E·XFL

NXP USA Inc. - MC56F82748VLHR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800EX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f82748vlhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

1.1 MC56F827xx Product Family

The following table is the comparsion of features among members of the family.

Feature	MC56F82											
Part Number ¹	748V LH	746V LF	743V LC	743V FM	738V LH	736V LF	733V LC	733V FM	728V LH	726V LF	723V LC	723V FM
		746M LF						733M FM				
Core frequency (MHz)	100/50	100/50	100/50	100/50	100/50	100/50	100/50	100/50	100/50	100/50	100/50	100/50
Flash memory (KB)	64	64	64	64	48	48	48	48	32	32	32	32
RAM (KB)	8	8	8	8	8	8	8	8	6	6	6	6
Interrupt Controller	Yes											
Windowed Computer Operating Properly (WCOP)	1	1	1	1	1	1	1	1	1	1	1	1
External Watchdog Monitor (EWM)	1	1	1	1	1	1	1	1	1	1	1	1
Periodic Interrupt Timer (PIT)	2	2	2	2	2	2	2	2	2	2	2	2
Cyclic Redundancy Check (CRC)	1	1	1	1	1	1	1	1	1	1	1	1
Quad Timer (TMR)	1x4											
12-bit Cyclic ADC channels	2x8	2x5	2x3	2x3	2x8	2x5	2x3	2x3	2x8	2x5	2x3	2x3
PWM Module:												
Input capture channels ²	12	6	6	6	12	6	6	6	12	6	6	6
High-resolution channels	8	6	6	6	8	6	6	6	8	6	6	6
Standard channels	4	0	0	0	4	0	0	0	4	0	0	0
12-bit DAC	2	2	2	2	2	2	2	2	2	2	2	2
DMA	Yes											

Table 1. MC56F827xx Family

Table continues on the next page...

Feature						MC5	6F82					
Part Number ¹	748V LH	746V LF	743V LC	743V FM	738V LH	736V LF	733V LC	733V FM	728V LH	726V LF	723V LC	723V FM
		746M LF						733M FM				
Analog Comparators (CMP)	4	4	3	3	4	4	3	3	4	4	3	3
QSCI	2	2	1	1	2	2	1	1	2	2	1	1
QSPI	2	1	1	1	2	1	1	1	2	1	1	1
I2C/SMBus	1	1	1	1	1	1	1	1	1	1	1	1
MSCAN	1	1	0	0	1	1	0	0	1	1	0	0
GPIO	54	39	26	26	54	39	26	26	54	39	26	26
Package pin count	64 LQFP	48 LQFP	32 LQFP	32 QFN	64 LQFP	48 LQFP	32 LQFP	32 QFN	64 LQFP	48 LQFP	32 LQFP	32 QFN
AEC-Q100 ³	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	No	No

Table 1. MC56F827xx Family (continued)

1. Temperature options

V: -40°C to 105°C

M: -40°C to 125°C

2. Input capture shares the pin with cooresponding PWM channels.

3. Qualification aligned to AEC-Q100

1.2 56800EX 32-bit Digital Signal Controller (DSC) core

- Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual Harvard architecture:
 - Three internal address buses
 - Four internal data buses: two 32-bit primary buses, one 16-bit secondary data bus, and one 16-bit instruction bus
 - 32-bit data accesses
 - Supports concurrent instruction fetches in the same cycle, and dual data accesses in the same cycle
 - 20 addressing modes
- As many as 100 million instructions per second (MIPS) at 100 MHz core frequency
- 162 basic instructions
- Instruction set supports both fractional arithmetic and integer arithmetic
- 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement, plus addition, subtraction, and logical operations
- Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator (MAC) with dual parallel moves
- 32-bit arithmetic and logic multi-bit shifter
- Four 36-bit accumulators, including extension bits

1.6.16 Clock sources

1.6.16.1 On-chip oscillators

- Tunable 8 MHz relaxation oscillator with 400 kHz at standby mode (divide-by-two output)
- 200 kHz low frequency clock as secondary clock source for COP, EWM, PIT

1.6.16.2 Crystal oscillator

- Support for both high ESR crystal oscillator (ESR greater than 100 Ω) and ceramic resonator
- Operating frequency: 4–16 MHz

