conversion clock (fADCK).
After the module becomes active, sampling of the input begins. ADLSMP selects between short (3.5
ADCK cycles) and long (23.5 ADCK cycles) sample times.When sampling is complete, the converter is
isolated from the input channel and a successive approximation algorithm is performed to determine the
digital value of the analog signal. The result of the conversion is transferred to ADCRH and ADCRL upon
completion of the conversion algorithm.

If the bus frequency is less than the fADCK frequency, precise sample time for continuous conversions
cannot be guaranteed when short sample is enabled (ADLSMP=0). If the bus frequency is less than 1/11th
of the fADCK frequency, precise sample time for continuous conversions cannot be guaranteed when long
sample is enabled (ADLSMP=1).

The maximum total conversion time for different conditions is summarized in Table 10-13.

Table 10-13. Total Conversion Time vs. Control Conditions

Conversion Type ADICLK ADLSMP Max Total Conversion Time

Single or first continuous 8-bit 0x, 10 0 20 ADCK cycles + 5 bus clock cycles

Single or first continuous 10-bit or 12-bit 0x, 10 0 23 ADCK cycles + 5 bus clock cycles

Single or first continuous 8-bit 0x, 10 1 40 ADCK cycles + 5 bus clock cycles

Single or first continuous 10-bit or 12-bit 0x, 10 1 43 ADCK cycles + 5 bus clock cycles

Single or first continuous 8-bit 11 0 5 μs + 20 ADCK + 5 bus clock cycles

Single or first continuous 10-bit or 12-bit 11 0 5 μs + 23 ADCK + 5 bus clock cycles

Single or first continuous 8-bit 11 1 5 μs + 40 ADCK + 5 bus clock cycles

Single or first continuous 10-bit or 12-bit 11 1 5 μs + 43 ADCK + 5 bus clock cycles

Subsequent continuous 8-bit;
fBUS > fADCK

xx 0 17 ADCK cycles

Subsequent continuous 10-bit or 12-bit;
fBUS > fADCK

xx 0 20 ADCK cycles

Subsequent continuous 8-bit;
fBUS > fADCK/11

xx 1 37 ADCK cycles
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11.1.1 Features

The IIC includes these distinctive features:

• Compatible with IIC bus standard

• Multi-master operation

• Software programmable for one of 64 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

• General call recognition

• 10-bit address extension

11.1.2 Modes of Operation

A brief description of the IIC in the various MCU modes is given here.

• Run mode — This is the basic mode of operation. To conserve power in this mode, disable the
module.

• Wait mode — The module continues to operate while the MCU is in wait mode and can provide
a wake-up interrupt.

• Stop mode — The IIC is inactive in stop3 mode for reduced power consumption. The stop
instruction does not affect IIC register states. Stop2 resets the register contents.
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the transition from master to slave mode does not generate a stop condition. Meanwhile, a status bit is set
by hardware to indicate loss of arbitration.

11.4.1.7 Clock Synchronization

Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and after a device’s clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 11-10). When all
devices concerned have counted off their low period, the synchronized clock SCL line is released and
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.

Figure 11-10. IIC Clock Synchronization

11.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such a case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.

11.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

SCL1

SCL2

SCL

Internal Counter Reset

Delay Start Counting High Period
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Chapter 16
Timer Pulse-Width Modulator (S08TPMV3)

NOTE
This chapter refers to S08TPM version 3, which applies to the 0M74K and
newer mask sets of this device. 3M05C and older mask set devices use
S08TPM version 2. If your device uses mask 3M05C or older, please refer
to Appendix B, “Timer Pulse-Width Modulator (TPMV2) on page 391 for
information pertaining to that module.

16.1 Introduction
The TPM is a one-to-eight-channel timer system which supports traditional input capture, output compare,
or edge-aligned PWM on each channel. A control bit allows the TPM to be configured such that all
channels may be used for center-aligned PWM functions. Timing functions are based on a 16-bit counter
with prescaler and modulo features to control frequency and range (period between overflows) of the time
reference. This timing system is ideally suited for a wide range of control applications, and the
center-aligned PWM capability extends the field of application to motor control in small appliances.

The TPM uses one input/output (I/O) pin per channel, TPMxCHn, where x is the TPM number (for
example, 1 or 2) and n is the channel number (for example, 0–5). The TPM shares its I/O pins with
general-purpose I/O port pins (refer to the Pins and Connections chapter for more information).

