

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	56800EX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	54
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 16
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc56f82728vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature						MC5	6F82					
Part Number ¹	748V LH	746V LF	743V LC	743V FM	738V LH	736V LF	733V LC	733V FM	728V LH	726V LF	723V LC	723V FM
		746M LF						733M FM				
Analog Comparators (CMP)	4	4	3	3	4	4	3	3	4	4	3	3
QSCI	2	2	1	1	2	2	1	1	2	2	1	1
QSPI	2	1	1	1	2	1	1	1	2	1	1	1
I2C/SMBus	1	1	1	1	1	1	1	1	1	1	1	1
MSCAN	1	1	0	0	1	1	0	0	1	1	0	0
GPIO	54	39	26	26	54	39	26	26	54	39	26	26
Package pin count	64 LQFP	48 LQFP	32 LQFP	32 QFN	64 LQFP	48 LQFP	32 LQFP	32 QFN	64 LQFP	48 LQFP	32 LQFP	32 QFN
AEC-Q100 ³	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	No	No

Table 1. MC56F827xx Family (continued)

1. Temperature options

V: -40°C to 105°C

M: -40°C to 125°C

2. Input capture shares the pin with cooresponding PWM channels.

3. Qualification aligned to AEC-Q100

1.2 56800EX 32-bit Digital Signal Controller (DSC) core

- Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual Harvard architecture:
 - Three internal address buses
 - Four internal data buses: two 32-bit primary buses, one 16-bit secondary data bus, and one 16-bit instruction bus
 - 32-bit data accesses
 - Supports concurrent instruction fetches in the same cycle, and dual data accesses in the same cycle
 - 20 addressing modes
- As many as 100 million instructions per second (MIPS) at 100 MHz core frequency
- 162 basic instructions
- Instruction set supports both fractional arithmetic and integer arithmetic
- 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement, plus addition, subtraction, and logical operations
- Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator (MAC) with dual parallel moves
- 32-bit arithmetic and logic multi-bit shifter
- Four 36-bit accumulators, including extension bits

1.6.3 Periodic Interrupt Timer (PIT) Modules

- 16-bit counter with programmable count modulo
- PITO is master and PIT1 is slave (if synchronizing both PITs)
- The output signals of both PIT0 and PIT1 are internally connected to a peripheral crossbar module
- Can run when the CPU is in Wait/Stop modes. Can also wake up the CPU from Wait/Stop modes.
- In addition to its existing bus clock (up to 50 MHz), 3 alternate clock sources for the counter clock are available:
 - Crystal oscillator output
 - 8 MHz / 400 kHz ROSC (relaxation oscillator output)
 - On-chip low-power 200 kHz oscillator

1.6.4 Inter-Module Crossbar and AND-OR-INVERT logic

- Provides generalized connections between and among on-chip peripherals: ADCs, 12-bit DAC, comparators, quad-timers, eFlexPWMs, EWM, and select I/O pins
- User-defined input/output pins for all modules connected to the crossbar
- DMA request and interrupt generation from the crossbar
- Write-once protection for all registers
- AND-OR-INVERT function provides a universal Boolean function generator that uses a four-term sum-of-products expression, with each product term containing true or complement values of the four selected inputs (A, B, C, D).

1.6.5 Comparator

- Full rail-to-rail comparison range
- Support for high and low speed modes
- Selectable input source includes external pins and internal DACs
- Programmable output polarity
- 6-bit programmable DAC as a voltage reference per comparator
- Three programmable hysteresis levels
- Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output

1.6.6 12-bit Digital-to-Analog Converter

- 12-bit resolution
- Powerdown mode

Peripheral highlights

- Automatic mode allows the DAC to automatically generate pre-programmed output waveforms, including square, triangle, and sawtooth waveforms (for applications like slope compensation)
- Programmable period, update rate, and range
- Output can be routed to an internal comparator, ADC, or optionally to an off-chip destination

