

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

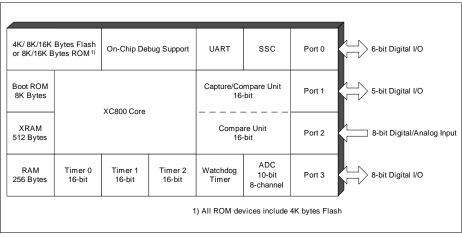
Details

E·XFI

201010	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	86MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	27
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saa-xc866l-2fra-be

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


8-Bit Single-Chip Microcontroller XC800 Family

SAA-XC866

1 Summary of Features

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 512 bytes of XRAM
 - 4/8/16 Kbytes of Flash; or
 8/16 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V/5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(further features are on next page)

General Device Information

2.2 Logic Symbol

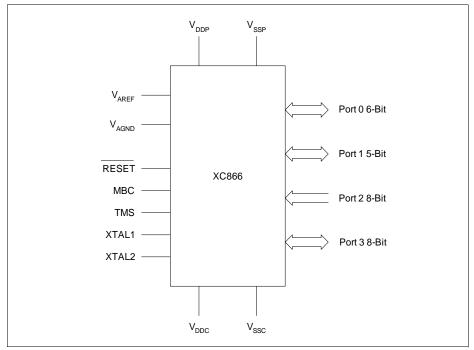


Figure 3 SAA-XC866 Logic Symbol

General Device Information

2.3 Pin Configuration

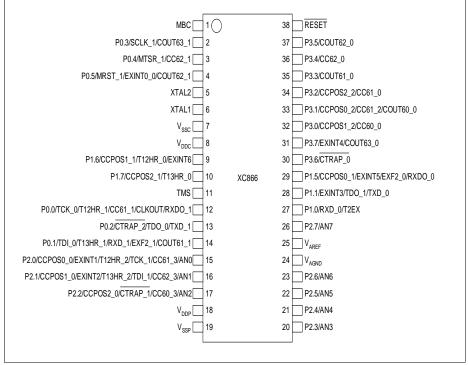


Figure 4 SAA-XC866 Pin Configuration, PG-TSSOP-38 Package (top view)

Table 7 System Control Register Overview (cont'd)

Addr	Register Name		Bit	7	6	5	4	3	2	1	0	
B3 _H	ID	Reset: 01 _H	Bit Field			PRODID				VERID	1	
	Identity Register		Туре		r					r		
B4 _H	PMCON0 Power Mode Control Re	PMCON0 Reset: 00 _H Power Mode Control Register 0		0	WDT WKRS WK RST SEL			SD	PD	D WS		
			Туре	r	rwh	rwh	rw	rw	rwh	r	w	
B5 _H	PMCON1 Reset: 00 _H Power Mode Control Register 1		Bit Field	0				T2_DIS	CCU _DIS	SSC _DIS	ADC _DIS	
			Туре			r		rw	rw	rw	rw	
B6 _H	OSC_CON Reset: 08 _H OSC Control Register		Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR	
			Туре		r		rw	rw	rw	rwh	rh	
B7 _H	PLL_CON PLL Control Register	Reset: 20 _H	Bit Field		NDIV		VCO BYP	OSC DISC	RESLD	LOCK		
			Туре		r	w		rw	rw	rwh	rh	
ΒΑ _Η	BA _H CMCON Reset: 00 _H Clock Control Register		Bit Field	VCO 0 SEL			CLKREL					
			Туре	rw r					r	w		
BB _H	PASSWD Password Register	Reset: 07 _H	Bit Field	PASS			PROTE MO CT_S		DE			
			Туре	w					rh rw			
BCH	FEAL	Reset: 00 _H	Bit Field	ECCERRADDR[7:0]								
	Flash Error Address Reg	gister Low	Туре	rh								
BD _H	FEAH	Reset: 00 _H	Bit Field			EC	CCERRA	ADDR[15	:8]			
	Flash Error Address Reg	gister High	Туре					'n				
BE _H	COCON Clock Output Control Re	Reset: 00 _H egister	Bit Field	()	TLEN	COUT S	COREL				
			Туре		r	rw	rw		r	w		
E9 _H	MISC_CON Miscellaneous Control R	Reset: 00 _H Register	Bit Field				0				DFLAS HEN	
			Туре				r				rwh	
RMAP =	0, Page 3											
B3 _H	XADDRH	Reset: F0 _H	Bit Field				AD	DRH				
			Туре	rw								

