

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32wg980f64-qfp100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.18 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

2.1.19 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

2.1.20 Backup Real Time Counter (BURTC)

The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out.

2.1.21 Low Energy Timer (LETIMER)

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

2.1.22 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 – EM3.

2.1.23 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

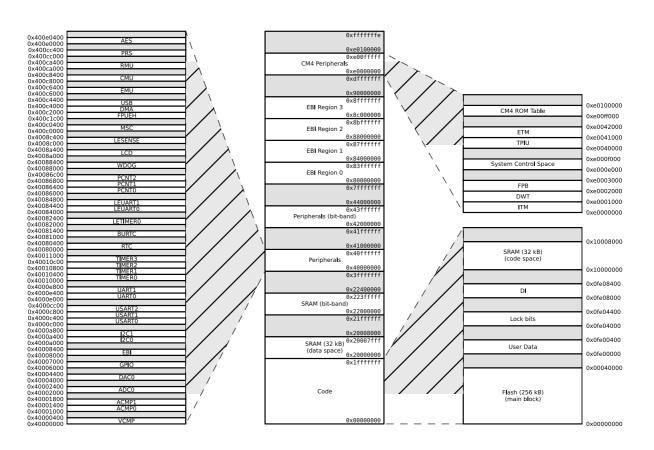
2.1.24 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.25 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

2.1.26 Digital to Analog Converter (DAC)


The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

Module	Configuration	Pin Connections
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	81 pins Available pins are sho Table 4.3 (p. 70)	
LCD	Full configuration	LCD_SEG[33:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

2.3 Memory Map

The *EFM32WG980* memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the largest memory configuration.

Figure 2.2. EFM32WG980 Memory Map with largest RAM and Flash sizes

3.7 Flash

Table 3.7. Flash

Symbol	Parameter	Condition	Min	Тур	Max	Unit
EC _{FLASH}	Flash erase cycles before failure		20000			cycles
		T _{AMB} <150°C	10000			h
RET _{FLASH}	Flash data retention	T _{AMB} <85°C	10			years
		T _{AMB} <70°C	20			years
t _{W_PROG}	Word (32-bit) pro- gramming time		20			μs
t _{PERASE}	Page erase time		20	20.4	20.8	ms
t _{DERASE}	Device erase time		40	40.8	41.6	ms
I _{ERASE}	Erase current				7 ¹	mA
I _{WRITE}	Write current				7 ¹	mA
V _{FLASH}	Supply voltage dur- ing flash erase and write		1.98		3.8	V

¹Measured at 25°C

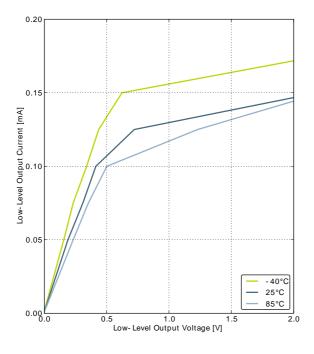
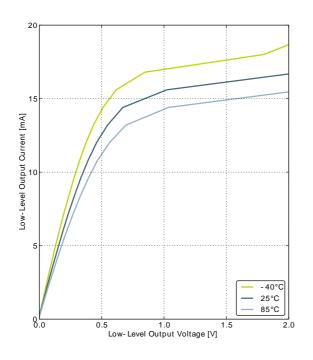
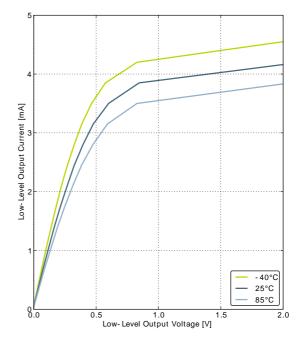
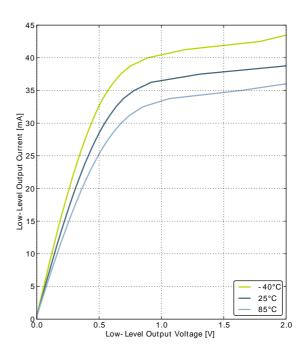

