Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST10
Core Size	16-Bit
Speed	50MHz
Connectivity	EBI/EMI, SSP, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	77
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st10r172lt1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents -

_____.

1 PIN DESCRIPTION					
2 FUNCTIONAL DESCRIPTION					
3 MEMORY MAPPING					
4 CENTRAL PROCESSING UNIT					
5 INTERRUPT AND TRAP FUNCTIONS					
5.1 INTERRUPT SOURCES					
5.2 HARDWARE TRAPS					
6 PARALLEL PORTS					
7 EXTERNAL BUS CONTROLLER					
8 PWM MODULE					
9 GENERAL PURPOSE TIMERS					
9.1 GPT1					
9.2 GPT2					
10 SERIAL CHANNELS					
11 WATCHDOG TIMER					
12 SYSTEM RESET					
13 POWER REDUCTION MODES					
14 SPECIAL FUNCTION REGISTERS					
15 ELECTRICAL CHARACTERISTICS					
15.1 ABSOLUTE MAXIMUM RATINGS					
15.2 DC CHARACTERISTICS					

Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function		
P5.10	98-100	I	5S	•	• •	n Schmitt-Trigger characteristics.
–P5.15	1- 3	Ι	5S	Port 5 pins	also serve a	is timer inputs:
	98	I	5S	P5.10	T6EUD	GPT2 Timer T6 Ext.Up/Down Ctrl.Input
	99	I	5S	P5.11	T5EUD	GPT2 Timer T5 Ext.Up/Down Ctrl.Input
	100	I	5S	P5.12	T6IN	GPT2 Timer T6 Count Input
	1	I	5S	P5.13	T5IN	GPT2 Timer T5 Count Input
	2	Ι	5S	P5.14	T4EUD	GPT1 Timer T4 Ext.Up/Down Ctrl.Input
	3	I	5S	P5.15	T2EUD	GPT1 Timer T2 Ext.Up/Down Ctrl.Input
XTAL1	5	I	ЗТ		Input to the generator	oscillator amplifier and internal clock
XTAL2	6	0	ЗТ	XTAL2:	Output of th	e oscillator amplifier circuit.
	teP	roc			XTAL1, whil Observe mi	e device from an external source, drive le leaving XTAL2 unconnected. nimum and maximum high/low and es specified in the AC Characteristics.
Table 1 Pin definitions						
10 ²						

	Symbol	Pin Number (TQFP)	Input (I) Output (O)	Kind ¹⁾	Function		
	P4.0– P4.7	23-26 29-32-	I/O	5T	An 8-bit bidirectional I/O port. Port 8 is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 4 can be used to output the segment address lines for external bus configuration.		
		23	0	5T	P4.0	A16	Least Significant Segment Addr. Line
		26	0	5T	P4.3	A19	Segment Address Line
		29	0	5T	P4.4	A20	Segment Address Line
			0	5T		SSPCE1	Chip Enable Line 1
		30	0	5T	P4.5	A21	Segment Address Line
			0	5T		SSPCE0	SSPChip Enable Line 0
		31	0	5T	P4.6	A22	Segment Address Line
			I/O	5T		SSPDAT	SSP Data Input/Output Line
		32	0	5T	P4.7	A23	Most Significant Segment Addr. Line
		2	0	5T		SSPCLK	SSP Clock Output Line
i	RD	33	0	5T		lemory Read tion or data re	Strobe. RD is activated for every exter- ead access.
	WR/ WRL	34	0	5T	vated for e pin is activ bus, and fo	very external ated for low b or every data	Strobe. In WR-mode, this pin is acti- data write access. In WRL-mode, this byte data write accesses on a 16-bit write access on an 8-bit bus. SCON register for mode selection.
	READY/ READY	35	I	5T	function is ing an exte ory cycle ti	enabled, the ernal memory ime waitstate	el is programmable. When the Ready selected inactive level at this pin dur- access will force the insertion of mem- s until the pin returns to the selected programmable.