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 8 WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	1		1		1				1		
BB _H	WDTCON Reset: 00 ₁ Watchdog Timer Control Register	Bit Field		0	WINB EN	WDT PR	0	WDT EN	WDT RS	WDT IN	
		Туре		r	rw	rh	r	rw	rwh	rw	
BC _H	WDTREL Reset: 00	Bit Field	WDTREL								
	Watchdog Timer Reload Register		rw								
BD _H	D _H WDTWINB Reset: 00 _H Watchdog Window-Boundary Count					WDT	WINB				
	Register	Туре	rw								
BE _H	WDTL Reset: 00	Bit Field				WDT	[7:0]				
	Watchdog Timer Register Low	Туре	rh								
BF _H	WDTH Reset: 00	Bit Field				WDT	[15:8]				
	Watchdog Timer Register High	Туре	rh								

Table 9 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B1 _H	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
RMAP =	RMAP = 0, Page 3									
80 _H	P0_OD Reset: 00 _H	Bit Field	(C	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре		r	rw	rw	rw	rw	rw	rw
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	0			P1	P0
	P1 Open Drain Control Register	Туре	rw	rw	rw		r		rw	rw
B0 _H	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10 ADC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	0					1					
D1 _H	ADC_PAGE Reset: 0	0 _H Bit Field	C	P	ST	NR	0	PAGE			
	Page Register for ADC	Туре	,	N		w	r	rwh			
RMAP =	0, Page 0										
CA _H	ADC_GLOBCTR Reset: 3	0 _H Bit Field	ANON	DW	CTC			0			
	Global Control Register	Туре	rw	rw rw				r			
CB _H	ADC_GLOBSTR Reset: 0 Global Status Register	00 _H Bit Field		0		CHNR		0	SAM PLE	BUSY	
		Туре		r		rh		r	rh	rh	
CCH	ADC_PRAR Reset: 0	0 _H Bit Field	ASEN1	ASEN0	0	ARBM	CSM1	PRIO1	CSM0	PRIO	
	Priority and Arbitration Register	Туре	rw	rw	r	rw	rw	rw	rw	rw	
CD _H	ADC_LCBR Reset: B	7 _H Bit Field		BOU	ND1			BOL	JND0		
	Limit Check Boundary Register	Туре		۲١	v			rw			
CEH	ADC_INPCR0 Reset: 0	0 _H Bit Field		STC							
	Input Class Register 0	Туре		rw			w				
CF _H	ADC_ETRCR Reset: 0 External Trigger Control Register	00 _H Bit Field	SYNEN 1	SYNEN 0	ETRSEL1		1 ETRSELO		0		
		Туре	rw	rw	rw				rw		
RMAP =	0, Page 1										
CA _H	ADC_CHCTR0 Reset: 0	0 _H Bit Field	0	LCC		0		RES	RSEL		
	Channel Control Register 0	Туре	r	rw		r		r	w		
CBH	ADC_CHCTR1 Reset: 0	0 _H Bit Field	0		LCC		LCC 0		RESRSEL		
	Channel Control Register 1	Туре	r		rw			rw		w	
CCH	ADC_CHCTR2 Reset: 0	0 _H Bit Field	0		LCC		0		RESRSEL		
	Channel Control Register 2	Туре	r		rw			r	rw		
CD _H	ADC_CHCTR3 Reset: 0	0 _H Bit Field	0		LCC			0	RES	RSEL	
	Channel Control Register 3	Туре	r		rw			r		w	
CEH	ADC_CHCTR4 Reset: 0	0 _H Bit Field	0		LCC			0	RES	RSEL	
	Channel Control Register 4	Туре	r		rw			r	r	w	
CF _H	ADC_CHCTR5 Reset: 0		0		LCC			0	RES	RSEL	
	Channel Control Register 5	Туре	r		rw			r	r	w	
D2 _H	ADC_CHCTR6 Reset: 0	0 _H Bit Field	0		LCC			0	RES	RSEL	
	Channel Control Register 6	Туре	r		rw			r	r	w	
D3 _H	ADC_CHCTR7 Reset: 0	0 _H Bit Field	0		LCC			0	RES	RSEL	
	Channel Control Register 7	Type	r	r rw			r rw				