1.6.7 Quad Timer

- Four 16-bit up/down counters, with a programmable prescaler for each counter
- Operation modes: edge count, gated count, signed count, capture, compare, PWM, signal shot, single pulse, pulse string, cascaded, quadrature decode
- Programmable input filter
- Counting start can be synchronized across counters
- Up to 100 MHz operation clock

1.6.8 Queued Serial Communications Interface (QSCI) modules

- Operating clock can be up to two times the CPU operating frequency
- Four-word-deep FIFOs available on both transmit and receive buffers
- Standard mark/space non-return-to-zero (NRZ) format
- 16-bit integer and 3-bit fractional baud rate selection
- Full-duplex or single-wire operation
- Programmable 8-bit or 9-bit data format
- Error detection capability
- Two receiver wakeup methods:
 - Idle line
 - Address mark
- 1/16 bit-time noise detection
- Up to 6.25 Mbit/s baud rate at 100 MHz operation clock

1.6.9 Queued Serial Peripheral Interface (QSPI) modules

- Maximum 12.5 Mbit/s baud rate
- Selectable baud rate clock sources for low baud rate communication
- Baud rate as low as Baudrate_Freq_in / 8192
- Full-duplex operation
- Master and slave modes
- Double-buffered operation with separate transmit and receive registers
- Four-word-deep FIFOs available on transmit and receive buffers

- Programmable length transmissions (2 bits to 16 bits)
- Programmable transmit and receive shift order (MSB as first bit transmitted)

1.6.10 Inter-Integrated Circuit (I2C)/System Management Bus (SMBus) modules

- Compatible with I2C bus standard
- Support for System Management Bus (SMBus) specification, version 2
- Multi-master operation
- General call recognition
- 10-bit address extension
- Start/Repeat and Stop indication flags
- Support for dual slave addresses or configuration of a range of slave addresses
- Programmable glitch input filter with option to clock up to 100 MHz

1.6.11 Modular/Scalable Controller Area Network (MSCAN) Module

- Clock source from PLL or oscillator.
- Implementation of the CAN protocol Version 2.0 A/B
- Standard and extended data frames
- 0-to-8 bytes data length
- Programmable bit rate up to 1 Mbit/s
- Support for remote frames
- Individual Rx Mask Registers per Message Buffer
- Internal timer for time-stamping of received and transmitted messages
- Listen-only mode capability
- Programmable loopback mode supporting self-test operation
- Programmable transmission priority scheme: lowest ID, lowest buffer number, or highest priority
- Low power modes, with programmable wakeup on bus activity

1.6.12 Windowed Computer Operating Properly (COP) watchdog

- Programmable windowed timeout period
- Support for operation in all power modes: run mode, wait mode, stop mode
- Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is detected
- Selectable reference clock source in support of EN60730 and IEC61508
- Selectable clock sources:
 - External crystal oscillator/external clock source

Figure 2. System diagram

2 MC56F827xx signal and pin descriptions

After reset, each pin is configured for its primary function (listed first). Any alternative functionality, shown in parentheses, must be programmed through the GPIO module peripheral enable registers (GPIOx_PER) and the SIM module GPIO peripheral select (GPSx) registers. All GPIO ports can be individually programmed as an input or output (using bit manipulation).

• PWMA_FAULT0, PWMA_FAULT1, and similar signals are inputs used to disable selected PWMA outputs, in cases where the fault conditions originate off-chip.

For the MC56F827xx products, which use 64-pin LQFP, 48-pin LQFP and 32-pin packages:

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
V _{DD}	29	—	—	Supply	Supply	I/O Power — Supplies 3.3 V power to
	44	32	—			the chip I/O interface.
	60	44	28			
V _{SS}	30	22	14	Supply	Supply	I/O Ground — Provide ground for the
	43	31	—			device I/O interface.
	61	45	29			
V _{DDA}	22	15	9	Supply	Supply	Analog Power — Supplies 3.3 V power to the analog modules. It must be connected to a clean analog power supply.
V _{SSA}	23	16	10	Supply	Supply	Analog Ground — Supplies an analog ground to the analog modules. It must be connected to a clean power supply.
V _{CAP}	26	19	—	On-chip	On-chip	Connect a 2.2 µF or greater bypass
	57	43	27	regulator output	regulator output	capacitor between this pin and V_{SS} to stabilize the core voltage regulator output required for proper device operation.
TDI	64	48	32	Input	Input, internal pullup enabled	Test Data Input — It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TDI.
(GPIOD0)				Input/Output		GPIO Port D0
TDO	62	46	30	Output	Output	Test Data Output — It is driven in the shift-IR and shift-DR controller states, and it changes on the falling edge of TCK. After reset, the default state is TDO
(GPIOD1)				Input/Output	Output	GPIO Port D1

Table 2. Signal descriptions

Table continues on the next page...

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
тск	1	1	1	Input	Input, internal pullup enabled	Test Clock Input — The pin is connected internally to a pullup resistor. A Schmitt- trigger input is used for noise immunity. After reset, the default state is TCK
(GPIOD2)	-			Input/Output	-	GPIO Port D2
TMS	63	47	31	Input	Input, internal pullup enabled	Test Mode Select Input — It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TMS.
						NOTE: Always tie the TMS pin to V_{DD} through a 2.2 k Ω resistor if need to keep on-board debug capability. Otherwise, directly tie to V_{DD} .
(GPIOD3)				Input/Output		GPIO Port D3
RESET or RESETB	2	2	2	Input	Input, internal pullup enabled	Reset — A direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt-trigger input is used for noise immunity. The internal reset signal is deasserted synchronous with the internal clocks after a fixed number of internal clocks. After reset, the default state is RESET. Recommended a capacitor of up to 0.1 μ F for filtering noise.
(GPIOD4)	-			Input/ Opendrain Output		GPIO Port D4 RESET functionality is disabled in this mode and the device can be reset only through POR, COP reset, or software reset.
GPIOA0	13	9	6	Input/Output	Input, internal	GPIO Port A0
(ANA0&CMPA_IN 3)				Input	pullup enabled	ANA0 is analog input to channel 0 of ADCA; CMPA_IN3 is positive input 3 of analog comparator A. After reset, the default state is GPIOA0.
(CMPC_O)				Output		Analog comparator C output
GPIOA1	14	10	7	Input/Output	Input, internal pullup enabled	GPIO Port A1: After reset, the default state is GPIOA1.
(ANA1&CMPA_IN 0)				Input		ANA1 is analog input to channel 1 of ADCA; CMPA_IN0 is negative input 0 of analog comparator A. When used as an analog input, the signal goes to ANA1 and CMPA_IN0. The ADC control register configures this input as ANA1 or CMPA_IN0.
GPIOA2	15	11	8	Input/Output	Input, internal pullup enabled	GPIO Port A2: After reset, the default state is GPIOA2.
(ANA2&VREFHA &CMPA_IN1)				Input	1	ANA2 is analog input to channel 2 of ADCA; VREFHA is analog reference

Table continues on the next page...