3.8 General Purpose Input Output

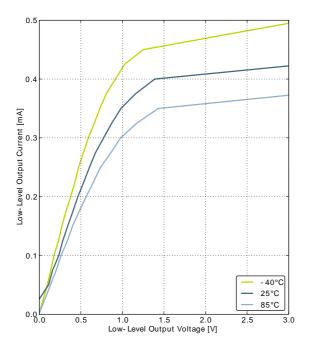
Table 3.8. GPIO

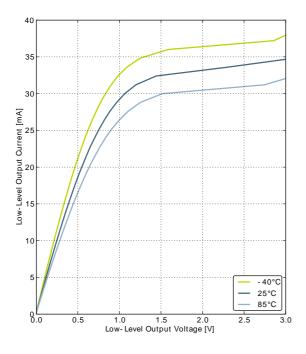

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IOIL}	Input low voltage				0.30V _{DD}	V
V _{IOIH}	Input high voltage		0.70V _{DD}			V
		Sourcing 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.80V _{DD}		V
		Sourcing 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.90V _{DD}		V
	O david bish visib	Sourcing 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.85V _{DD}		V
V _{IOOH}	Output high volt- age (Production test condition = 3.0V, DRIVEMODE =	Sourcing 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.90V _{DD}		V
	STANDARD)	Sourcing 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.75V _{DD}			V
		Sourcing 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.85V _{DD}			V
		Sourcing 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.60V _{DD}			V

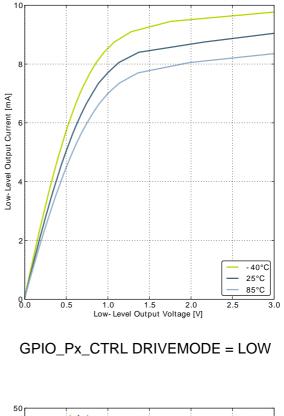

Figure 3.11. Typical Low-Level Output Current, 2V Supply Voltage


GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD


GPIO_Px_CTRL DRIVEMODE = LOW

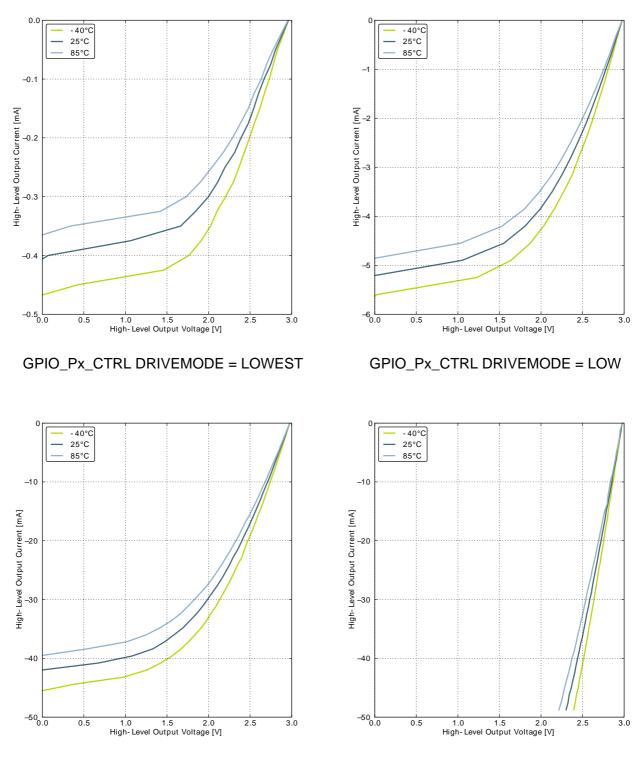

GPIO_Px_CTRL DRIVEMODE = HIGH


Figure 3.13. Typical Low-Level Output Current, 3V Supply Voltage



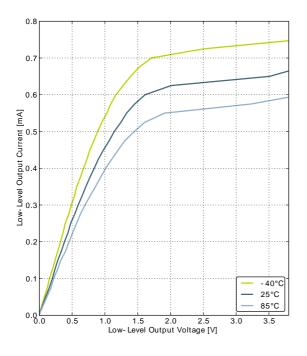
GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