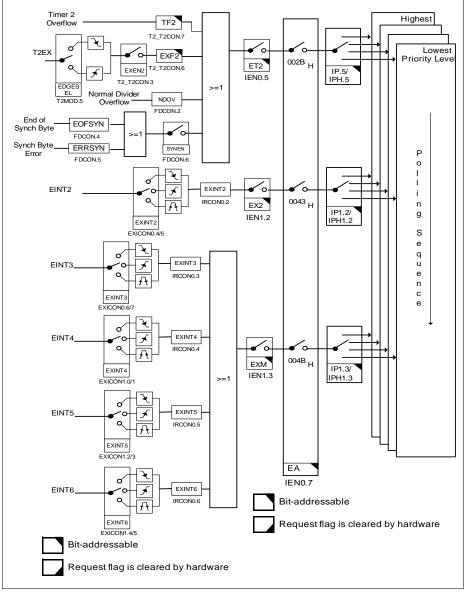


Figure 15 Interrupt Request Sources (Part 2)

SAA-XC866

Functional Description

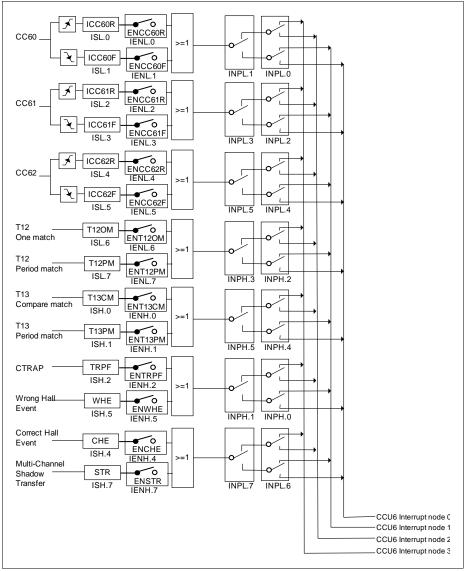


Figure 17 Interrupt Request Sources (Part 4)

3.7.1 Module Reset Behavior

Table 18 shows how the functions of the SAA-XC866 are affected by the various reset types. A "∎" means that this function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, reliable	Not affected, reliable	Not affected, reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 18 Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the SAA-XC866 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. **Table 19** shows the available boot options in the SAA-XC866.

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	х	User Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	0	х	BSL Mode; on-chip OSC/PLL non-bypassed	0000 _H
0	1	0	OCDS Mode ¹⁾ ; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	Standalone User (JTAG) Mode ²⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H

Table 19 SAA-XC866 Boot Selection

¹⁾ The OCDS mode is not accessible if Flash is protected.

²⁾ Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert WDTTO) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> $* 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- the input frequency to the WDT can be selected to be either f_{PCLK}/2 or f_{PCLK}/128
- the reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, P_{WDT} , between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1+WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

If the Window-Boundary Refresh feature of the WDT is enabled, the period P_{WDT} between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 28**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB should not be smaller than WDTREL.