MC56F827xx signal and pin descriptions

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
GPIOE4	51	39	25	Input/Output	Input, internal pullup enabled	GPIO Port E4: After reset, the default state is GPIOE4.
(PWMA_2B)				Input/Output	-	PWM module A (NanoEdge), submodule 2, output B or input capture B
(XB_IN2)				Input		Crossbar module input 2
GPIOE5	52	40	26	Input/Output	Input, internal pullup enabled	GPIO Port E5: After reset, the default state is GPIOE5.
(PWMA_2A)				Input/Output		PWM module A (NanoEdge), submodule 2, output A or input capture A
(XB_IN3)				Input		Crossbar module input 3
GPIOE6	53	_	—	Input/Output	Input, internal pullup enabled	GPIO Port E6: After reset, the default state is GPIOE6.
(PWMA_3B)				Input/Output		PWM module A (NanoEdge), submodule 3, output B or input capture B
(XB_IN4)				Input		Crossbar module input 4
GPIOE7	54		_	Input/Output	Input, internal pullup enabled	GPIO Port E7: After reset, the default state is GPIOE7.
(PWMA_3A)				Input/Output	-	PWM module A (NanoEdge), submodule 3, output A or input capture A
(XB_IN5)				Input		Crossbar module input 5
GPIOF0	36	28	—	Input/Output	Input, internal pullup enabled	GPIO Port F0: After reset, the default state is GPIOF0.
(XB_IN6)				Input		Crossbar module input 6
(SCLK1)				Input/Output		SPI1 serial clock — In master mode, SCLK1 pin is an output, clocking slaved listeners. In slave mode, SCLK1 pin is the data clock input 0.
GPIOF1	50	38		Input/Output	Input, internal pullup enabled	GPIO Port F1: After reset, the default state is GPIOF1.
(CLKO1)				Output		Buffered clock output 1: the clock source is selected by clockout select (CLKOSEL) bits in the clock output select register (CLKOUT) of the SIM.
(XB_IN7)				Input		Crossbar module input 7
(CMPD_O)				Output		Analog comparator D output
GPIOF2	39		19	Input/Output	Input, internal pullup enabled	GPIO Port F2: After reset, the default state is GPIOF2.
(SCL0)				Input/Open- drain Output		I ² C0 serial clock
(XB_OUT6)]			Output		Crossbar module output 6
(MISO1)				Input/Output		Master in/slave out for SPI1 —In master mode, MISO1 pin is the data input. In slave mode, MISO1 pin is the data output. The MISO line of a slave device

 Table 2. Signal descriptions (continued)

Table continues on the next page...

4.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

4.2 Format

Part numbers for this device have the following format: Q 56F8 2 C F P T PP N

4.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 MC = Fully qualified, general market flow PC = Prequalification
56F8	DSC family with flash memory and DSP56800/ DSP56800E/DSP56800EX core	• 56F8
2	DSC subfamily	• 2
С	Maximum CPU frequency (MHz)	 3 = 50 MHz 7 = 100 MHz
F	Primary program flash memory size	 1 = 16 KB 2 = 32 KB 3 = 48 KB 4 = 64 KB
Р	Pin count	 3 = 32 6 = 48 8 = 64
Т	Temperature range (°C)	 V = -40 to 105 M = -40 to 125
PP	Package identifier	 LC = 32LQFP FM = 32QFN LF = 48LQFP LH = 64LQFP
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

4.4 Example

This is an example part number: MC56F82748VLH

6 Ratings

6.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

 Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

6.3 ESD handling ratings

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

All latch-up testing is in conformity with AEC-Q100 Stress Test Qualification.

A device is defined as a failure if after exposure to ESD pulses, the device no longer meets the device specification. Complete DC parametric and functional testing is performed as per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 3. Input signal measurement references

Figure 4 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}

Figure 4. Signal states

7.3 Nonswitching electrical specifications

7.3.1 Voltage and current operating requirements

This section includes information about recommended operating conditions.

NOTE Recommended V_{DD} ramp rate is between 1 ms and 200 ms.

Table 6.	Recommended	Operating	Conditions	(V _{REFLx} =0V,	V _{SSA} =0V,	V _{SS} =0V)
----------	-------------	-----------	------------	--------------------------	-----------------------	----------------------

Characteristic	Symbol	Notes ¹	Min	Тур	Max	Unit
Supply voltage	V_{DD}, V_{DDA}		2.7	3.3	3.6	V
ADC (Cyclic) Reference Voltage High	V _{REFHA}		V _{DDA} -0.6		V _{DDA}	V
	V _{REFHB}					
Voltage difference V _{DD} to V _{DDA}	ΔVDD		-0.1	0	0.1	V
Voltage difference V _{SS} to V _{SSA}	ΔVSS		-0.1	0	0.1	V
Input Voltage High (digital inputs)	V _{IH}	Pin Group 1	0.7 x V _{DD}		5.5	V
RESET Voltage High	V _{IH_RESET}	Pin Group 2	$0.7 \times V_{DD}$		V _{DD}	V

Table continues on the next page...

calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Board type	Symbol	Descriptio n	32 QFN	32 LQFP	48 LQFP	64 LQFP	Unit	Notes
Single-layer (1s)	R _{ejA}	Thermal resistance, junction to ambient (natural convection)	96	83	70	64	°C/W	,
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	33	55	46	46	°C/W	1,
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	80	70	57	52	°C/W	1,2
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	27	49	39	39	°C/W	1,2
_	R _{θJB}	Thermal resistance, junction to board	12	31	23	28	°C/W	
_	R _{θJC}	Thermal resistance, junction to case	1.8	22	17	15	°C/W	
	Ψ _{JT}	Thermal characteriza tion parameter, junction to package top outside center (natural convection)	6	5	3	3	°C/W	

See Thermal design considerations for more detail on thermal design considerations.

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

System modules

- 1. See Figure 1 for detail on using the recommended connection of an external clock driver.
- 2. The chip may not function if the high or low pulse width is smaller than 6.25 ns.
- 3. External clock input rise time is measured from 10% to 90%.
- 4. External clock input fall time is measured from 90% to 10%.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 7. External clock timing

8.3.2 Phase-Locked Loop timing

Table 20. Phase-Locked Loop timing

Characteristic	Symbol	Min	Тур	Max	Unit
PLL input reference frequency ¹	f _{ref}	8	8	16	MHz
PLL output frequency ²	f _{op}	200	—	400	MHz
PLL lock time ³	t _{plls}	35.5		73.2	μs
Allowed Duty Cycle of input reference	t _{dc}	40	50	60	%

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8 MHz input.

2. The frequency of the core system clock cannot exceed 100 MHz. If the NanoEdge PWM is available, the PLL output must be set to 400 MHz.

3. This is the time required after the PLL is enabled to ensure reliable operation.

8.3.3 External crystal or resonator requirement

Table 21. Crystal or resonator requirement

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation	f _{xosc}	4	8	16	MHz

8.3.4 Relaxation Oscillator Timing

Table 22. Relaxation Oscillator Electrical Specifications

Characteristic		Symbol	Min	Тур	Мах	Unit
8 MHz Output Frequency ¹						
Run Mode	0°C to 105°C		7.84	8	8.16	MHz

Table continues on the next page ...

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit	
	410 to 3891 (\$19A - \$F33)						
	5% to 95% of full range						
Differential non-	Range of input digital words:	DNL	—	+/- 0.8	+/- 0.9	LSB ³	
linearity ²	410 to 3891 (\$19A - \$F33)						
	5% to 95% of full range						
Monotonicity	> 6 sigma monotonicity,			guaranteed		—	
	< 3.4 ppm non-monotonicity						
Offset error ²	Range of input digital words:	V _{OFFSET}	—	+/- 25	+ /- 43	mV	
	410 to 3891 (\$19A - \$F33)						
	5% to 95% of full range						
Gain error ²	Range of input digital words: 410 to 3891 (\$19A - \$F33) 5% to 95% of full range	E _{GAIN}	_	+/- 0.5	+/- 1.5	%	
	DAC	Dutput	•				
Output voltage range	Within 40 mV of either V_{SSA} or V_{DDA}	V _{OUT}	V _{SSA} + 0.04 V		V _{DDA} - 0.04 V	V	
AC Specifications							
Signal-to-noise ratio		SNR	—	85	_	dB	
Spurious free dynamic range		SFDR	—	-72	-	dB	
Effective number of bits		ENOB	_	11	_	bits	

Table 28. DAC parameters (continued)

 $1. \quad \mbox{Settling time is swing range from V_{SSA} to V_{DDA} } 2. \ \mbox{No guaranteed specification within 5% of V_{DDA} or V_{SSA} }$

3. LSB = 0.806 mV

CMP and 6-bit DAC electrical specifications 8.5.3 Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	2.7	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	300	—	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	36	—	μA
V _{AIN}	Analog input voltage	V _{SS}	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis				
	• CR0[HYSTCTR] = 00^1	—	5	13	mV
	 CR0[HYSTCTR] = 01 	_	25	48	mV
	• CR0[HYSTCTR] = 10^2	_	55	105	mV
	• CR0[HYSTCTR] = 11 ²	_	80	148	mV

Table continues on the next page ...