1.6.17 Cyclic Redundancy Check (CRC) Generator

- Hardware CRC generator circuit with 16-bit shift register
- High-speed hardware CRC calculation
- Programmable initial seed value
- CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
- Error detection for all single, double, odd, and most multibit errors
- Option to transpose input data or output data (CRC result) bitwise, which is required for certain CRC standards

1.6.18 General Purpose I/O (GPIO)

- 5 V tolerance (except RESETB pin)
- Individual control of peripheral mode or GPIO mode for each pin
- Programmable push-pull or open drain output
- Configurable pullup or pulldown on all input pins
- All pins (except JTAG and RESETB) default to be GPIO inputs
- 2 mA / 9 mA source/sink capability
- Controllable output slew rate

1.7 Block diagrams

The 56800EX core is based on a modified dual Harvard-style architecture, consisting of three execution units operating in parallel, and allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set

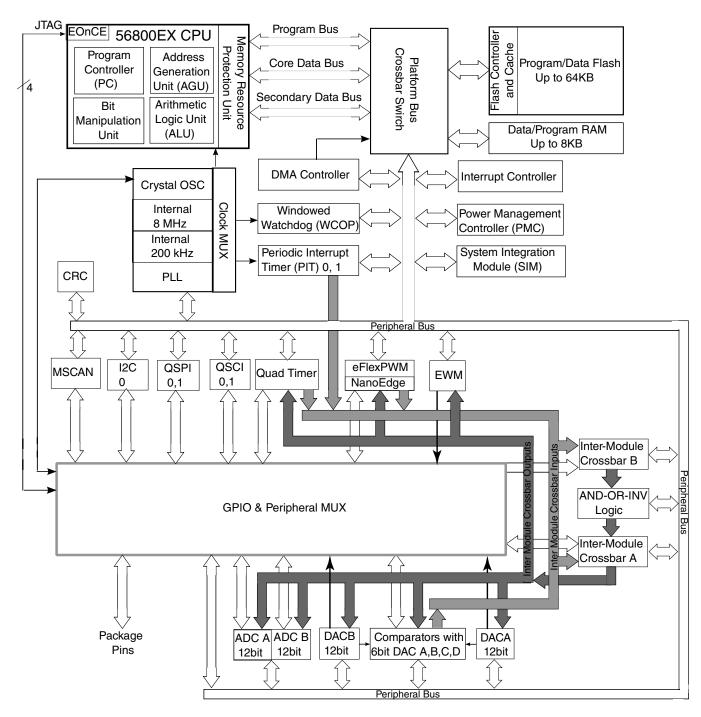


Figure 2. System diagram

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
тск	1	1	1	Input	Input, internal pullup enabled	Test Clock Input — The pin is connected internally to a pullup resistor. A Schmitt- trigger input is used for noise immunity. After reset, the default state is TCK
(GPIOD2)				Input/Output		GPIO Port D2
TMS	63	47	31	Input	Input, internal pullup enabled	Test Mode Select Input — It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TMS.
						NOTE: Always tie the TMS pin to V_{DD} through a 2.2 k Ω resistor if need to keep on-board debug capability. Otherwise, directly tie to V_{DD} .
(GPIOD3)				Input/Output		GPIO Port D3
RESET or RESETB	2	2	2	Input	Input, internal pullup enabled	Reset — A direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt-trigger input is used for noise immunity. The internal reset signal is deasserted synchronous with the internal clocks after a fixed number of internal clocks. After reset, the default state is RESET. Recommended a capacitor of up to 0.1 μ F for filtering noise.
(GPIOD4)				Input/ Opendrain Output		GPIO Port D4 RESET functionality is disabled in this mode and the device can be reset only through POR, COP reset, or software reset.
GPIOA0	13	9	6	Input/Output	Input, internal	GPIO Port A0
(ANA0&CMPA_IN 3)	-			Input	pullup enabled	ANA0 is analog input to channel 0 of ADCA; CMPA_IN3 is positive input 3 of analog comparator A. After reset, the default state is GPIOA0.
(CMPC_O)				Output		Analog comparator C output
GPIOA1	14	10	7	Input/Output	Input, internal pullup enabled	GPIO Port A1: After reset, the default state is GPIOA1.
(ANA1&CMPA_IN 0)				Input		ANA1 is analog input to channel 1 of ADCA; CMPA_IN0 is negative input 0 of analog comparator A. When used as an analog input, the signal goes to ANA1 and CMPA_IN0. The ADC control register configures this input as ANA1 or CMPA_IN0.
GPIOA2	15	11	8	Input/Output	Input, internal pullup enabled	GPIO Port A2: After reset, the default state is GPIOA2.
(ANA2&VREFHA &CMPA_IN1)				Input		ANA2 is analog input to channel 2 of ADCA; VREFHA is analog reference

Table continues on the next page...