Table 1 Pin definitions

5 INTERRUPT AND TRAP FUNCTIONS

The architecture of the ST10R172L supports several mechanisms for fast and flexible response to the service requests that can be generated from various sources, internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced, either by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In a standard interrupt service, program execution is suspended and a branch to the interrupt service routine is performed. For a PEC service, just one cycle is 'stolen' from the current CPU activity. A PEC service is a single, byte or word data transfer between any two memory locations, with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is decremented for each PEC service, except in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are very well suited, for example, to the transmission or reception of blocks of data. The ST10R172L has 8 PEC channels, each of which offers fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield, exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher priority service request. For standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs, feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

/7/

of external memory space, the address space can be restricted to 1 MByte, 256 KByte or to 64 KByte.

8 PWM MODULE

A 1-channel Pulse Width Modulation (PWM) Module operates on channel 3. The pulse width modulation module can generate up to four PWM output signals using edge-aligned or centrealigned PWM. In addition, the PWM module can generate PWM burst signals and single shot outputs. The table below shows the PWM frequencies for different resolutions. The level of the output signals is selectable and the PWM module can generate interrupt requests.

Mode 0 edge aligned	Resolution	8-bit	10-bit	12-bit	14-bit	16-bit
CPU clock/1	20ns	195.3 KHz	48.83KHz	12.21KHz	3.052KHz	762.9Hz
CPU clock/64	1.28ns	3.052KHz	762.9Hz	190.7Hz	47.68Hz	11.92Hz
Mode 1 center aligned	Resolution	8-bit	10-bit	12-bit	14-bit	16-bit
CPU clock/1	20ns	97.66KHz	24.41KHz	6.104KHz	1.525KHz	381.5Hz
CPU clock/64	1.28ns	1.525Hz	381.5 Hz	95.37Hz	23.84Hz	0Hz

Table 4 PWM unit frequencies and resolution at 50MHz CPU clock

F _{CPU} =50MHz	Timer input selection									
	000b	001b	010b	011b	100b	101b	110b	111b		
Prescaler Factor	8	16	32	64	128	256	512	1024		
Input Frequency	6.25 MHz	3.125 MHz	1.5625 MHz	781 KHz	391 KHz	195 KHz	97.5 KHz	48.83 KHz		
Resolution	160ns	320ns	640ns	1.28 us	2.56 us	5.12 us	10.24 us	20.48 us		
Period	10.49ms	20.97ms	41.94ms	83.88ms	168ms	336ms	672ms	1.342s		

Table 5 GPT1 timer input frequencies, resolution and periods

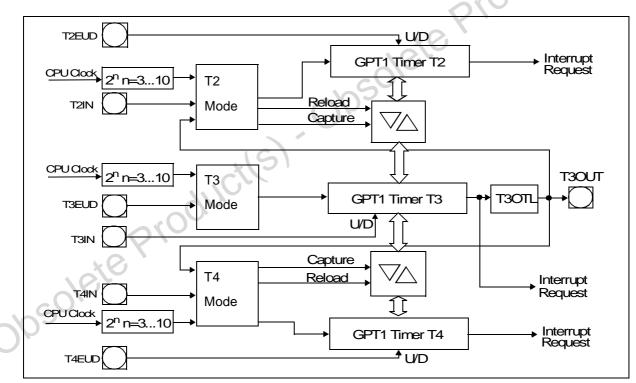


Figure 5 GPT1 block diagram

S0BRS = '0)', f _{CPU} =	50MHz		S0BRS = '1', f _{CPU} = 50MHz			
Baud Rate (Baud)	Deviatio	on Error	Reload Value	Baud Rate (Baud)	Deviatio	on Error	Reload Value
1562500	0.0%	/ 0.0%	0000 _H / 0000 _H	1041666	0.0%	/ 0.0%	0000 _H / 0000 _H
56000	+3.3%	/ -0.4%	001A _H / 001B _H	56000	+3.3%	/ -2.1%	0011 _H / 0012 _H
38400	+1.7%	/ -0.8%	0027 _H / 0028 _H	38400	+0.5%	/ -3.1%	001A _H / 001B _H
19200	+0.5%	/ -0.8%	0050 _H / 0051 _H	19200	+0.5%	/-1.4%	0035 _H / 0036 _H
9600	+0.5%	/ -0.1%	00A1 _H / 00A2 _H	9600	+0.5%	/ -0.5%	006B _H / 006C _H
4800	+0.2%	/ -0.1%	0144 _H / 0145 _H	4800	0.0%	/ -0.5%	00D8 _H / 00D9 _H
2400	0.0%	/ -0.1%	028A _H / 028B _H	2400	0.0%	/ -0.2%	01B1 _H / 01B2 _H
1200	0.0%	/ -0.1%	0515 _H / 0516 _H	1200	0.0%	/ -0.1%	0363 _H / 0364 _H
600	0.0%	/ 0.0%	0A2B _H / 0A2C _H	600	0.0%	/ -0.1%	06C7 _H / 06C8 _H
190	+0.4%	/+0.4%	1FFF _H / 1FFF _H	75	0.0%	/ 0.0%	363F _H / 3640 _H
		•	CL	127	+0.1%	/ +0.1%	1FFF _H / 1FFF _H