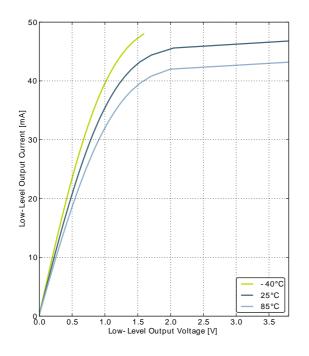


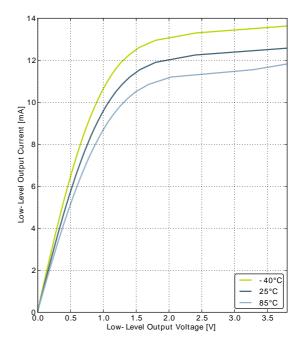
GPIO_Px_CTRL DRIVEMODE = HIGH

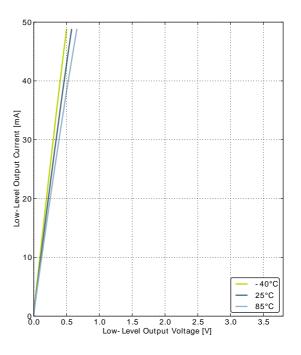
Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage



GPIO_Px_CTRL DRIVEMODE = STANDARD

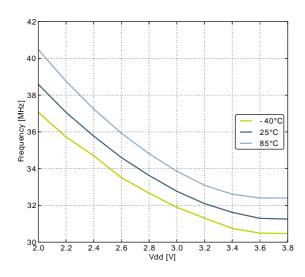



Figure 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage


GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW


GPIO_Px_CTRL DRIVEMODE = HIGH

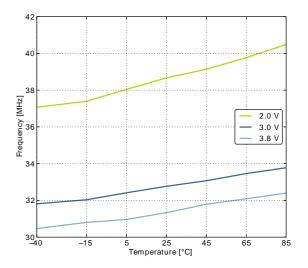
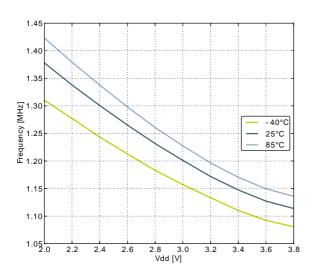
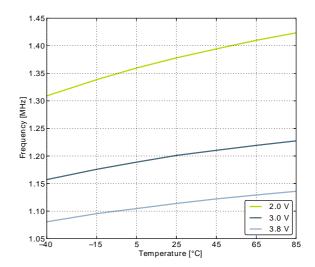

3.9.3 LFRCO

Table 3.11. LFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFRCO}	Oscillation frequen- cy , V_{DD} = 3.0 V, T_{AMB} =25°C		31.29	32.768	34.28	kHz
t _{LFRCO}	Startup time not in- cluding software calibration			150		μs
I _{LFRCO}	Current consump- tion			300		nA
TUNESTEP _L FRCO	Frequency step for LSB change in TUNING value			1.5		%

Figure 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage


3.9.4 HFRCO


Table 3.12. HFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
f	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
f _{HFRCO}	cy, V _{DD} = 3.0 V, T _{AMB} =25°C	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48	6.60	6.72	MHz
		1 MHz frequency band	1.15	1.20	1.25	MHz
t _{HFRCO_settling}	Settling time after start-up	f _{HFRCO} = 14 MHz		0.6		Cycles
		f _{HFRCO} = 28 MHz		165	215	μA
		f _{HFRCO} = 21 MHz		134	175	μA
1	Current consump-	f _{HFRCO} = 14 MHz		106	140	μA
I _{HFRCO}	tion	f _{HFRCO} = 11 MHz		94	125	μA
		f _{HFRCO} = 6.6 MHz		77	105	μA
		f _{HFRCO} = 1.2 MHz		25	40	μA
DC _{HFRCO}	Duty cycle	f _{HFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _{H-} FRCO	Frequency step for LSB change in TUNING value			0.3 ¹		%