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
						high of ADCA; CMPA_IN1 is negative input 1 of analog comparator A. When used as an analog input, the signal goes to both ANA2, VREFHA, and CMPA_IN1.
GPIOA3	16	12	_	Input/Output	Input, internal pullup enabled	GPIO Port A3: After reset, the default state is GPIOA3.
(ANA3&VREFLA& CMPA_IN2)	-			Input		ANA3 is analog input to channel 3 of ADCA; VREFLA is analog reference low of ADCA; CMPA_IN2 is negative input 2 of analog comparator A.
GPIOA4	12	8	—	Input/Output	Input, internal pullup enabled	GPIO Port A4: After reset, the default state is GPIOA4.
(ANA4&CMPD_IN 0)				Input		ANA4 is Analog input to channel 4 of ADCA; CMPD_IN0 is input 0 to comparator D.
GPIOA5	11			Input/Output	Input, internal pullup enabled	GPIO Port A5: After reset, the default state is GPIOA5.
(ANA5&CMPD_IN 1)	-			Input		ANA5 is analog input to channel 5 of ADCA; ANC9 is analog input to channel 9 of ADCC; CMPD_IN1 is negative input 1 of analog comparator D.
GPIOA6	10			Input/Output	Input, internal pullup enabled	GPIO Port A6: After reset, the default state is GPIOA6.
(ANA6&CMPD_IN 2)				Input		ANA6 is analog input to channel 5 of ADCA; CMPD_IN2 is negative input 2 of analog comparator D.
GPIOA7	9		—	Input/Output	Input, internal pullup enabled	GPIO Port A7: After reset, the default state is GPIOA7.
(ANA7&CMPD_IN 3)				Input		ANA7 is analog input to channel 7 of ADCA; CMPD_IN3 is negative input 3 of analog comparator D.
GPIOB0	24	17	11	Input/Output	Input, internal pullup enabled	GPIO Port B0: After reset, the default state is GPIOB0.
(ANB0&CMPB_IN 3)				Input		ANB0 is analog input to channel 0 of ADCB; CMPB_IN3 is positive input 3 of analog comparator B. When used as an analog input, the signal goes to ANB0 and CMPB_IN3. The ADC control register configures this input as ANB0.
GPIOB1	25	18	12	Input/Output	Input, internal pullup enabled	GPIO Port B1: After reset, the default state is GPIOB1.
(ANB1&CMPB_IN 0)				Input		ANB1 is analog input to channel 1 of ADCB; CMPB_IN0 is negative input 0 of analog comparator B. When used as an analog input, the signal goes to ANB1 and CMPB_IN0. The ADC control register configures this input as ANB1.

Table 2. Signal descriptions (continued)

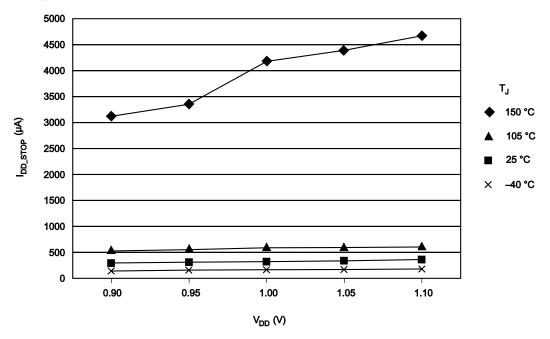
Table continues on the next page...