various commonly used baud rates together with the required reload values and the deviation errors compared to the intended baudrate.

Table 7 Commonly used baud rates, required reload values and deviation errors

SSP transmits 1...3 bytes or receives 1 byte after sending 1...3 bytes synchronously to a shift clock which is generated by the SSP. The SSP can start shifting with the LSB or with the MSB and is used to select shifting and latching clock edges, and clock polarity. Up to two chip select lines may be activated in order to direct data transfers to one or both of two peripheral devices.

When the SSP is enabled, the four upper pins of Port4 can not be used as general purpose IO. Note that the segment address selection done via the system start-up configuration during reset has priority and overrides the SSP functions on these pins.

SSPCKS Value		Synchronous baud rate
000	SSP clock = CPU clock divided by 2	25 MBit/s
001	SSP clock = CPU clock divided by 4	12.5 MBit/s
010	SSP clock = CPU clock divided by 8	6.25 MBit/s

Table 8 Synchronous baud rate and SSPCKS reload values

ST10R172L - WATCHDOG TIMER

SSPCKS Value		Synchronous baud rate
011	SSP clock = CPU clock divided by 16	3.13 MBit/s
100	SSP clock = CPU clock divided by 32	1.56 MBit/s
101	SSP clock = CPU clock divided by 64	781 KBit/s
110	SSP clock = CPU clock divided by 128	391 KBit/s
111	SSP clock = CPU clock divided by 256	195 KBit/s

Table 8 Synchronous baud rate and SSPCKS reload values

11 WATCHDOG TIMER

_XK

The Watchdog Timer is a fail-safe mechanism which limits the malfunction time of the controller. The Watchdog Timer is always enabled after device reset and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. In this way, the chip's start-up procedure is always monitored. The software must be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to maintain the Watchdog Timer, it will overflow generating an internal hardware reset and pulling the RSTOUT pin low to reset external hardware components.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by 128. The high byte of the Watchdog Timer register can be set to a pre-specified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. The table below shows the watchdog time range which for a 50MHz CPU clock rounded to 3 significant figures.

	Reload value	Prescaler for f _{CPU}				
\bigcirc	in WDTREL	2 (WDTIN = '0')	128 (WDTIN = '1')			
	FF _H	10.24 µs	655 µs			
	00 _H	2.62 ms	168 ms			

Table 9 Watchdog timer range

15 ELECTRICAL CHARACTERISTICS

15.1 Absolute Maximum Ratings

•	Ambient temperature under bias (T _A):40°C to +85 °C
•	Storage temperature (T _{ST}): 65 to +150 °C
•	Voltage on V _{DD} pins with respect to ground (V _{SS}): – 0.5 to +4.0 V
•	Voltage on any pin with respect to ground (V $_{\rm SS}$): –0.5 to V $_{\rm DD}$ +0.5 V
•	Voltage on any 5V tolerant pin with respect to ground (V $_{\rm SS}$):–0.5 to 5.5 V
•	Voltage on any 5V fail-safe pin with respect to ground (V_SS):
•	Input current on any pin during overload condition:10 to +10 mA
•	Absolute sum of all input currents during overload condition:
•	Power dissipation:

Note Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (V_{IN} > V_{DD} or V_{IN} < V_{SS}) the voltage on pins with respect to ground (V_{SS}) must not exceed the values defined by the Absolute Maximum Ratings.