NOTE

CAN wakeup is not supported when ROSC_8M is in standby mode.

8.7.4 Inter-Integrated Circuit Interface (I²C) timing

Table 35. I²C timing

Characteristic	Symbol	Standa	Standard Mode		Fast Mode	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.3	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ¹	3.45 ²	0 ³	0.9 ¹	μs
Data set-up time	t _{SU} ; DAT	250 ⁴	—	100 ^{2, 5}	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁶	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	—	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

- 3. Input signal Slew = 10 ns and Output Load = 50 pF
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode l²C bus device can be used in a Standard mode l2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{max} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode l²C bus specification) before the SCL line is released.
- 6. C_b = total capacitance of the one bus line in pF.

9.2 Electrical design considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation of the device:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the device and from the board ground to each V_{SS} (GND) pin.
- The minimum bypass requirement is to place 0.01–0.1 μ F capacitors positioned as near as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. Ceramic and tantalum capacitors tend to provide better tolerances.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} (GND) pins are as short as possible.
- Bypass the V_{DD} and V_{SS} with approximately 100 μ F, plus the number of 0.1 μ F ceramic capacitors.
- PCB trace lengths should be minimal for high-frequency signals.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the V_{REF} , V_{DDA} , and V_{SSA} pins.
- Using separate power planes for V_{DD} and V_{DDA} and separate ground planes for V_{SS} and V_{SSA} are recommended. Connect the separate analog and digital power and ground planes as near as possible to power supply outputs. If an analog circuit and digital circuit are powered by the same power supply, then connect a small inductor or ferrite bead in serial with V_{DDA} . Traces of V_{SS} and V_{SSA} should be shorted together.
- Physically separate analog components from noisy digital components by ground planes. Do not place an analog trace in parallel with digital traces. Place an analog ground trace around an analog signal trace to isolate it from digital traces.
- Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI, or I²C, the designer should provide an interface to this port if in-circuit flash programming is desired.
- If desired, connect an external RC circuit to the RESET pin. The resistor value should be in the range of 4.7 k Ω -10 k Ω ; the capacitor value should be in the range of 0.22 μ F-4.7 μ F.

Obtaining package dimensions

high current will be pulled by DSC from the supply, which can cause the supply voltage to drop below the operation voltage; see the captured graph (Figure 22). This can cause the DSC fail to start up.

Figure 22. Supply Voltage Drop

A recommended initialization sequence during power-up is:

- 1. After POR is released, run a few hundred NOP instructions from the internal relaxation oscillator; this gives time for the supply voltage to stabilize.
- 2. Configure the peripherals (except the ADC) to the desired settings; the ADC should stay in low power mode.
- 3. Power up the PLL.
- 4. After the PLL locks, switch the clock from PLL prescale to postscale.
- 5. Configure the ADC.

10 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

Drawing for package	Document number to be used
32LQFP	98ASH70029A
32QFN	98ASA00473D
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

