
Digi - 101-0517 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 3000

Co-Processor -

Speed 29.4MHz

Flash Size 512KB

RAM Size 512KB

Connector Type 2 IDC Headers 2x17

Size / Dimension 1.85" x 1.65" (47mm x 42mm)

Operating Temperature -40°C ~ 85°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/101-0517

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/101-0517-4510276
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

1. INTRODUCTION

The RCM3100 RabbitCore module is designed to be the heart of
embedded control systems.

Throughout this manual, the term RCM3100 refers to the complete series of RCM3100
RabbitCore modules unless other production models are referred to specifically.

The RCM3100 has a Rabbit 3000 microprocessor operating at 29.4 MHz, static RAM,
flash memory, two clocks (main oscillator and timekeeping), and the circuitry necessary
for reset and management of battery backup of the Rabbit 3000’s internal real-time clock
and the static RAM. Two 34-pin headers bring out the Rabbit 3000 I/O bus lines, parallel
ports, and serial ports.

The RCM3100 receives its +3.3 V power from the customer-supplied motherboard on
which it is mounted. The RabbitCore RCM3100 can interface with all kinds of CMOS-
compatible digital devices through the motherboard.

1.1 RCM3100 Features
• Small size: 1.65" × 1.85" × 0.55"

(42 mm × 47 mm × 14 mm)

• Microprocessor: Rabbit 3000 running at 29.4 MHz

• 54 parallel 5 V tolerant I/O lines: 46 configurable for I/O, 4 fixed inputs, 4 fixed outputs

• Two additional digital inputs, two additional digital outputs

• External reset input

• Alternate I/O bus can be configured for 8 data lines and 6 address lines (shared with
parallel I/O lines), I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 256K–512K flash memory, 128K–512K SRAM

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J2

• 10-bit free-running PWM counter and four pulse-width registers
User’s Manual 1

3.2.1 Serial Communication
The following sample programs can be found in the SAMPLES\RCM3100\SERIAL folder.

• FLOWCONTROL.C—This program demonstrates hardware flow control by configuring
Serial Port C (PC3/PC2) for CTS/RTS with serial data coming from TxB at 115,200 bps.
One character at a time is received and is displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie TxB and RxB
together on the RS-232 header at J5, and you will also tie TxC and
RxC together using the jumpers supplied in the Development Kit as
shown in the diagram

A repeating triangular pattern should print out in the STDIO window.
The program will periodically switch flow control on or off to demonstrate the effect of
no flow control.

• PARITY.C—This program demonstrates the use of parity modes by
repeatedly sending byte values 0–127 from Serial Port B to Serial Port
C. The program will switch between generating parity or not on Serial
Port B. Serial Port C will always be checking parity, so parity errors
should occur during every other sequence.

To set up the Prototyping Board, you will need to tie TxB and RxC together on the
RS-232 header at J5 using the jumpers supplied in the Development Kit as shown in the
diagram.

The Dynamic C STDIO window will display the error sequence.

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial
communication. Lower case characters are sent by TxC, and are
received by RxB. The characters are converted to upper case and are
sent out by TxB, are received by RxC, and are displayed in the
Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie TxB and RxC together on the
RS-232 header at J5, and you will also tie RxB and TxC together using the jumpers
supplied in the Development Kit as shown in the diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port C and data flow on Serial Port B.

To set up the Prototyping Board, you will need to tie TxB and RxB
together on the RS-232 header at J5, and you will also tie TxC and
RxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

Once you have compiled and run this program, you can test flow con-
trol by disconnecting TxC from RxC while the program is running. Characters will no
longer appear in the STDIO window, and will display again once TxC is connected
back to RxC.

��
	(����(�

����(���	(�

��
	(�

�	(�������(�

�(�

��
	(����(�

����(���	(�

��
	(����(�

����(���	(�
User’s Manual 13

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose output.

The /RESET_IN pin is an external input that is used to reset the Rabbit 3000 and the
RCM3100 onboard peripheral circuits. The serial programming port can be used to force a
hard reset on the RCM3100 by asserting the /RESET_IN signal.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

4.3 Serial Programming Cable
The programming cable is used to connect the serial programming port of the RCM3100
to a PC serial COM port. The programming cable converts the RS-232 voltage levels used
by the PC serial port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3100
serial programming port at header J3, programs can be downloaded and debugged over the
serial interface.