MC56F827xx signal and pin descriptions

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
						oscillator output to an external crystal or ceramic resonator.
GPIOC2	5	5	3	Input/Output	Input, internal pullup enabled	GPIO Port C2: After reset, the default state is GPIOC2.
(TXD0)				Output		SCI0 transmit data output or transmit/ receive in single wire operation
(XB_OUT11)				Output		Crossbar module output 11
(XB_IN2)				Input		Crossbar module input 2
(CLKO0)				Output		Buffered clock output 0: the clock source is selected by clockout select (CLKOSEL) bits in the clock output select register (CLKOUT) of the SIM.
GPIOC3	7	6	4	Input/Output	Input, internal pullup enabled	GPIO Port C3: After reset, the default state is GPIOC3.
(TA0)				Input/Output		Quad timer module A channel 0 input/ output
(CMPA_O)				Output		Analog comparator A output
(RXD0)				Input		SCI0 receive data input
(CLKIN1)				Input		External clock input 1
GPIOC4	8	7	5	Input/Output	Input, internal pullup enabled	GPIO Port C4: After reset, the default state is GPIOC4.
(TA1)				Input/Output		Quad timer module A channel 1 input/ output
(CMPB_O)				Output		Analog comparator B output
(XB_IN6)				Input		Crossbar module input 6
(EWM_OUT_B)				Output		External Watchdog Module output
GPIOC5	18	13	-	Input/Output	Input, internal pullup enabled	GPIO Port C5: After reset, the default state is GPIOC5.
(DACA_O)				Analog Output		12-bit digital-to-analog output
(XB_IN7)				Input		Crossbar module input 7
GPIOC6	31	23	15	Input/Output	Input, internal pullup enabled	GPIO Port C6: After reset, the default state is GPIOC6.
(TA2)				Input/Output		Quad timer module A channel 2 input/ output
(XB_IN3)				Input		Crossbar module input 3
(CMP_REF)				Analog Input		Positive input 3 of analog comparator A and B and C.
(<u>SS0_B</u>)				Input/Output		In slave mode, <u>SS0_B</u> indicates to the SPI module 0 that the current transfer is to be received.
GPIOC7	32	24	-	Input/Output	Input, internal pullup enable	GPIO Port C7: After reset, the default state is GPIOC7.

Table 2. Signal descriptions (continued)

Table continues on the next page...


5.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

5.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

5.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

6 Ratings

6.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

 Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

6.3 ESD handling ratings

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

All latch-up testing is in conformity with AEC-Q100 Stress Test Qualification.

A device is defined as a failure if after exposure to ESD pulses, the device no longer meets the device specification. Complete DC parametric and functional testing is performed as per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Characteristic ¹	Min	Мах	Unit
ESD for Human Body Model (HBM)	-2000	+2000	V
ESD for Machine Model (MM)	-200	+200	V
ESD for Charge Device Model (CDM)	-500	+500	V
Latch-up current at TA= 85°C (I _{LAT})	-100	+100	mA

 Table 4.
 ESD/Latch-up Protection

1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

6.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 5 may affect device reliability or cause permanent damage to the device.

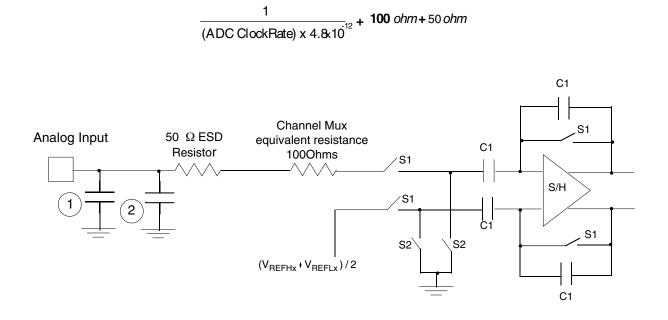
NOTE

If the voltage difference between VDD and VDDA or VSS and VSSA is too large, then the device can malfunction or be permanently damaged. The restrictions are:

- At all times, it is recommended that the voltage difference of VDD - VSS be within +/-200 mV of the voltage difference of VDDA - VSSA,, including power ramp up and ramp down; see additional requirements in Table 6. Failure to do this recommendation may result in a harmful leakage current through the substrate, between the VDD/VSS and VDDA/VSSA pad cells. This harmful leakage current could prevent the device from operating after power up.
- At all times, to avoid permanent damage to the part, the voltage difference between VDD and VDDA must absolutely be limited to 0.3 V, See Table 5.
- At all times, to avoid permanent damage to the part, the voltage difference between VSS and VSSA must absolutely be limited to 0.3 V, See Table 5.