MC9S08DZ60 Series MCUs have two TPM modules. In all packages, TPM2 is 2-channel. The number of
channels available on external pins in TPM1 depends on the package:

• Six channels in 64-pin and 48-pin packages

• Four channels in 32-pin packages.
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16.2.1.1 EXTCLK — External Clock Source

Control bits in the timer status and control register allow the user to select nothing (timer disable), the
bus-rate clock (the normal default source), a crystal-related clock, or an external clock as the clock which
drives the TPM prescaler and subsequently the 16-bit TPM counter. The external clock source is
synchronized in the TPM. The bus clock clocks the synchronizer; the frequency of the external source must
be no more than one-fourth the frequency of the bus-rate clock, to meet Nyquist criteria and allowing for
jitter.

The external clock signal shares the same pin as a channel I/O pin, so the channel pin will not be usable
for channel I/O function when selected as the external clock source. It is the user’s responsibility to avoid
such settings. If this pin is used as an external clock source (CLKSB:CLKSA = 1:1), the channel can still
be used in output compare mode as a software timer (ELSnB:ELSnA = 0:0).

16.2.1.2 TPMxCHn — TPM Channel n I/O Pin(s)

Each TPM channel is associated with an I/O pin on the MCU. The function of this pin depends on the
channel configuration. The TPM pins share with general purpose I/O pins, where each pin has a port data
register bit, and a data direction control bit, and the port has optional passive pullups which may be enabled
whenever a port pin is acting as an input.

The TPM channel does not control the I/O pin when (ELSnB:ELSnA = 0:0) or when (CLKSB:CLKSA =
0:0) so it normally reverts to general purpose I/O control. When CPWMS = 1 (and ELSnB:ELSnA not =
0:0), all channels within the TPM are configured for center-aligned PWM and the TPMxCHn pins are all
controlled by the TPM system. When CPWMS=0, the MSnB:MSnA control bits determine whether the
channel is configured for input capture, output compare, or edge-aligned PWM.

When a channel is configured for input capture (CPWMS=0, MSnB:MSnA = 0:0 and ELSnB:ELSnA not
= 0:0), the TPMxCHn pin is forced to act as an edge-sensitive input to the TPM. ELSnB:ELSnA control
bits determine what polarity edge or edges will trigger input-capture events. A synchronizer based on the
bus clock is used to synchronize input edges to the bus clock. This implies the minimum pulse width—that
can be reliably detected—on an input capture pin is four bus clock periods (with ideal clock pulses as near
as two bus clocks can be detected). TPM uses this pin as an input capture input to override the port data
and data direction controls for the same pin.

When a channel is configured for output compare (CPWMS=0, MSnB:MSnA = 0:1 and ELSnB:ELSnA
not = 0:0), the associated data direction control is overridden, the TPMxCHn pin is considered an output
controlled by the TPM, and the ELSnB:ELSnA control bits determine how the pin is controlled. The
remaining three combinations of ELSnB:ELSnA determine whether the TPMxCHn pin is toggled, cleared,
or set each time the 16-bit channel value register matches the timer counter.

When the output compare toggle mode is initially selected, the previous value on the pin is driven out until
the next output compare event—then the pin is toggled.
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TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is
a free-running counter, then this update is made when the TPM counter changes from $FFFE
to $FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and
when the TPM counter changes from TPMxMODH:L to $0000.

— Center-Aligned PWM (Section 16.4.2.4, “Center-Aligned PWM Mode)

In this mode and if (CLKSB:CLKSA not = 00), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer after that the both bytes were written and when the
TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is
a free-running counter, then this update is made when the TPM counter changes from $FFFE
to $FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and
when the TPM counter changes from TPMxMODH:L to (TPMxMODH:L - 1).

5. Center-Aligned PWM (Section 16.4.2.4, “Center-Aligned PWM Mode)

— TPMxCnVH:L = TPMxMODH:L [SE110-TPM case 1]

In this case, the TPM v3 produces 100% duty cycle. Instead, the TPM v2 produces 0% duty
cycle.

— TPMxCnVH:L = (TPMxMODH:L - 1) [SE110-TPM case 2]

In this case, the TPM v3 produces almost 100% duty cycle. Instead, the TPM v2 produces 0%
duty cycle.