The DIAG connector of the programming cable may be used on header J3 of the RCM3100
with the RCM3100 operating in the Run Mode. This allows the programming port to be
used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The RCM3100 is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in Run Mode when no programming
cable is attached. When the Rabbit 3000 is reset, the operating mode is determined by the
status of the SMODE pins. When the programming cable’s PROG connector is attached,
the SMODE pins are pulled high, placing the Rabbit 3000 in the Program Mode. When the
programming cable’s PROG connector is not attached, the SMODE pins are pulled low,
causing the Rabbit 3000 to operate in the Run Mode.
User’s Manual 25

5.2 Dynamic C Function Calls
5.2.1 I/O

The RCM3100 was designed to interface with other systems, and so there are no drivers
written specifically for the I/O. The general Dynamic C read and write functions allow
you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use
WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the auxiliary I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

to the beginning of any programs using the auxiliary I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3100 directory provide further
examples.

5.2.2 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delim-
ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both
libraries provide blocking functions, which do not return until they are finished transmit-
ting or receiving, and nonblocking functions, which must be called repeatedly until they
are finished. For more information, see the Dynamic C User’s Manual and Technical
Note 213, Rabbit 2000 Serial Port Software.

5.2.3 Prototyping Board Functions

The function described in this section is for use with the Prototyping Board. The source
code is in the RCM3100.LIB library in the Dynamic C SAMPLES\RCM3100 folder if you
need to modify it for your own board design.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.3.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the RCM3000/31/32XX Prototyping Board.

This function also sets any unused configurable port pins as outputs with a high output, and assumes that
only one RCM3100 module is installed in the MASTER position on the Prototyping Board.

RETURN VALUE
None.

void brdInit (void);
User’s Manual 31

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external
I/O read and write cycles.

Figure A-4. External I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

�)1,

�)1,

/+������
#�)
����
3�	
�+���
����
������4

���

�B��CD

/+������
#�)
5����
3�	
�+���
����
������4

���

�B��CD

!"�	�

�����

�� �9

�� �9 ��

�����

��

!�#���

!"���(

!"��	

!�#���

�B�CD �����

�4+*E3

�5/01

!��(

!"���(

���(

�"���(

�"�	�

��#���

���(

�"���(

�"�	�

��#���

������B�CD

!��(
���(

�"���(

�"��	

���(

�"���(

�"��	

��#��� ��#���

��$F� ���$F
User’s Manual 39

A.3 Rabbit 3000 DC Characteristics
Table A-5 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from Ta = –55°C to +125°C. Note that while the
Rabbit 3000 is rated to operate over a voltage range from 3.0–3.6 V, the RCM3100 has a
more restrictive operating voltage range of 3.15–3.45 V DC.

Table A-5. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

IIH Input Leakage High VIN = VDD, VDD = 3.3 V 1 µA

IIL
Input Leakage Low
(no pull-up)

VIN = VSS, VDD = 3.3 V -1 µA

IOZ Output Leakage (no pull-up)
VIN = VDD or VSS,
VDD = 3.3 V -1 1 µA

VIL CMOS Input Low Voltage 0.3 × VDD V

VIH CMOS Input High Voltage 0.7 × VDD V

VT CMOS Switching Threshold VDD = 3.3 V, 25°C 1.65 V

VOL Low-Level Output Voltage IOL = 6 mA 0.4 V

VOH High-Level Output Voltage IOH =6 mA 0.7 × VDD V
User’s Manual 41

• RS-232—Two 3-wire or one 5-wire RS-232 serial port are available on the Prototyping
Board. Refer to the Prototyping Board schematic (090-0137) for additional details.

A 10-pin 0.1-inch spacing header strip is installed at J5 to permit connection of a ribbon
cable leading to a standard DE-9 serial connector.

• Current Measurement Option—Jumpers across pins 1–2 and 5–6 on header JP1 can
be removed and replaced with an ammeter across the pins to measure the current drawn
from the +5 V or the +3.3 V supplies, respectively.