¹The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		64		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		66		dB
		1 MSamples/s, 12 bit, differential, $2xV_{DD}$ reference		68		dB
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		61		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		65		dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, V _{DD} reference	62	66		dB
		200 kSamples/s, 12 bit, differ- ential, 2xV _{DD} reference		69		dB
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		64		dBc
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		76		dBc
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		73		dBc
		1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		66		dBc
		1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		77		dBc
SFDR _{ADC}	Spurious-Free Dy- namic Range (SF- DR)	1 MSamples/s, 12 bit, differential, V_{DD} reference		76		dBc
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference		75		dBc
		1 MSamples/s, 12 bit, differen- tial, 5V reference		69		dBc
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		75		dBc
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		75		dBc
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		76		dBc

Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2

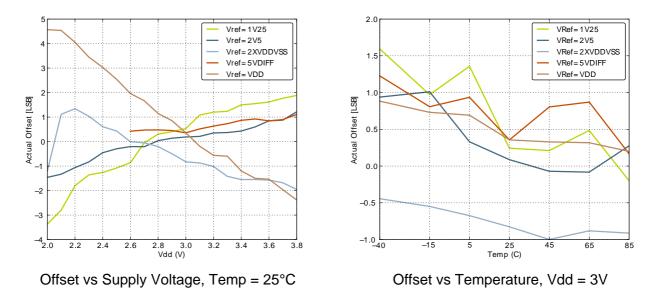
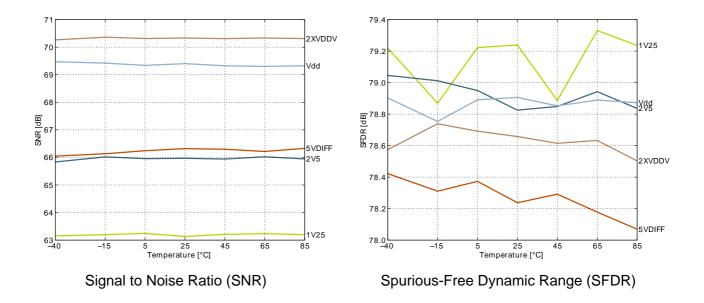
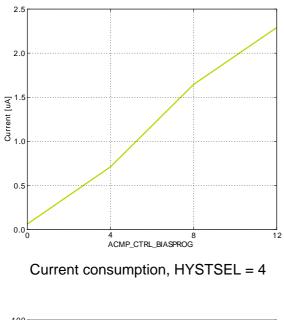



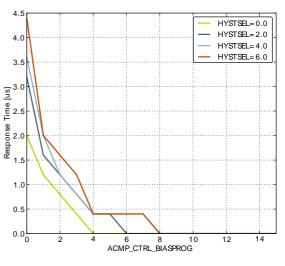
Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V

3.13 Analog Comparator (ACMP)

Table 3.18. ACMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ACMPIN}	Input voltage range		0		V _{DD}	V
V _{ACMPCM}	ACMP Common Mode voltage range		0		V _{DD}	V
		BIASPROG=0b0000, FULL- BIAS=0 and HALFBIAS=1 in ACMPn_CTRL register		0.1	0.4	μA
I _{ACMP}	Active current	BIASPROG=0b1111, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register		2.87	15	μΑ
		BIASPROG=0b1111, FULL- BIAS=1 and HALFBIAS=0 in ACMPn_CTRL register		195	520	μΑ
IACMPREF	Current consump- tion of internal volt- age reference	Internal voltage reference off. Using external voltage refer- ence		0		μA
	agenerence	Internal voltage reference		5		μA
V _{ACMPOFFSET}	Offset voltage	BIASPROG= 0b1010, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	-12	0	12	mV
V _{ACMPHYST}	ACMP hysteresis	Programmable		17		mV
		CSRESSEL=0b00 in ACMPn_INPUTSEL		39		kOhm
D	Capacitive Sense	CSRESSEL=0b01 in ACMPn_INPUTSEL		71		kOhm
R _{CSRES}	Internal Resistance	CSRESSEL=0b10 in ACMPn_INPUTSEL		104		kOhm
		CSRESSEL=0b11 in ACMPn_INPUTSEL		136		kOhm
t _{ACMPSTART}	Startup time				10	μs


The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 47). $I_{ACMPREF}$ is zero if an external voltage reference is used.