The parameters listed in this section represent both the ST10R172L controller characteristics and the system requirements. To aid parameters interpretation in design evaluation, the a symbol column is marked:

CC for Controller Characteristics:	The ST10R172L logic provides signals with the
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	respective timing characteristics.
SR for System Requirement:	The external system must provide signals with the respective timing characteristics to the ST10R172L.
	respective unning characteristics to the STTOR ITZE.

### 15.2 DC Characteristics

 $V_{DD} = 3.3V \pm 0.3V \qquad V_{SS} = 0 \ V$ 

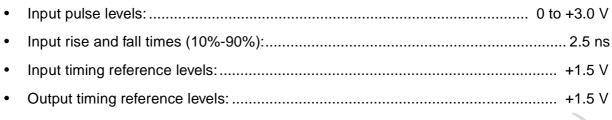
Reset active  $T_A = -40^{\circ}C$  to +85 °C°

Parameter	Symbol		Limit Values		Unit	Test Condition	
Farameter	Symbo	1	min.	max.	Unit		
Input low voltage	V _{IL}	SR	- 0.3	0.8	V	-	
Input high voltage (all except RSTIN and XTAL1)	V _{IH}	SR	2.0	V _{DD} + 0.3	V	15)	
Input high voltage RSTIN, RPD	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.3	V		
Input high voltage XTAL1	$V_{\rm IH2}$	SR	0.7 V _{DD}	V _{DD} + 0.3	v		
Output low voltage (ALE, RD, WR, BHE, CLKOUT, RSTIN,RSTOUT, CSX)	V _{OL}	CC	-	0.4	V	I _{OL} = 4 mA	
Output low voltage (all other outputs)	V _{OL1}	СС	- 50	0.4	V	I _{OL1} = 2 mA	
Output high voltage ALE, RD, WR, BHE, CLKOUT, RSTIN,RSTOUT, CSX)	V _{OH}	CC	2.4	-	V	I _{OH} = -4 mA	
Output high voltage ¹⁾ (all other outputs)	V _{OH1}	CC	2.4	_	V	I _{OH} = - 2mA	
Input leakage current (3T pins)	I _{OZ}	CC	-	±10	μA	0 V <v<sub>IN<v<sub>DD</v<sub></v<sub>	
Input leakage current (5T, 5S pins)	I _{OZ1}	CC	-	±10 ±100 ⁷⁾	μΑ μΑ	0 V <v<sub>IN<v<sub>DD V_{DD}<v<sub>IN&lt;5.0V⁷⁾</v<sub></v<sub></v<sub>	
RSTIN pull-up resistor ²⁾	R _{RST}	CC	20	300	kΩ	V _{IN} = 0 V	
Read/Write pullup current ³⁾	I _{RWH} ⁴⁾		_	-40	μA	V _{OUT} = 2.4 V	
Read/Write pullup current ³	I _{RWL} 5)		-500	_	μA	V _{OUT} = 0.4 V	
ALE pulldown current ³	$I_{ALEL}^4$		40	_	μA	V _{OUT} = 0.4 V	
ALE pulldown current ³	$I_{ALEH}^{5}$		_	500	μA	V _{OUT} = 2.4 V	
Port 6 (CS) pullup current ³	$I_{P6H}^4$		_	-40	μA	V _{OUT} = 2.4 V	
Port 6 ( $\overline{CS}$ ) pullup current ³	ا _{P6L} 5		-500	-	μA	V _{OUT} = 0.4 V	

#### **Table 11 DC characteristics**

#### ST10R172L - ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Limit Values		Unit	Test Condition
	Cymbol	min.	max.	Unit	
PORT0 configuration current ³	I _{P0H} ⁴	-	-4	μA	V _{IN} = V _{IHmin}
	I _{P0L} ⁵	-50	-	μA	$V_{IN} = V_{ILmax}$
RPD pulldown current ²	I _{RPD} ⁵	100	500	μA	$V_{OUT} = V_{DD}$
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁶⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz T _A = 25 ℃
Power supply current	I _{CC}	-	15 + 2.5 * f _{CPU}	mA	f _{CPU} in [MHz] ⁷⁾⁾
Idle mode supply current	I _{ID}	-	10 + 0.9 * f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}}$ in [MHz] ⁷
Power-down mode supply current	I _{PD} ⁸	~10 ⁵⁰	200	μA	V _{DD} = 3.6 V ⁹