• Motor Encoder—A motor/encoder header is provided at header J6 for future use.

• LCD/Keypad Module—Rabbit Semiconductor’s LCD/keypad module may be plugged
in directly to headers J7, J8, and J10.
48 RabbitCore RCM3100

B.2 Mechanical Dimensions and Layout
Figure B-2 shows the mechanical dimensions and layout for the Prototyping Board.

Figure B-2. RCM30/31/32XX Prototyping Board Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�
�

��

�
�

	�

	�

	�

�

�� �����

	�����

	���

	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

��

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���

	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
��
�
��������
���

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����

��

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

	���!��!��
��	�����#��

	���!��!��
��	�����#��

�)**+,-

#�

��

�����
?���@

��
�

?�
��
@

����
?��@

���
?%�@

���
?��@

��
?�@

�
� ?�
@

��
��

?�
��
@

�
�� ?�
@

����
?���@

����
?��@

��
?�@

�����16)
?���@

J��
User’s Manual 49

56 RabbitCore RCM3100

C.4 Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function

0xC000 Device select base address (/CS)

0xCxx0–0xCxx7 LCD control

0xCxx8 LED enable

0xCxx9 Not used

0xCxxA 7-key keypad

0xCxxB (bits 0–6) 7-LED driver

0xCxxB (bit 7) LCD backlight on/off

0xCxxC–CxxF Not used

�
�
��

�
�
��

�
�
��

�
�
�

�
��

�
��

�
�
�

��
�
�

��
�
�

��
�
�

��
�
�

!	
�
�

�
�
�

�
�
��

�
�
��

�
�
��

�
�
��
�
�

�
��

�
�
�

�
�
�

��
�
�

��
�
�

��
�
�

!�
�

��
�
�
��

��

�
�
�

�
�
�

��
�
�

��
�
�

��
�
�

!�
�

��
�
�
��

�
�
�

��
�
�

��
�
�

��
�
�

��
�
�

!	
�
�

�
�
�

�"

�
�
�

�
�
��

�
�
��

�
�
��

�
�
��
�
�
�
��

�
�
�

�
�
��

�
�
��

�
�
��

�
�
�

�
��

�
��

��
User’s Manual 61

C.7.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C DISPLAYS\GRAPHIC library directory.

Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Turns the display backlight on or off.

PARAMETER
onOff turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER
onOff turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);
User’s Manual 67

Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits
are not available on the LCD/keypad module.

Fills the LCD display screen with a pattern.

PARAMETER
The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes
for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the
block that is outside the LCD display area will be clipped.

PARAMETERS
x is the x coordinate of the top left corner of the block.

y is the y coordinate of the top left corner of the block.

bmWidth is the width of the block.

bmWidth is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

void glSetContrast(unsigned level);

void glFillScreen(char pattern);

void glBlankScreen(void);

void glBlock(int x, int y, int bmWidth,
int bmHeight);
68 RabbitCore RCM3100

70 RabbitCore RCM3100

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,
the function will return without doing anything.

PARAMETERS
n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the
function will return without doing anything.

PARAMETERS
n is the number of vertices.

x1 is the x coordinate of the first vertex.

y1 is the y coordinate of the first vertex.

x2 is the x coordinate of the second vertex.

y2 is the y coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

void glFillVPolygon(int n, int *pFirstCoord);

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font
character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside
the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

*pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values.
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS
stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE
None.

SEE ALSO
Use glGetPfStep() to examine the current x and y printing step direction.

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
Use glGetPfStep() to control the x and y printing step direction.

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glSetPfStep(int stepX, int stepY);

int glGetPfStep(void);
72 RabbitCore RCM3100

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRight1

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeft1

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glDown1

void glLeft1(int left, int top, int cols, int rows);

void glRight1(int left, int top, int cols, int rows);

void glUp1(int left, int top, int cols, int rows);
76 RabbitCore RCM3100

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text
window using only character row and column coordinates. The text window feature provides end-of-line
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS
*window is a window frame descriptor pointer.