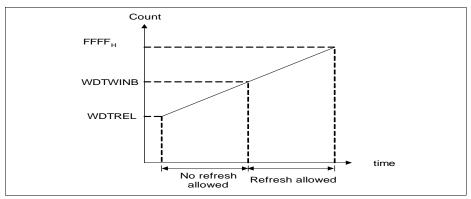


Figure 28 WDT Timing Diagram

Table 24 lists the possible watchdog time range that can be achieved for different module clock frequencies. Some numbers are rounded to 3 significant digits.

Reload value in WDTREL	Prescaler for f _{PCLK}					
	2 (WDTIN = 0)	128 (WDTIN = 1)				
	26.7 MHz	26.7 MHz				
FF _H	19.2 μs	1.23 ms				
7F _H	2.48 ms	159 ms				
00 _H	4.92 ms	315 ms				

Table 24 Watchdog Time Ranges

3.14 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features:

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- · Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

3.15 Timer 0 and Timer 1

Timers 0 and 1 are count-up timers which are incremented every machine cycle, or in terms of the input clock, every 2 PCLK cycles. They are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 28**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.

Table 28 Timer 0 and Timer 1 Modes

infineon

Functional Description

3.19 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- use the built-in debug functionality of the XC800 Core
- add a minimum of hardware overhead
- provide support for most of the operations by a Monitor Program
- use standard interfaces to communicate with the Host (a Debugger)

Features:

- Set breakpoints on instruction address and within a specified address range
- Set breakpoints on internal RAM address
- · Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks
- Step through the program code

The OCDS functional blocks are shown in **Figure 35**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals. After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack). The OCDS system is accessed through the JTAG¹, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after SAA-XC866 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either Port 0 (primary) or Ports 1 and 2 (secondary). User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the SAA-XC866.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the SAA-XC866 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the SAA-XC866 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the SAA-XC866 is designed in.

4.2.2 Supply Threshold Characteristics

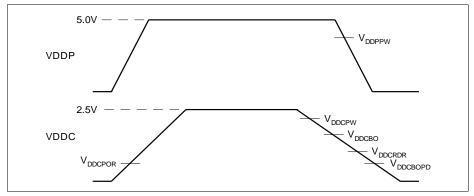


Figure 36 Supply Threshold Parameters

Table 35 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		l	ues	Unit	
			min.	typ.	max.	
V _{DDC} prewarning voltage ¹⁾	V _{DDCPW}	СС	2.2	2.3	2.4	V
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	СС	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	СС	0.9	1.0	1.1	V
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
V _{DDP} prewarning voltage ³⁾	V _{DDPPW}	СС	3.3	4.0	4.65	V
Power-on reset voltage ²⁾⁴⁾	VDDCPOR	СС	1.3	1.5	1.7	V

¹⁾ Detection is disabled in power-down mode.

²⁾ Detection is enabled in both active and power-down mode.

³⁾ Detection is enabled for external power supply of 5.0V Detection must be disabled for external power supply of 3.3V.

⁴⁾ The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Table 36 ADC Characteristics (Operating Conditions apply; V _{DDP} = 5V Ran

Parameter	Symbol	Li	mit Valu	es	Unit	Test Conditions/
		min.	typ.	max.		Remarks
Overload current coupling factor for	K _{OVD} CC	-	-	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1/3}$
digital I/O pins		-	-	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1/3}$
Switched capacitance at the reference voltage input	C _{AREFSW} CC	-	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C _{AINSW} CC	-	5	7	pF	1)5)
Input resistance of the reference input	R _{AREF} CC	-	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN} CC	-	1	1.5	kΩ	1)

¹⁾ Not subject to production test, verified by design/characterization.

²⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DDP} = 5.0 \text{ V}$.

- ³⁾ An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}). The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- ⁴⁾ This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- ⁵⁾ The sampling capacity of the conversion C-Network is pre-charged to V_{AREF}/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than V_{AREF}/2.