#### Table 11 DC characteristics

- 1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the resulting voltage comes from the external circuitry.
- 2) This specification is only valid during reset, or interruptible power-down mode, after reception of an external interrupt signal that will wake up the CPU.
- 3) This specification is only valid during reset, hold or adapt-mode. Port 6 pins are only affected if they are used for  $\overline{\text{CS}}$  output and the open drain function is not enabled.
- 4) The maximum current may be drawn while the signal line remains inactive.
- 5) The minimum current must be drawn in order to drive the signal line active.
- 6) Not 100% tested, guaranteed by design characterization.
- 7) Supply current is a function of operating frequency as illustrated in Figure 7 on page 35. This parameter is tested at V_{DD}max and 50 MHz CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH} with an infinite execution of NOP instruction fetched from external memory (16-bit demux bus mode, no waitstates, no memory tri-state waitstates, normal ALE).
- 8) Typical value at  $25^{\circ}C = 20\mu A$ .
- 9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD}, V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

#### ST10R172L - ELECTRICAL CHARACTERISTICS

# 15.3 AC Characteristics

#### **Test conditions**



Output load: .....seeFigure 9

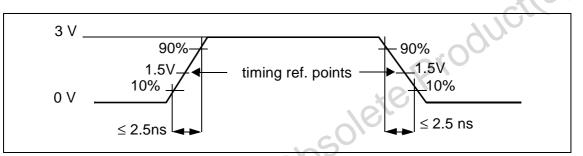



Figure 8 Input waveforms

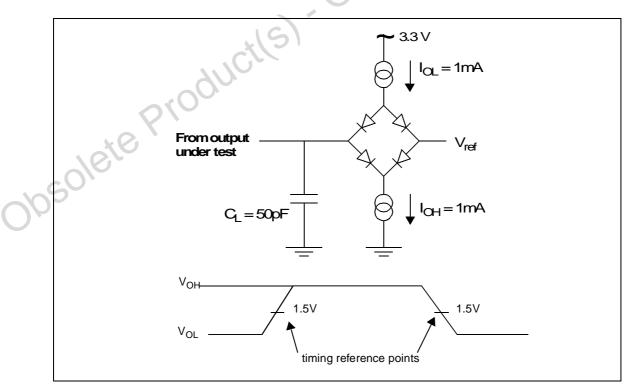



Figure 9 Output load circuit waveform

# 15.3.1 Cpu Clock Generation Mechanisms

ST10R172L internal operation is controlled by the CPU clock  $f_{CPU}$ . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations. The external timing (AC Characteristics) specification therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see figure below).

The CPU clock signal can be generated by different mechanisms. The duration of TCLs and their variation (and also the external timing) depends on the  $f_{CPU}$  generation mechanism. This must be considered when calculating ST10R172L timing.

The CPU clock generation mechanism is set during reset by the logic levels on pins P0.15-13 (P0H.7-5).

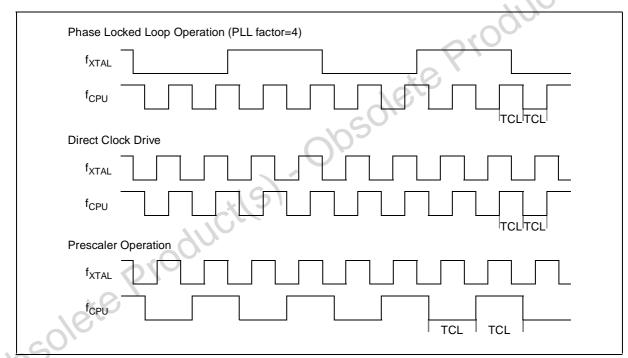



Figure 11 CPU clock generation mechanisms

P0.1	5-13 (P0H	.7-5)	CPU frequency f _{CPU} = f _{XTAL} * F	External clock input range 10- 50MHz	Notes
1	1	1	F _{XTAL} * 4	2.5 to 12.5 MHz	Default configuration
1	1	0	F _{XTAL} * 3	3.33 to 16.66 MHz	
1	0	1	F _{XTAL} * 2	5 to 25 MHz	

 Table 12 CPU clock generation mechanisms

**S** 

#### ST10R172L - ELECTRICAL CHARACTERISTICS

# Note The address float timings in Multiplexed bus mode ( $t_{11}$ and $t_{45}$ ) use $TCL_{max} = 1/f_{XTAL} \times DC_{max}$ instead of $TCL_{min}$ .

Note that if the bit OWDDIS in SYSCON register is cleared, the PLL runs on its free-running frequency and delivers the clock signal for the Oscillator Watchdog. If bit OWDDIS is set, then the PLL is switched off.

#### **Oscillator Watchdog (OWD)**

When the clock option selected is direct drive or direct drive with prescaler, in order to provide a fail safe mechanism in case of a loss of the external clock, an oscillator watchdog is implemented as an additional functionality of the PLL circuitry. This oscillator watchdog operates as follows:

After a reset, the Oscillator Watchdog is enabled by default. To disable the OWD, set bit 4 of SYSCON register OWDDIS.

When the OWD is enabled, the PLL runs on its free-running frequency and increments the Oscillator Watchdog counter. On each transition of the XTAL1 pin, the Oscillator Watchdog is cleared. If an external clock failure occurs, then the Oscillator Watchdog counter overflows (after 16 PLL clock cycles). The CPU clock signal will be switched to the PLL free-running clock signal, and the Oscillator Watchdog Interrupt Request (XP3INT) is flagged. The CPU clock will not switch back to the external clock even if a valid external clock exits on XTAL1 pin. Only a hardware reset can switch the CPU clock source back to direct clock input.

When the OWD is disabled, the CPU clock is always fed from the oscillator input and the PLL is switched off to decrease power supply current.

### Phase locked loop

For all other combinations of pins P0.15-13 (P0H.7-5) during reset the on-chip phase locked loop is enabled and provides the CPU clock. The PLL multiplies the input frequency by the factor F which is selected via the combination of pins P0.15-13 (i.e.  $f_{CPU} = f_{XTAL} * F$ ). With every F'th transition of  $f_{XTAL}$  the PLL circuit synchronizes the CPU clock to the input clock. In this way,  $f_{CPU}$  is constantly adjusted so it is locked to  $f_{XTAL}$ . The slight variation causes a jitter of  $f_{CPU}$  which affects individual TCL duration. Therefore, AC characteristics that refer to TCLs must be calculated using the minimum possible TCL.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL constantly adjusts its output frequency, it corresponds to the applied input frequency (crystal or oscillator). The relative deviation for periods of more than one TCL is lower than for one single TCL. For a period of N * TCL the minimum value is computed using the corresponding deviation  $D_N$ :

$$TCL_{min} = TCL_{NOM} \times (1 - |D_N| / 100)$$
$$D_N = \pm (4 - N / 15) [\%]$$

#### 15.3.3 Multiplexed Bus

Parameter	Symb	ol	Max. CPU ( = 50 MHz	Clock	Variable CPU C 1/2TCL = 1 to 5		
			min.	max.	min.	max.	Unit
ALE high time	t ₅	СС	$7 + t_A$	_	TCL - 3 + t _A	15	ns
Address (P1, P4), BHE setup to ALE	t ₆	CC	3 + t _A	_	TCL - 7 + t _A	AUCIL	ns
Address (P0) setup to ALE	t _{6m}	СС	5 + t _A	-	TCL - 5 + t _A		ns
Address hold after ALE	t ₇	СС	5 + t _A	-	TCL - 5 + t _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	5 + t _A		TCL - 5 + t _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	-5 + t _A	302	-5 + t _A	_	ns
Address float after $\overline{RD}$ , (with RW-delay) ¹⁾	t ₁₀	СС	5	5 ¹	-	5 ¹	ns
Address float after RD, (no RW-delay) ¹	t ₁₁	CC	_	15 ¹	-	TCL + 5 ¹	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	13 + t _C	_	2TCL - 7+ t _C	_	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	23 + t _C	_	3TCL - 7 + t _C	_	ns
RD to valid data in (with RW-delay)	t ₁₄	SR	_	5 + t _C	-	2TCL - 15 + t _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	15 + t _C	_	3TCL - 15 + t _C	ns
ALE low to valid data in	t ₁₆	SR	_	15 + t _A + t _C	_	3TCL - 15 + t _A + t _C	ns
Address to valid data in	t ₁₇	SR	—	20 + 2t _A + t _C	_	4TCL - 20 + 2t _A + t _C	ns