— TPMxCnVH:L is changed from 0x0000 to a non-zero value [SE110-TPM case 3 and 5]

In this case, the TPM v3 waits for the start of a new PWM period to begin using the new duty
cycle setting. Instead, the TPM v2 changes the channel output at the middle of the current
PWM period (when the count reaches 0x0000).

— TPMxCnVH:L is changed from a non-zero value to 0x0000 [SE110-TPM case 4]

In this case, the TPM v3 finishes the current PWM period using the old duty cycle setting.
Instead, the TPM v2 finishes the current PWM period using the new duty cycle setting.

6. Write to TPMxMODH:L registers in BDM mode (Section 16.3.3, “TPM Counter Modulo
Registers (TPMxMODH:TPMxMODL))

In the TPM v3 a write to TPMxSC register in BDM mode clears the write coherency mechanism
of TPMxMODH:L registers. Instead, in the TPM v2 this coherency mechanism is not cleared when
there is a write to TPMxSC register.

7. Update of EPWM signal when CLKSB:CLKSA = 00

In the TPM v3 if CLKSB:CLKSA = 00, then the EPWM signal in the channel output is not update
(it is frozen while CLKSB:CLKSA = 00). Instead, in the TPM v2 the EPWM signal is updated at
the next rising edge of bus clock after a write to TPMxCnSC register.

The Figure 0-1 and Figure 0-2 show when the EPWM signals generated by TPM v2 and TPM v3
after the reset (CLKSB:CLKSA = 00) and if there is a write to TPMxCnSC register.
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17.2.3 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin of the target HCS08 MCU. All
commands and data are sent MSB-first using a custom BDC communications protocol. Active background
mode commands require that the target MCU is currently in the active background mode while
non-intrusive commands may be issued at any time whether the target MCU is in active background mode
or running a user application program.

Table 17-1 shows all HCS08 BDC commands, a shorthand description of their coding structure, and the
meaning of each command.

Coding Structure Nomenclature

This nomenclature is used in Table 17-1 to describe the coding structure of the BDC commands.

Commands begin with an 8-bit hexadecimal command code in the host-to-target
direction (most significant bit first)

/  = separates parts of the command
d = delay 16 target BDC clock cycles

AAAA = a 16-bit address in the host-to-target direction
RD = 8 bits of read data in the target-to-host direction

WD = 8 bits of write data in the host-to-target direction
RD16 = 16 bits of read data in the target-to-host direction

WD16 = 16 bits of write data in the host-to-target direction
SS = the contents of BDCSCR in the target-to-host direction (STATUS)
CC = 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)

RBKP = 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint
register)

WBKP = 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)
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The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest
clock is normally the reference oscillator/64 or the self-clocked rate/64.)

• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically
one cycle of the fastest clock in the system.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

17.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
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17.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 17.3.6, “Hardware Breakpoints.”

17.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin type trace)

• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

17.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
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17.4.1.2 BDC Breakpoint Match Register (BDCBKPT)

This 16-bit register holds the address for the hardware breakpoint in the BDC. The BKPTEN and FTS
control bits in BDCSCR are used to enable and configure the breakpoint logic. Dedicated serial BDC
commands (READ_BKPT and WRITE_BKPT) are used to read and write the BDCBKPT register but is
not accessible to user programs because it is not located in the normal memory map of the MCU.
Breakpoints are normally set while the target MCU is in active background mode before running the user
application program. For additional information about setup and use of the hardware breakpoint logic in
the BDC, refer to Section 17.2.4, “BDC Hardware Breakpoint.”

17.4.2 System Background Debug Force Reset Register (SBDFR)

This register contains a single write-only control bit. A serial background mode command such as
WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are
ignored. Reads always return 0x00.

2
WS

Wait or Stop Status — When the target CPU is in wait or stop mode, most BDC commands cannot function.
However, the BACKGROUND command can be used to force the target CPU out of wait or stop and into active
background mode where all BDC commands work. Whenever the host forces the target MCU into active
background mode, the host should issue a READ_STATUS command to check that BDMACT = 1 before
attempting other BDC commands.
0 Target CPU is running user application code or in active background mode (was not in wait or stop mode when

background became active)
1 Target CPU is in wait or stop mode, or a BACKGROUND command was used to change from wait or stop to

active background mode

1
WSF

Wait or Stop Failure Status — This status bit is set if a memory access command failed due to the target CPU
executing a wait or stop instruction at or about the same time. The usual recovery strategy is to issue a
BACKGROUND command to get out of wait or stop mode into active background mode, repeat the command
that failed, then return to the user program. (Typically, the host would restore CPU registers and stack values and
re-execute the wait or stop instruction.)
0 Memory access did not conflict with a wait or stop instruction
1 Memory access command failed because the CPU entered wait or stop mode