Total ACMP Active Current

 $I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$

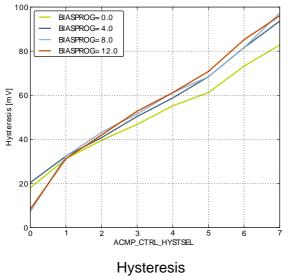

(3.1)

Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1

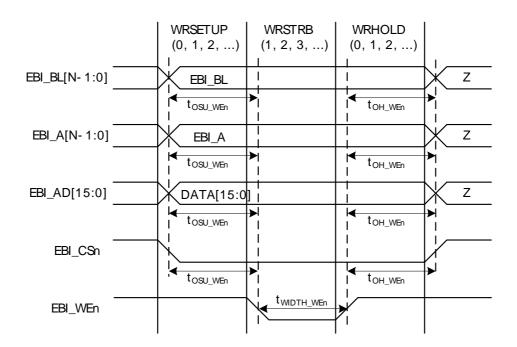
Response time

3.14 Voltage Comparator (VCMP)

Table 3.19. VCMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{VCMPIN}	Input voltage range			V _{DD}		V
V _{VCMPCM}	VCMP Common Mode voltage range			V _{DD}		V
		BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register		0.3	0.6	μA
IVCMP	Active current	BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0.		22	35	μA
t _{VCMPREF}	Startup time refer- ence generator	NORMAL		10		μs
M	Offect veltage	Single ended		10		mV
V _{VCMPOFFSET}	Offset voltage	Differential		10		mV
V _{VCMPHYST}	VCMP hysteresis			61	210	mV
t _{VCMPSTART}	Startup time				10	μs

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:


VCMP Trigger Level as a Function of Level Setting

V_{DD Trigger Level}=1.667V+0.034 ×TRIGLEVEL

(3.2)