Characteristic	Symbol	Notes ¹	Min	Max	Unit
Supply Voltage Range	V_{DD}		-0.3	4.0	V
Analog Supply Voltage Range	V _{DDA}		-0.3	4.0	V

Table 5. Absolute Maximum Ratings ($V_{SS} = 0 V$, $V_{SSA} = 0 V$)


Table continues on the next page ...

calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Board type	Symbol	Descriptio n	32 QFN	32 LQFP	48 LQFP	64 LQFP	Unit	Notes
Single-layer (1s)	R _{ejA}	Thermal resistance, junction to ambient (natural convection)	96	83	70	64	°C/W	,
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	33	55	46	46	°C/W	1,
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	80	70	57	52	°C/W	1,2
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	27	49	39	39	°C/W	1,2
_	R _{θJB}	Thermal resistance, junction to board	12	31	23	28	°C/W	
_	R _{θJC}	Thermal resistance, junction to case	1.8	22	17	15	°C/W	
_	Ψ _{JT}	Thermal characteriza tion parameter, junction to package top outside center (natural convection)	6	5	3	3	°C/W	

See Thermal design considerations for more detail on thermal design considerations.

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling = 1.8pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing = 2.04pF
- 3. S1 and S2 switch phases are non-overlapping and depend on the ADC clock frequency

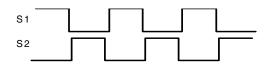


Figure 9. Equivalent circuit for A/D loading

8.5.2 12-bit Digital-to-Analog Converter (DAC) parameters Table 28. DAC parameters

	Symbol	Min	Тур	Max	Unit		
DC Speci	fications						
		12	12	12	bits		
At output load			1		μs		
RLD = 3 kΩ							
CLD = 400 pF							
Time from release of PWRDWN signal until DACOUT signal is valid	t _{DAPU}	—	—	11	μs		
Accuracy							
Range of input digital words:	INL	_	+/- 3	+/- 4	LSB ³		
-	At output load RLD = 3 kΩ CLD = 400 pF Time from release of PWRDWN signal until DACOUT signal is valid Accu Range of input digital words:	At output load RLD = 3 kΩ CLD = 400 pF Time from release of PWRDWN signal until DACOUT signal is valid t_DAPU Accuracy Range of input digital words:	At output load — RLD = 3 kΩ — CLD = 400 pF — Time from release of PWRDWN signal until DACOUT signal is valid t _{DAPU}	At output load1212At output load1RLD = 3 kΩ1CLD = 400 pFTime from release of PWRDWN signal until DACOUT signal is validt_DAPUAccuracyRange of input digital words:INL+/- 3	121212At output load—1RLD = 3 kΩ—1CLD = 400 pF——Time from release of PWRDWN signal until DACOUT signal is validtDAPU—AccuracyRange of input digital words:INL—+/- 3+/- 3+/- 4		

Table continues on the next page...

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit
	410 to 3891 (\$19A - \$F33)					
	5% to 95% of full range					
Differential non-	Range of input digital words:	DNL	_	+/- 0.8	+/- 0.9	LSB ³
linearity ²	410 to 3891 (\$19A - \$F33)					
	5% to 95% of full range					
Monotonicity	> 6 sigma monotonicity,			guaranteed		_
	< 3.4 ppm non-monotonicity					
Offset error ²	Range of input digital words:	V _{OFFSET}	_	+/- 25	+ /- 43	mV
	410 to 3891 (\$19A - \$F33)					
	5% to 95% of full range					
Gain error ²	Range of input digital words: 410 to 3891 (\$19A - \$F33) 5% to 95% of full range	E _{GAIN}	_	+/- 0.5	+/- 1.5	%
	DAC C	Dutput				
Output voltage range	Within 40 mV of either $V_{\rm SSA}$ or $V_{\rm DDA}$	V _{OUT}	V _{SSA} + 0.04 V	_	V _{DDA} - 0.04 V	V
	AC Specifications					
Signal-to-noise ratio		SNR		85		dB
Spurious free dynamic range		SFDR	_	-72	—	dB
Effective number of bits		ENOB	_	11	_	bits

Table 28. DAC parameters (continued)

 $1. \quad \mbox{Settling time is swing range from V_{SSA} to V_{DDA} } 2. \ \mbox{No guaranteed specification within 5% of V_{DDA} or V_{SSA} }$

3. LSB = 0.806 mV

CMP and 6-bit DAC electrical specifications 8.5.3 Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	2.7	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	300	—	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	36	—	μA
V _{AIN}	Analog input voltage	V _{SS}	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	—	20	mV
V _H	Analog comparator hysteresis				
	• CR0[HYSTCTR] = 00^1	—	5	13	mV
	 CR0[HYSTCTR] = 01 	—	25	48	mV
	• CR0[HYSTCTR] = 10 ²	_	55	105	mV
	• CR0[HYSTCTR] = 11 ²	—	80	148	mV

Table continues on the next page ...