64 LQFP	48 LQFP	32 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
20	_	_	GPIOB5	GPIOB5	ANB5&CMPC_IN2			
21	14	_	GPIOB4	GPIOB4	ANB4&CMPC_IN1			
22	15	9	VDDA	VDDA				
23	16	10	VSSA	VSSA				
24	17	11	GPIOB0	GPIOB0	ANB0&CMPB_IN3			
25	18	12	GPIOB1	GPIOB1	ANB1&CMPB_IN0	DACB_O		
26	19	-	VCAP	VCAP				
27	20	13	GPIOB2	GPIOB2	ANB2&VERFHB&CMPC_ IN3			
28	21	_	GPIOB3	GPIOB3	ANB3&VREFLB&CMPC_ IN0			
29	Ι	Ι	VDD	VDD				
30	22	14	VSS	VSS				
31	23	15	GPIOC6	GPIOC6	TA2	XB_IN3	CMP_REF	SS0_B
32	24	-	GPIOC7	GPIOC7	SS0_B	TXD0	XB_IN8	
33	25	16	GPIOC8	GPIOC8	MISO0	RXD0	XB_IN9	XB_OUT6
34	26	17	GPIOC9	GPIOC9	SCLK0	XB_IN4	TXD0	XB_OUT8
35	27	18	GPIOC10	GPIOC10	MOSIO	XB_IN5	MISO0	XB_OUT9
36	28	—	GPIOF0	GPIOF0	XB_IN6		SCLK1	
37	29	_	GPIOC11	GPIOC11	CANTX	SCL0	TXD1	
38	30	_	GPIOC12	GPIOC12	CANRX	SDA0	RXD1	
39	_	19	GPIOF2	GPIOF2	SCL0	XB_OUT6	MISO1	
40	_	20	GPIOF3	GPIOF3	SDA0	XB_OUT7	MOSI1	
41	_	—	GPIOF4	GPIOF4	TXD1	XB_OUT8	PWM_0X	PWM_FAULT6
42	_	_	GPIOF5	GPIOF5	RXD1	XB_OUT9	PWM_1X	PWM_FAULT7
43	31	_	VSS	VSS				
44	32	_	VDD	VDD				
45	33	21	GPIOE0	GPIOE0	PWM_0B			
46	34	22	GPIOE1	GPIOE1	PWM_0A			
47	35	23	GPIOE2	GPIOE2	PWM_1B			
48	36	24	GPIOE3	GPIOE3	PWM_1A			
49	37	_	GPIOC13	GPIOC13	TA3	XB_IN6	EWM_OUT_B	
50	38	_	GPIOF1	GPIOF1	CLKO1	XB_IN7	CMPD_O	
51	39	25	GPIOE4	GPIOE4	PWM_2B	XB_IN2		
52	40	26	GPIOE5	GPIOE5	PWM_2A	XB_IN3		
53	-	-	GPIOE6	GPIOE6	PWM_3B	XB_IN4		
54	-	-	GPIOE7	GPIOE7	PWM_3A	XB_IN5		
55	41	-	GPIOC14	GPIOC14	SDA0	XB_OUT4	PWM_FAULT4	
56	42	-	GPIOC15	GPIOC15	SCL0	XB_OUT5	PWM_FAULT5	
57	43	27	VCAP	VCAP				
58	_	_	GPIOF6	GPIOF6		PWM_3X		XB_IN2
59	_	_	GPIOF7	GPIOF7		CMPC O	SS1 B	XB IN3

64 LQFP	48 LQFP	32 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
60	44	28	VDD	VDD				
61	45	29	VSS	VSS				
62	46	30	TDO	TDO	GPIOD1			
63	47	31	TMS	TMS	GPIOD3			
64	48	32	TDI	TDI	GPIOD0			

11.2 Pinout diagrams

The following diagrams show pinouts for the packages. For each pin, the diagrams show the default function. However, many signals may be multiplexed onto a single pin.

NOTE

The RESETB pin is a 3.3 V pin only.

MC56F827xx, Rev. 3.0, 09/2016

Pinout

Figure 25. 32-pin LQFP and QFN

12 Product documentation

The documents listed in Table 36 are required for a complete description and to successfully design using the device. Documentation is available from local NXP distributors, NXP sales offices, or online at www.nxp.com.

Table 36.	Device documentation	on
-----------	----------------------	----

Торіс	Description	Document Number
DSP56800E/DSP56800EX Reference Manual	Detailed description of the 56800EX family architecture, 32-bit digital signal controller core processor, and the instruction set	DSP56800ERM
MC56F827xx Reference Manual	Detailed functional description and programming model	MC56F827XXRM
MC56F827xx Data Sheet	Electrical and timing specifications, pin descriptions, and package information (this document)	MC56F827XXDS
MC56F82xxx Errata	Details any chip issues that might be present	MC56F82xxx_Errata