3.15 EBI

Figure 3.38. EBI Write Enable Timing

	QFP100 Pin# and Name	Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
59	DECOUPLE	Decouple output for on-	chip voltage regulator. An e	external capacitance of size	e C _{DECOUPLE} is required at t	his pin.		
60	PE0		EBI_A07 #0/1/2	TIM3_CC0 #1 PCNT0_S0IN #1	U0_TX #1 I2C1_SDA #2			
61	PE1		EBI_A08 #0/1/2	TIM3_CC1 #1 PCNT0_S1IN #1	U0_RX #1 I2C1_SCL #2			
62	PE2	BU_VOUT	EBI_A09 #0	TIM3_CC2 #1	U1_TX #3	ACMP0_O #1		
63	PE3	BU_STAT	EBI_A10 #0		U1_RX #3	ACMP1_O #1		
64	PE4	LCD_COM0	EBI_A11 #0/1/2		US0_CS #1			
65	PE5	LCD_COM1	EBI_A12 #0/1/2		US0_CLK #1			
66	PE6	LCD_COM2	EBI_A13 #0/1/2		US0_RX #1			
67	PE7	LCD_COM3	EBI_A14 #0/1/2		US0_TX #1			
68	PC8	ACMP1_CH0	EBI_A15 #0/1/2	TIM2_CC0 #2	US0_CS #2	LES_CH8 #0		
69	PC9	ACMP1_CH1	EBI_A09 #1/2	TIM2_CC1 #2	US0_CLK #2	LES_CH9 #0 GPIO_EM4WU2		
70	PC10	ACMP1_CH2	EBI_A10 #1/2	TIM2_CC2 #2	US0_RX #2	LES_CH10 #0		
71	PC11	ACMP1_CH3 EBI_ALE #1/2 US0_TX #2		US0_TX #2	LES_CH11 #0			
72	USB_VREGI	USB Input to internal 3.3 V regulator.						
73	USB_VREGO	USB Decoupling for inte	rnal 3.3 V USB regulator a	nd regulator output.				
74	PF10				U1_TX #1 USB_DM			
75	PF11				U1_RX #1 USB_DP			
76	PF0			TIM0_CC0 #5 LETIM0_OUT0 #2	US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	DBG_SWCLK #0/1/2/3		
77	PF1			TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1/2/3 GPIO_EM4WU3		
78	PF2	LCD_SEG0	EBI_ARDY #0/1/2	TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4		
79	USB_VBUS	USB 5.0 V VBUS input.						
80	PF12				USB_ID			
81	PF5	LCD_SEG3	EBI_REn #0/2	TIM0_CDTI2 #2/5	USB_VBUSEN #0	PRS_CH2 #1		
82	IOVDD_5	Digital IO power supply	5					
83	VSS	Ground						
84	PF6	LCD_SEG24	EBI_BL0 #0/1/2	TIM0_CC0 #2	U0_TX #0			
85	PF7	LCD_SEG25	EBI_BL1 #0/1/2	TIM0_CC1 #2	U0_RX #0			
86	PF8	LCD_SEG26	EBI_WEn #1	TIM0_CC2 #2		ETM_TCLK #1		
87	PF9	LCD_SEG27	EBI_REn #1			ETM_TD0 #1		
88	PD9	LCD_SEG28	EBI_CS0 #0/1/2					
89	PD10	LCD_SEG29	EBI_CS1 #0/1/2					
90	PD11	LCD_SEG30	EBI_CS2 #0/1/2					
91	PD12	LCD_SEG31	EBI_CS3 #0/1/2					
92	PE8	LCD_SEG4	EBI_AD00 #0/1/2	PCNT2_S0IN #1		PRS_CH3 #1		

Table 4.4. LQFP100 (Dimensions in mm)

		SYMBOL	MIN	NOM	MAX
total thickness	total thickness				1.6
stand off		A1	0.05		0.15
mold thickness		A2	1.35	1.4	1.45
lead width (plating)	b	0.17	0.2	0.27
lead width		b1	0.17		0.23
L/F thickness (platir	ng)	с	0.09		0.2
lead thickness		c1	0.09		0.16
	x	D		16 BSC	
	У	E		16 BSC	
body size	x	D1		14 BSC	
body size	У	E1		14 BSC	
lead pitch		е	0.5 BSC		
		L	0.45	0.6	0.75
footprint		L1	1 REF		
		θ	0°	3.5°	7°
		θ1	0°		
		θ2	11°	12°	13°
		θ3	11°	12°	13°
		R1	0.08		
		R1	0.08		0.2
		S	0.2		
package edge tolerance		aaa	0.2		
lead edge tolerance		bbb		0.2	
coplanarity		ссс		0.08	
lead offset		ddd	0.08		
mold flatness		eee		0.05	

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

Figure 5.3. LQFP100 PCB Stencil Design

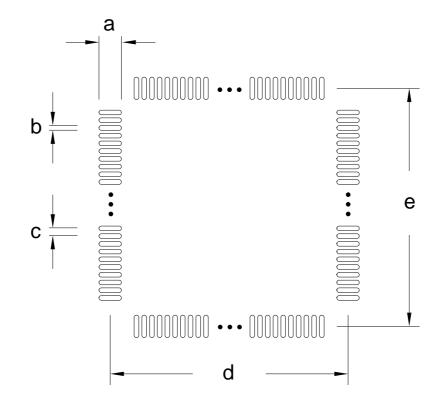


 Table 5.3. QFP100 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.35
b	0.20
c	0.50
d	15.40
e	15.40

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Figure 4.3 (p. 71) .

5.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions.

A Disclaimer and Trademarks

A.1 Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

A.2 Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

List of Equations

3.1. Total ACMP Active Current	47
3.2. VCMP Trigger Level as a Function of Level Setting	49
3.3. Total LCD Current Based on Operational Mode and Internal Boost	

silabs.com