0
DVF

Data Valid Failure Status — This status bit is not used in the MC9S08DZ60 Series because it does not have
any slow access memory.
0 Memory access did not conflict with a slow memory access
1 Memory access command failed because CPU was not finished with a slow memory access

Table 17-2. BDCSCR Register Field Descriptions (continued)

Field Description
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A.11 MCG Specifications
Table A-12. MCG Frequency Specifications (Temperature Range = –40 to 125°C Ambient)

 Num  C  Rating  Symbol  Min  Typical  Max  Unit

1 P
Internal reference frequency - factory trimmed at
VDD = 5 V and temperature = 25 °C fint_ft — 31.25 — kHz

2 P
Average internal reference frequency -

untrimmed 1 fint_ut 25 32.7 41.66 kHz

3 P
Average internal reference frequency - user
trimmed

fint_t 31.25 — 39.0625 kHz

4 D Internal reference startup time tirefst — 60 100 us

5 —
DCO output frequency range - untrimmed 1

value provided for reference: fdco_ut = 1024 X
fint_ut

fdco_ut 25.6 33.48 42.66 MHz

6 P DCO output frequency range - trimmed fdco_t 32 — 40 MHz

7 C
Resolution of trimmed DCO output frequency at
fixed voltage and temperature (using FTRIM)

Δfdco_res_t — ± 0.1 ± 0.2 %fdco

8 C
Resolution of trimmed DCO output frequency at
fixed voltage and temperature (not using FTRIM)

Δfdco_res_t — ± 0.2 ± 0.4 %fdco

9 P
Total deviation of trimmed DCO output frequency
over voltage and temperature

Δfdco_t —
+ 0.5
-1.0

± 2 %fdco

10 C
Total deviation of trimmed DCO output frequency
over fixed voltage and temperature range of
0 - 70 °C

Δfdco_t — ± 0.5 ± 1 %fdco

11 C FLL acquisition time 2 tfll_acquire — — 1 ms

12 D PLL acquisition time 3 tpll_acquire — — 1 ms

13 C
Long term Jitter of DCO output clock (averaged

over 2ms interval) 4 CJitter — 0.02 0.2 %fdco

14 D VCO operating frequency fvco 7.0 — 55.0 MHz

15 D PLL reference frequency range fpll_ref 1.0 — 2.0 MHz

16 T
RMS frequency variation of a single clock cycle

measured 2 ms after reference edge.5
fpll_cycjit_2ms — 0.5904 — %fpll

17 T
Maximum frequency variation averaged over
2 ms window.

fpll_maxjit_2ms — 0.001 — %fpll

MCU

EXTAL XTAL

Crystal or Resonator

RS

C2

RF

C1
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Figure A-7. SPI Master Timing (CPHA = 0)

Figure A-8. SPI Master Timing (CPHA = 1)
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If the associated port pin is not stable for at least two bus clock cycles before changing to input capture
mode, it is possible to get an unexpected indication of an edge trigger. Typically, a program would clear
status flags after changing channel configuration bits and before enabling channel interrupts or using the
status flags to avoid any unexpected behavior.

B.2.5 Timer Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the
output compare value for the output compare or PWM functions. The channel value registers are cleared
by reset.

Table B-5. Mode, Edge, and Level Selection

 CPWMS  MSnB:MSnA  ELSnB:ELSnA  Mode  Configuration

X XX 00 Pin not used for TPM channel; use as an external clock for the TPM or
revert to general-purpose I/O

0 00 01 Input capture Capture on rising edge only

10 Capture on falling edge only

11 Capture on rising or falling edge

01 00 Output
compare

Software compare only

01 Toggle output on compare

10 Clear output on compare

11 Set output on compare

1X 10 Edge-aligned
PWM

High-true pulses (clear output on compare)

X1 Low-true pulses (set output on compare)

1 XX 10 Center-aligned
PWM

High-true pulses (clear output on compare-up)

X1 Low-true pulses (set output on compare-up)

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure B-8. Timer Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure B-9. Timer Channel Value Register Low (TPMxCnVL)