System modules

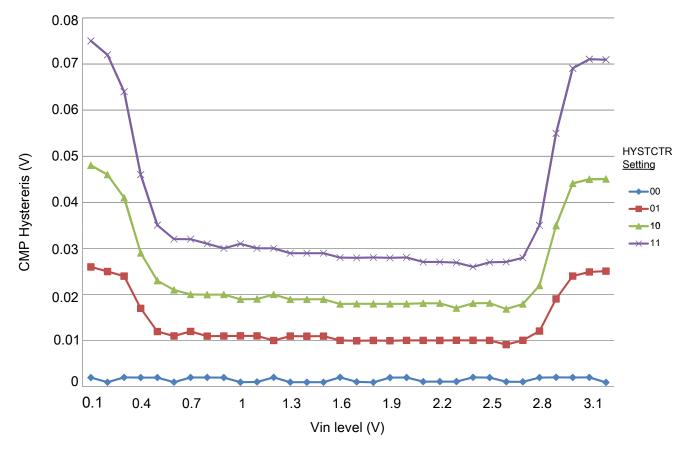


Figure 10. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

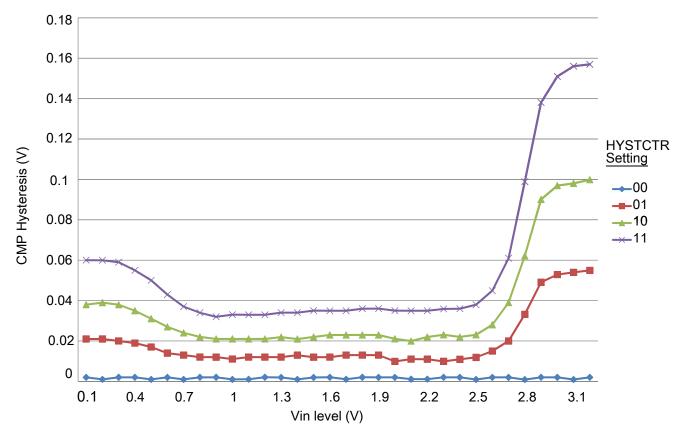


Figure 11. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

8.6 PWMs and timers

8.6.1 Enhanced NanoEdge PWM characteristics

Table 30.	NanoEdge	PWM timing	parameters
-----------	----------	-------------------	------------

Characteristic	Symbol	Min	Тур	Max	Unit
PWM clock frequency			100		MHz
NanoEdge Placement (NEP) Step Size ^{1, 2}	pwmp		312		ps
Delay for fault input activating to PWM output deactivated		1			ns
Power-up Time ³	t _{pu}		25		μs

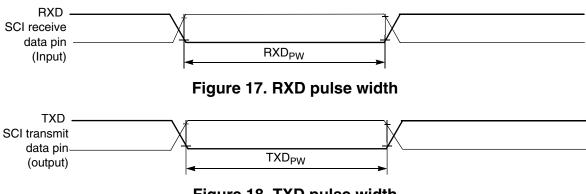
1. Reference IPbus clock of 100 MHz in NanoEdge Placement mode.

2. Temperature and voltage variations do not affect NanoEdge Placement step size.

3. Powerdown to NanoEdge mode transition.

8.6.2 Quad Timer timing

Parameters listed are guaranteed by design.


8.7.2 Queued Serial Communication Interface (SCI) timing

Parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Мах	Unit	See Figure
Baud rate ¹	BR	—	(f _{MAX} /16)	Mbit/s	—
RXD pulse width	RXD _{PW}	0.965/BR	1.04/BR	ns	Figure 17
TXD pulse width	TXD _{PW}	0.965/BR	1.04/BR	ns	Figure 18
	LIN	Slave Mode			
Deviation of slave node clock from nominal clock rate before synchronization	F _{TOL_UNSYNCH}	-14	14	%	_
Deviation of slave node clock relative to the master node clock after synchronization	F _{TOL_SYNCH}	-2	2	%	_
Minimum break character length	T _{BREAK}	13	—	Master node bit periods	_
		11	—	Slave node bit periods	_

Table 33. SCI timing

1. f_{MAX} is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock (max.50 MHz depending on part number) or 2x bus clock (max. 100 MHz) for the devices.

Figure 18. TXD pulse width

8.7.3 Modular/Scalable Controller Area Network (MSCAN) Table 34. MSCAN Timing Parameters

Characteristic	Symbol	Min	Max	Unit
Baud Rate	BR _{CAN}	—	1	Mbit/s
CAN Wakeup dominant pulse filtered	T _{WAKEUP}	—	1.5	μs
CAN Wakeup dominant pulse pass	T _{WAKEUP}	5	_	μs

Design Considerations

 $R_{\Theta JA}$ = Package junction-to-ambient thermal resistance (°C/W)

 $R_{\Theta JC}$ = Package junction-to-case thermal resistance (°C/W)

 $R_{\Theta CA}$ = Package case-to-ambient thermal resistance (°C/W)

 $R_{\Theta JC}$ is device related and cannot be adjusted. You control the thermal environment to change the case to ambient thermal resistance, $R_{\Theta CA}$. For instance, you can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the thermal characterization parameter (YJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

Where,

 T_T = Thermocouple temperature on top of package (°C/W)

 Ψ_{JT} = hermal characterization parameter (°C/W)

 P_D = Power dissipation in package (W)

The thermal characterization parameter is measured per JESD51–2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

To determine the junction temperature of the device in the application when heat sinks are used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

11 Pinout

11.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The SIM's GPS registers are responsible for selecting which ALT functionality is available on most pins.

NOTE

- The RESETB pin is a 3.3 V pin only.
- If the GPIOC1 pin is used as GPIO, the XOSC should be powered down.
- Not all CMPD pins are not available on 48 LQFP, 32 LQFP, and 32 QFN packages.
- QSPI signals—including MISO1, MOSI1, SCLK1, and SS0_B—are not available on the 48 LQFP, 32 LQFP, and 32 QFN packages.

64 LQFP	48 LQFP	32 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3
	LULL	LULL						
1	1	1	TCK	TCK	GPIOD2			
2	2	2	RESETB	RESETB	GPIOD4			
3	3	Ι	GPIOC0	GPIOC0	EXTAL	CLKINO		
4	4	_	GPIOC1	GPIOC1	XTAL			
5	5	3	GPIOC2	GPIOC2	TXD0	XB_OUT11	XB_IN2	CLKO0
6	_	_	GPIOF8	GPIOF8	RXD0	XB_OUT10	CMPD_O	PWM_2X
7	6	4	GPIOC3	GPIOC3	TA0	CMPA_O	RXD0	CLKIN1
8	7	5	GPIOC4	GPIOC4	TA1	CMPB_O	XB_IN6	EWM_OUT_B
9	_	_	GPIOA7	GPIOA7	ANA7&CMPD_IN3			
10	_	_	GPIOA6	GPIOA6	ANA6&CMPD_IN2			
11	_	_	GPIOA5	GPIOA5	ANA5&CMPD_IN1			
12	8	_	GPIOA4	GPIOA4	ANA4&CMPD_IN0			
13	9	6	GPIOA0	GPIOA0	ANA0&CMPA_IN3	CMPC_O		
14	10	7	GPIOA1	GPIOA1	ANA1&CMPA_IN0			
15	11	8	GPIOA2	GPIOA2	ANA2&VREFHA&CMPA_ IN1			
16	12	_	GPIOA3	GPIOA3	ANA3&VREFLA&CMPA_ IN2			
17	_	_	GPIOB7	GPIOB7	ANB7&CMPB_IN2			
18	13	_	GPIOC5	GPIOC5	DACA_O	XB_IN7		
19	-	_	GPIOB6	GPIOB6	ANB6&CMPB_IN1			

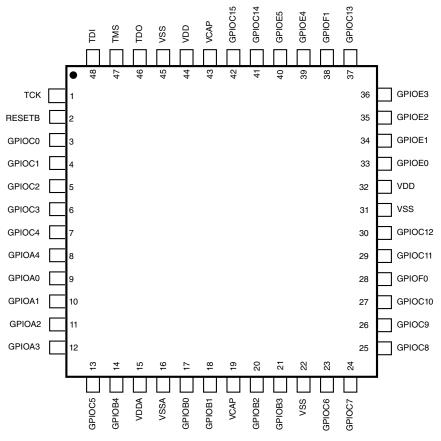


Figure 24. 48-pin LQFP

NOTE

The RESETB pin is a 3.3 V pin only.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, and I2C are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved.

© 2013–2016 NXP B.V.

Document Number MC56F827XXDS Revision 3.0, 09/2016