4.3.2 Output Rise/Fall Times

Table 39 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions	
		min.	max.			
V_{DDP} = 5V Range						
Rise/fall times 1) 2)	t _R , t _F	-	10	ns	20 pF. ³⁾	
V _{DDP} = 3.3V Range						
Rise/fall times 1) 2)	t _R , t _F	-	10	ns	20 pF. ⁴⁾	

¹⁾ Rise/Fall time measurements are taken with 10% - 90% of the pad supply.

²⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

³⁾ Additional rise/fall time valid for $C_L = 20pF - 100pF$ @ 0.125 ns/pF.

⁴⁾ Additional rise/fall time valid for $C_L = 20pF - 100pF$ @ 0.225 ns/pF.

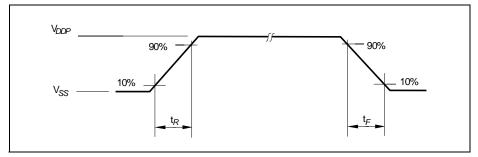
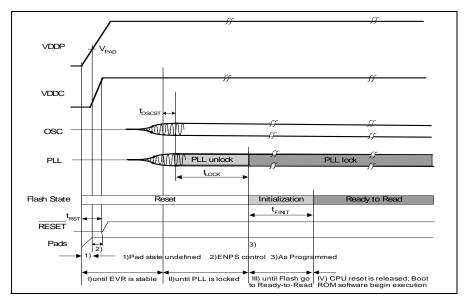


Figure 41 Rise/Fall Times Parameters

4.3.3 Power-on Reset and PLL Timing


Table 40 Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol	Limit Values			Unit	Test Conditions	
		min.	typ.	max.			
Pad operating voltage	V _{PAD} CC	2.3	-	-	V	1)	
On-Chip Oscillator start-up time	toscst CC	_	-	500	ns	1)	
Flash initialization time	t _{FINIT} CC	-	160	-	μs	1)	
RESET hold time	t _{RST} SR	_	500	_	μs	V_{DDP} rise time (10% - 90%) \leq 500µs ¹⁾²⁾	
PLL lock-in in time	t _{LOCK} CC	-	-	200	μs	1)	
PLL accumulated jitter	D _P	-	-	0.7	ns	1)3)	

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

²⁾ RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5V).

³⁾ PLL lock at 80 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 40 and P = 1.

Figure 42 Power-on Reset Timing

4.3.5 JTAG Timing

Table 42TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol	Limits		Unit
		min	max	
TCK clock period ¹⁾	t _{TCK} SR	50	-	ns
TCK high time ¹⁾	t ₁ SR	20	-	ns
TCK low time ¹⁾	t ₂ SR	20	-	ns
TCK clock rise time ¹⁾	t ₃ SR	-	4	ns
TCK clock fall time ¹⁾	t ₄ SR	-	4	ns

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

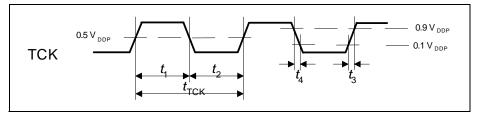


Figure 43 TCK Clock Timing

Package and Reliability

5 Package and Reliability

5.1 Package Parameters (PG-TSSOP-38)

 Table 45 provides the thermal characteristics of the package.

Parameter	Symbol		Limit	Values	Unit	Notes
			Min.	Max.		
Thermal resistance junction case ¹⁾²⁾	R _{TJC}	CC	-	15.7	K/W	-
Thermal resistance junction lead ¹⁾²⁾	R _{TJL}	CC	-	39.2	K/W	-

¹⁾ The thermal resistances between the case and the ambient (R_{TCA}), the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}), the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TLA}). The thermal resistances between the case and the ambient (R_{TCA}), the lead and the ambient (R_{TLA}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TLA}). The thermal resistances between the case and the ambient (R_{TCA}), the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J=T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

²⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.