Table 14 Multiplexed bus

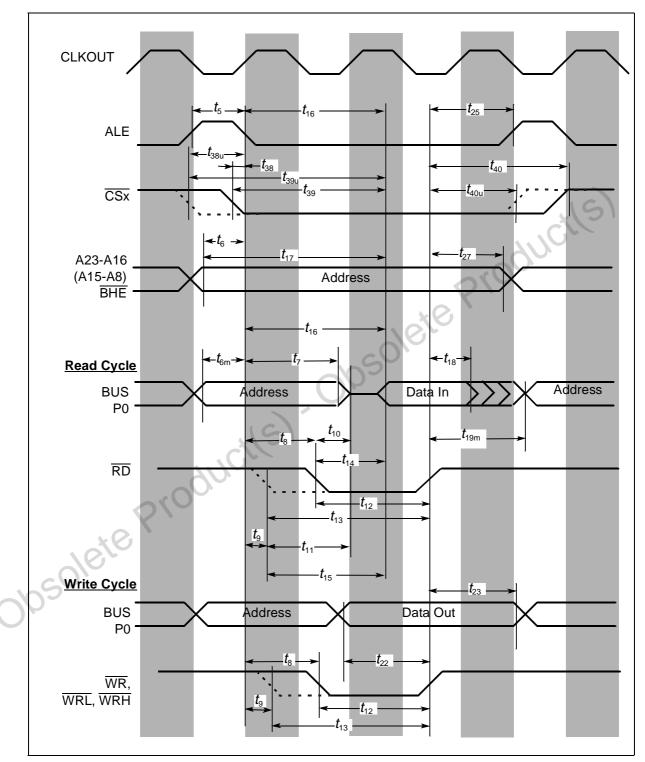



Figure 13 External memory cycle: multiplexed bus, with/without read/write delay, normal ALE