*pFont is a font descriptor pointer.

x is the x coordinate of where the text window frame is to start.

y is the y coordinate of where the text window frame is to start.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE
 0—window frame was successfully created.
 -1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)
User’s Manual 79

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3100, and includes some background on the chip
select circuit used in power management.

D.1 Power Supplies
The RCM3100 requires a regulated 3.3 V ± 0.15 V DC power source. The RabbitCore
design presumes that the voltage regulator is on the user board, and that the power is made
available to the RCM3100 board through header J2.

An RCM3100 with no loading at the outputs operating at 29.4 MHz typically draws 75 mA.
The RCM3100 will consume an additional 10 mA when the programming cable is used to
connect the programming header, J3, to a PC.

D.1.1 Battery-Backup Circuits

The RCM3100 does not have a battery, but there is provision for a customer-supplied bat-
tery to back up SRAM and keep the internal Rabbit 3000 real-time clock running.

Header J2, shown in Figure D-1, allows access to the external battery. This header makes
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 3000 real-time clock to retain data with the RCM3100 powered down.

Figure D-1. External Battery Connections
at Header J5

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

�	��

�����

�

��

��

��

����<� �

���

�(*+,7)0
�)**+,-��
User’s Manual 87

APPENDIX E. MOTOR CONTROL
FEATURES

The RCM30/31/32XX Prototyping Board has a header at J6 for a
motor control connection. While Rabbit Semiconductor does not have
the drivers or a compatible stepper motor control board at this time,
this appendix provides additional information about Parallel Port F on
the Rabbit 3000 microprocessor to enable you to develop your own
application.

E.1 Overview
The Parallel Port F connector on the Prototyping Board, J6, gives access to all 8 pins of
Parallel Port F, along with +5 V. This appendix describes the function of each pin, and the
ways they may be used for motion-control applications. It should be read in conjunction
with the Rabbit 3000 Microprocessor User’s Manual and the RCM3100 and the
RCM3000/RCM3100/RCM3200 Prototyping Board schematics.
User’s Manual 89

E.6 Quadrature Decoder
The two-channel Quadrature Decoder accepts inputs via Parallel Port F from two external
optical incremental encoder modules. Each channel of the Quadrature Decoder accepts an
in-phase (I) and a quadrature-phase (Q) signal, and provides 8-bit counters to track shaft
rotation and provide interrupts when the count goes through the zero count in either direc-
tion. The Quadrature Decoder contains digital filters on the inputs to prevent false counts
and is clocked by the output of Timer A10. Each Quadrature Decoder channel accepts
inputs from either the upper nibble or lower nibble of Parallel Port F. The I signal is input
on an odd-numbered port bit, while the Q signal is input on an even-numbered port bit.
There is also a disable selection, which is guaranteed not to generate a count increment or
decrement on either entering or exiting the disable state. The operation of the counter as a
function of the I and Q inputs is shown below.

Figure E-2. Operation of Quadrature Decoder Counter

The Quadrature Decoders are clocked by the output of Timer A10, giving a maximum
clock rate of one-half of the peripheral clock rate. The time constant of Timer A10 must be
fast enough to sample the inputs properly. Both the I and Q inputs go through a digital fil-
ter that rejects pulses shorter than two clock periods wide. In addition, the clock rate must
be high enough that transitions on the I and Q inputs are sampled in different clock cycles.
The Input Capture (see the Rabbit 3000 Microprocessor Users Manual) may be used to
measure the pulse width on the I inputs because they come from the odd-numbered port
bits. The operation of the digital filter is shown below.

 � � � � � � � % � � � � � � � ��

"�673E*

.�673E*

�/E7*+,

*��������

Rejected

Accepted

Peri Clock

Timer A10
96 RabbitCore RCM3100

SCHEMATICS

090-0144 RCM3100 Schematic
www.rabbit.com/documentation/schemat/090-0144.pdf

090-0137 RCM3000/RCM3100/RCM3200 Prototyping Board
Schematic

www.rabbit.com/documentation/schemat/090-0137.pdf

090-0156 LCD/Keypad Module Schematic
www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.
User’s Manual 103

http://www.rabbit.com/documentation/schemat/090-0144.pdf
http://www.rabbit.com/documentation/schemat/090-0137.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf