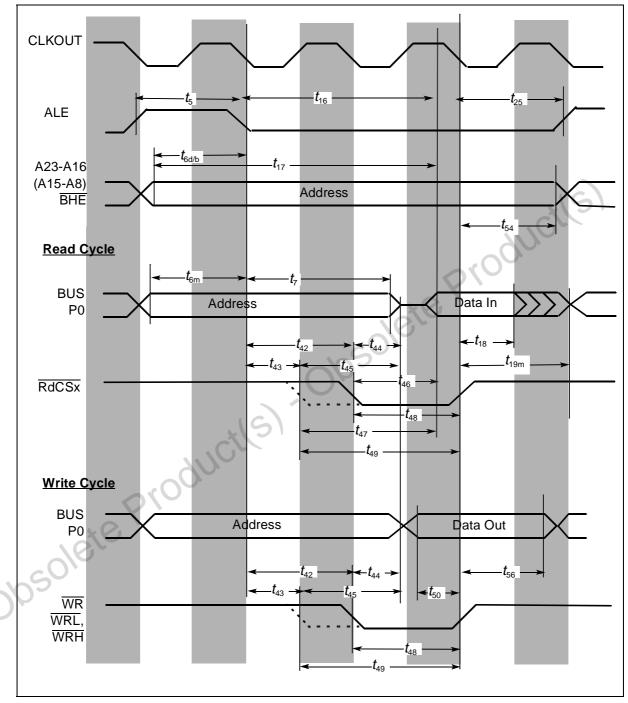
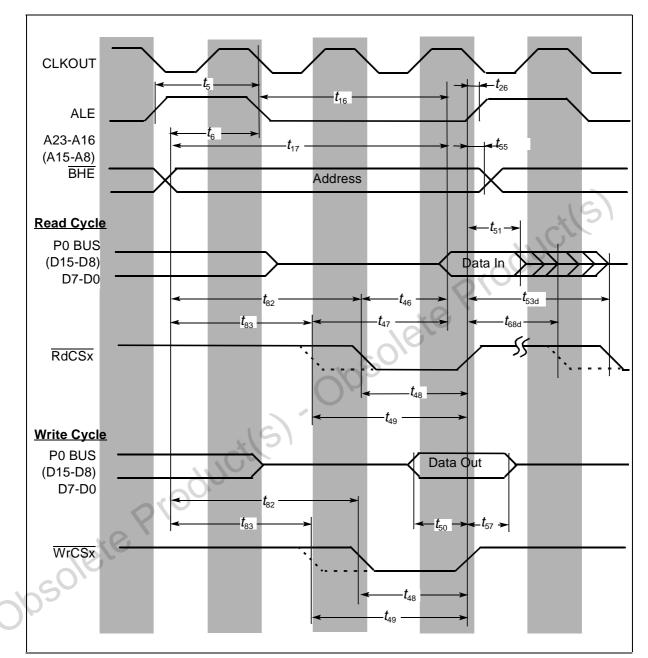
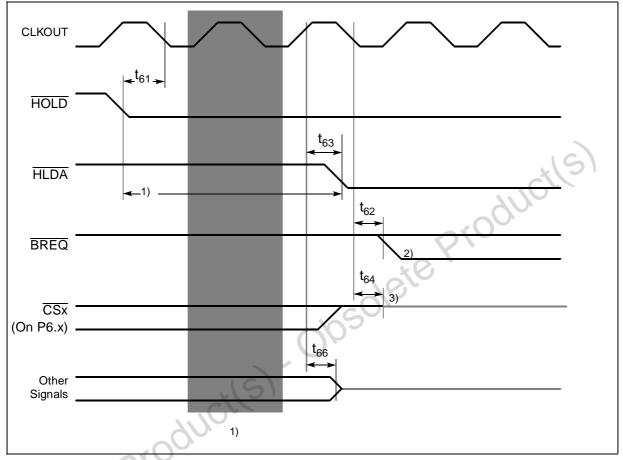
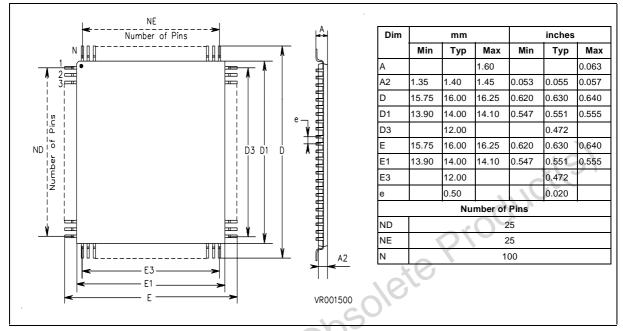



Figure 16 External memory cycle: multiplexed bus, with/without read/write delay, extended ale, read/write chip select



Figure 20 External memory cycle: demultiplexed bus, no read/write delay, extended ALE, read/write chip select



#### Figure 22 External bus arbitration, releasing the bus

- 1 The ST10R172L will complete the running bus cycle before granting bus access.
- 2 This is the first opportunity for  $\overline{BREQ}$  to become active.
- 3 The  $\overline{\text{CS}}$  outputs will be resistive high (pullup) after t₆₄.

#### 16 PACKAGE MECHANICAL DATA



#### Figure 28 Package outline TQFP100 (14 x 14 mm)

#### 17 ORDERING INFORMATION

5

Temperature range	Package	
0°C to 70°C	- TQFP100 (14x 14)	
-40°C to +85 °C		
	0°C to 70°C	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2001 STMicroelectronics - All Rights Reserved.

 $\label{eq:purchase} \begin{array}{l} \mathsf{Purchase} \text{ of } \mathsf{I}^2\mathsf{C} \text{ Components by STMicroelectronics conveys a license under the Philips } \mathsf{I}^2\mathsf{C} \text{ Patent. Rights to use these components in an} \\ \mathsf{I}^2\mathsf{C} \text{ system is granted provided that the system conforms to the } \mathsf{I}^2\mathsf{C} \text{ Standard Specification as defined by Philips.} \end{array}$ 

STMicroelectronics Group of Companies

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

