

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

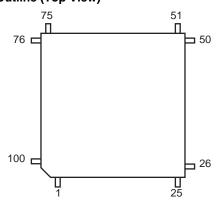
Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x128-cu-999

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
- Thirteen Peripheral DMA Controller (PDC) Channels
- One USB 2.0 Full Speed (12 Mbits per second) Device Port
 - On-chip Transceiver, 1352-byte Configurable Integrated FIFOs
- One Ethernet MAC 10/100 base-T
 - Media Independent Interface (MII) or Reduced Media Independent Interface (RMII)
 - Integrated 28-byte FIFOs and Dedicated DMA Channels for Transmit and Receive
- One Part 2.0A and Part 2.0B Compliant CAN Controller
 - Eight Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter
- One Synchronous Serial Controller (SSC)
 - Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
 - I2S Analog Interface Support, Time Division Multiplex Support
 - High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
- Two Universal Synchronous/Asynchronous Receiver Transmitters (USART)
 - Individual Baud Rate Generator, IrDA[®] Infrared Modulation/Demodulation
 - Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
 - Full Modem Line Support on USART1
- Two Master/Slave Serial Peripheral Interfaces (SPI)
 - 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
- One Three-channel 16-bit Timer/Counter (TC)
 - Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
 - Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
- One Four-channel 16-bit Power Width Modulation Controller (PWMC)
- One Two-wire Interface (TWI)
 - Master Mode Support Only, All Two-wire Atmel EEPROMs and I²C Compatible Devices Supported
- One 8-channel 10-bit Analog-to-Digital Converter, Four Channels Multiplexed with Digital I/Os
- SAM-BA[®] Boot Assistance
 - Default Boot program
 - Interface with SAM-BA Graphic User Interface
- IEEE[®] 1149.1 JTAG Boundary Scan on All Digital Pins
- 5V-tolerant I/Os, Including Four High-current Drive I/O lines, Up to 16 mA Each
- Power Supplies
 - Embedded 1.8V Regulator, Drawing up to 100 mA for the Core and External Components
 - 3.3V VDDIO I/O Lines Power Supply, Independent 3.3V VDDFLASH Flash Power Supply
 - 1.8V VDDCORE Core Power Supply with Brownout Detector
- Fully Static Operation: Up to 55 MHz at 1.65V and 85°C Worst Case Conditions
- Available in 100-lead LQFP Green and 100-ball TFBGA Green Packages


4. Package

The SAM7X512/256/128 is available in 100-lead LQFP Green and 100-ball TFBGA RoHS-compliant packages.

4.1 100-lead LQFP Package Outline

Figure 4-1 shows the orientation of the 100-lead LQFP package. A detailed mechanical description is given in the Mechanical Characteristics section.

Figure 4-1. 100-lead LQFP Package Outline (Top View)

4.2 100-lead LQFP Pinout

Table 4-1.Pinout in 100-lead LQFP Package

Table 4	-1. Pinout in 100	-lead LQFP	Раскаде				
1	ADVREF	26	PA18/PGMD6	51	TDI	76	TDO
2	GND	27	PB9	52	GND	77	JTAGSEL
3	AD4	28	PB8	53	PB16	78	TMS
4	AD5	29	PB14	54	PB4	79	TCK
5	AD6	30	PB13	55	PA23/PGMD11	80	PA30
6	AD7	31	PB6	56	PA24/PGMD12	81	PA0/PGMEN0
7	VDDOUT	32	GND	57	NRST	82	PA1/PGMEN1
8	VDDIN	33	VDDIO	58	TST	83	GND
9	PB27/AD0	34	PB5	59	PA25/PGMD13	84	VDDIO
10	PB28/AD1	35	PB15	60	PA26/PGMD14	85	PA3
11	PB29/AD2	36	PB17	61	VDDIO	86	PA2
12	PB30/AD3	37	VDDCORE	62	VDDCORE	87	VDDCORE
13	PA8/PGMM0	38	PB7	63	PB18	88	PA4/PGMNCMD
14	PA9/PGMM1	39	PB12	64	PB19	89	PA5/PGMRDY
15	VDDCORE	40	PB0	65	PB20	90	PA6/PGMNOE
16	GND	41	PB1	66	PB21	91	PA7/PGMNVALID
17	VDDIO	42	PB2	67	PB22	92	ERASE
18	PA10/PGMM2	43	PB3	68	GND	93	DDM
19	PA11/PGMM3	44	PB10	69	PB23	94	DDP
20	PA12/PGMD0	45	PB11	70	PB24	95	VDDFLASH
21	PA13/PGMD1	46	PA19/PGMD7	71	PB25	96	GND
22	PA14/PGMD2	47	PA20/PGMD8	72	PB26	97	XIN/PGMCK
23	PA15/PGMD3	48	VDDIO	73	PA27/PGMD15	98	XOUT
24	PA16/PGMD4	49	PA21/PGMD9	74	PA28	99	PLLRC
25	PA17/PGMD5	50	PA22/PGMD10	75	PA29	100	VDDPLL

5. Power Considerations

5.1 **Power Supplies**

The SAM7X512/256/128 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal. In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case, VDDOUT should be left unconnected.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDFLASH pin. It powers the USB transceivers and a part of the Flash and is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.
- VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

5.2 Power Consumption

The SAM7X512/256/128 has a static current of less than 60 μ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds 28 μ A static current.

The dynamic power consumption on VDDCORE is less than 90 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

5.3 Voltage Regulator

The SAM7X512/256/128 embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100 µA static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 25 µA static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible. One external 2.2 μ F (or 3.3 μ F) X7R capacitor should be connected between VDDOUT and GND.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7 µF X7R.

5.4 Typical Powering Schematics

The SAM7X512/256/128 supports a 3.3V single supply mode. The internal regulator input connected to the 3.3V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows the power schematics to be used for USB buspowered systems.

16.3 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WV is 0xFFF, corresponding to the maximum value of the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode parameters.

If the watchdog is restarted by writing into the WDT_CR register, the WDT_MR register must not be programmed during a period of time of 3 slow clock period following the WDT_CR write access. In any case, programming a new value in WDT_MR automatically initiates a restart instruction.

In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result, writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the "wdt_fault" signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register (WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur while the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the "wdt_fault" signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit WDFIEN is set in the mode register. The signal "wdt_fault" to the reset controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset controller programmer Datasheet. In that case, the processor and the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the "wdt_fault" signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

20.2.5.9 Get Version Command

The Get Version (GVE) command retrieves the version of the FFPI interface.

Step	Handshake Sequence	MODE[3:0]	DATA[15:0]
1	Write handshaking	CMDE	GVE
2	Write handshaking	DATA	Version

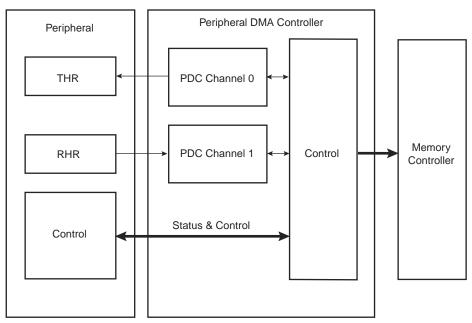
 Table 20-17.
 Get Version Command

22. Peripheral DMA Controller (PDC)

22.1 Overview

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as the UART, USART, SSC, SPI, MCI and the on- and off-chip memories. Using the Peripheral DMA Controller avoids processor intervention and removes the processor interrupt-handling overhead. This significantly reduces the number of clock cycles required for a data transfer and, as a result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular peripheral. One channel in the pair is dedicated to the receiving channel and one to the transmitting channel of each UART, USART, SSC and SPI.


The user interface of a PDC channel is integrated in the memory space of each peripheral. It contains:

- A 32-bit memory pointer register
- A 16-bit transfer count register
- A 32-bit register for next memory pointer
- A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the programmed data is transferred, an end of transfer interrupt is generated by the corresponding peripheral.

22.2 Block Diagram

Figure 22-1. Block Diagram

22.3 Functional Description

22.3.1 Configuration

The PDC channels user interface enables the user to configure and control the data transfers for each channel. The user interface of a PDC channel is integrated into the user interface of the peripheral (offset 0x100), which it is related to. Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four 16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

25.9 Power Management Controller (PMC) User Interface

Offset	Register	Name	Access	Reset
0x0000	System Clock Enable Register	PMC_SCER	Write-only	-
0x0004	System Clock Disable Register	PMC_SCDR	Write-only	_
0x0008	System Clock Status Register	PMC _SCSR	Read-only	0x01
0x000C	Reserved	-	_	_
0x0010	Peripheral Clock Enable Register	PMC _PCER	Write-only	_
0x0014	Peripheral Clock Disable Register	PMC_PCDR	Write-only	_
0x0018	Peripheral Clock Status Register	PMC_PCSR	Read-only	0x0
0x001C	Reserved	-	_	_
0x0020	Main Oscillator Register	CKGR_MOR	Read-write	0x0
0x0024	Main Clock Frequency Register	CKGR_MCFR	Read-only	0x0
0x0028	Reserved	-	_	_
0x002C	PLL Register	CKGR_PLLR	Read-write	0x3F00
0x0030	Master Clock Register	PMC_MCKR	Read-write	0x0
0x0038	Reserved	-	_	_
0x003C	Reserved	-	_	_
0x0040	Programmable Clock 0 Register	PMC_PCK0	Read-write	0x0
0x0044	Programmable Clock 1 Register	PMC_PCK1	Read-write	0x0
0x0060	Interrupt Enable Register	PMC_IER	Write-only	
0x0064	Interrupt Disable Register	PMC_IDR	Write-only	
0x0068	Status Register	PMC_SR	Read-only	0x08
0x006C	Interrupt Mask Register	PMC_IMR	Read-only	0x0
0x0070 - 0x007C	Reserved	-	_	-

Table 25-2. Register Mapping

26.5.3 Debug Unit Interrupt Enable Register

Nama

Name:	DBG0_I	ER					
Access Type:	Write-on	lly					
31	30	29	28	27	26	25	24
COMMRX	COMMTX	_	-	_	_	_	_
23	22	21	20	19	18	17	16
_	_	_	-	_	_	_	_
15	14	13	12	11	10	9	8
_	_	_	RXBUFF	TXBUFE	—	TXEMPTY	_
7	6	5	4	3	2	1	0
PARE	FRAME	OVRE	ENDTX	ENDRX	-	TXRDY	RXRDY
FARE	FRANIE	OVRE	ENDIX	ENDRA	_	IARDI	RARDI

- RXRDY: Enable RXRDY Interrupt
- TXRDY: Enable TXRDY Interrupt
- ENDRX: Enable End of Receive Transfer Interrupt
- ENDTX: Enable End of Transmit Interrupt
- OVRE: Enable Overrun Error Interrupt
- FRAME: Enable Framing Error Interrupt
- PARE: Enable Parity Error Interrupt
- TXEMPTY: Enable TXEMPTY Interrupt
- TXBUFE: Enable Buffer Empty Interrupt
- RXBUFF: Enable Buffer Full Interrupt
- COMMTX: Enable COMMTX (from ARM) Interrupt
- COMMRX: Enable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Enables the corresponding interrupt.

30.7.10 USART Receiver Time-out Register

Name:	US_RTC	DR										
Access Type:	Read-wr	ite										
31	30	29	28	27	26	25	24					
-	_	_	-	—	-	_	-					
23	22	21	20	19	18	17	16					
-	_	_	-	-	-	_	-					
15	14	13	12	11	10	9	8					
	ТО											
7	6	5	4	3	2	1	0					
			Т	0								

• TO: Time-out Value

0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31.3 Application Block Diagram

Figure 31-2. Application Block Diagram

OS or RTOS Driver		Power anagement	N	Interrupt Ianagement	Test Management				
	SSC								
Serial AUDIO	Codec		Time Slot Management	t I	Frame Management	Line Interface			

31.4 Pin Name List

Table 31-1.I/O Lines Description

Pin Name	Pin Description	Туре
RF	Receiver Frame Synchro	Input/Output
RK	Receiver Clock	Input/Output
RD	Receiver Data	Input
TF	Transmitter Frame Synchro	Input/Output
ТК	Transmitter Clock	Input/Output
TD	Transmitter Data	Output

31.5 **Product Dependencies**

31.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

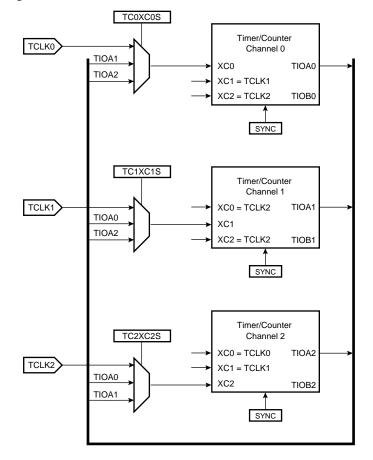
Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC transmitter I/O lines to the SSC peripheral mode.

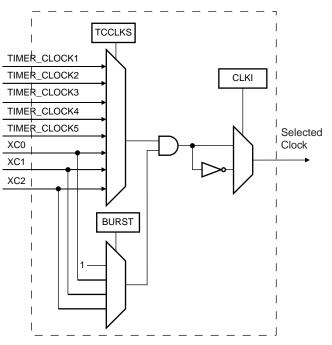
31.5.2 Power Management

The SSC is not continuously clocked. The SSC interface may be clocked through the Power Management Controller (PMC), therefore the programmer must first configure the PMC to enable the SSC clock.

31.5.3 Interrupt


The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling interrupts requires programming the AIC before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt service routine can get the interrupt origin by reading the SSC interrupt status register.


31.6 Functional Description

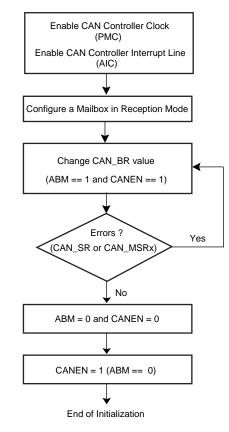
This chapter contains the functional description of the following: SSC Functional Block, Clock Management, Data format, Start, Transmitter, Receiver and Frame Sync.

36. Controller Area Network (CAN)

36.1 Overview

The CAN controller provides all the features required to implement the serial communication protocol CAN defined by Robert Bosch GmbH, the CAN specification as referred to by ISO/11898A (2.0 Part A and 2.0 Part B) for high speeds and ISO/11519-2 for low speeds. The CAN Controller is able to handle all types of frames (Data, Remote, Error and Overload) and achieves a bitrate of 1 Mbit/sec.

CAN controller accesses are made through configuration registers. 8 independent message objects (mailboxes) are implemented.


Any mailbox can be programmed as a reception buffer block (even non-consecutive buffers). For the reception of defined messages, one or several message objects can be masked without participating in the buffer feature. An interrupt is generated when the buffer is full. According to the mailbox configuration, the first message received can be locked in the CAN controller registers until the application acknowledges it, or this message can be discarded by new received messages.

Any mailbox can be programmed for transmission. Several transmission mailboxes can be enabled in the same time. A priority can be defined for each mailbox independently.

An internal 16-bit timer is used to stamp each received and sent message. This timer starts counting as soon as the CAN controller is enabled. This counter can be reset by the application or automatically after a reception in the last mailbox in Time Triggered Mode.

The CAN controller offers optimized features to support the Time Triggered Communication (TTC) protocol.

Figure 36-10. Possible Initialization Procedure

36.7.2 CAN Controller Interrupt Handling

There are two different types of interrupts. One type of interrupt is a message-object related interrupt, the other is a system interrupt that handles errors or system-related interrupt sources.

All interrupt sources can be masked by writing the corresponding field in the CAN_IDR register. They can be unmasked by writing to the CAN_IER register. After a power-up reset, all interrupt sources are disabled (masked). The current mask status can be checked by reading the CAN_IMR register.

The CAN_SR register gives all interrupt source states.

The following events may initiate one of the two interrupts:

- Message object interrupt
 - Data registers in the mailbox object are available to the application. In Receive Mode, a new message was received. In Transmit Mode, a message was transmitted successfully.
 - A sent transmission was aborted.
- System interrupts
 - Bus off interrupt: The CAN module enters the bus off state.
 - Error passive interrupt: The CAN module enters Error Passive Mode.
 - Error Active Mode: The CAN module is neither in Error Passive Mode nor in Bus Off mode.
 - Warn Limit interrupt: The CAN module is in Error-active Mode, but at least one of its error counter value exceeds 96.
 - Wake-up interrupt: This interrupt is generated after a wake-up and a bus synchronization.
 - Sleep interrupt: This interrupt is generated after a Low-power Mode enable once all pending messages in transmission have been sent.
 - Internal timer counter overflow interrupt: This interrupt is generated when the internal timer rolls over.

36.8.3 CAN Interrupt Disable Register

Name:	CAN_ID	R					
Access Type:	Write-on	ly					
31	30	29	28	27	26	25	24
-	_	-	BERR	FERR	AERR	SERR	CERR
23	22	21	20	19	18	17	16
TSTP	TOVF	WAKEUP	SLEEP	BOFF	ERRP	WARN	ERRA
15	14	13	12	11	10	9	8
-	_	-	-	-	-	-	-
7	6	5	4	3	2	1	0
MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0

• MBx: Mailbox x Interrupt Disable

0 = No effect.

1 = Disable Mailbox x interrupt.

• ERRA: Error Active Mode Interrupt Disable

- 0 = No effect.
- 1 = Disable ERRA interrupt.

• WARN: Warning Limit Interrupt Disable

- 0 = No effect.
- 1 = Disable WARN interrupt.

• ERRP: Error Passive Mode Interrupt Disable

0 = No effect.

1 = Disable ERRP interrupt.

• BOFF: Bus Off Mode Interrupt Disable

0 = No effect.

1 = Disable BOFF interrupt.

• SLEEP: Sleep Interrupt Disable

0 = No effect.

1 = Disable SLEEP interrupt.

• WAKEUP: Wakeup Interrupt Disable

0 = No effect.

1 = Disable WAKEUP interrupt.

• TOVF: Timer Overflow Interrupt

0 = No effect.

1 = Disable TOVF interrupt.

36.8.12 CAN Message Mode Register

Name:	CAN_M	MRx					
Access Type:	Read-wr	ite					
31	30	29	28	27	26	25	24
-	-	-	—	—		MOT	
23	22	21	20	19	18	17	16
_	-	-	-		PRI	OR	
15	14	13	12	11	10	9	8
MTIMEMARK15	MTIMEMARK14	MTIMEMARK13	MTIMEMARK12	MTIMEMARK11	MTIMEMARK10	MTIMEMARK9	MTIMEMARK8
7	6	5	4	3	2	1	0
MTIMEMARK7	MTIMEMARK6	MTIMEMARK5	MTIMEMARK4	MTIMEMARK3	MTIMEMARK2	MTIMEMARK1	MTIMEMARK0

• MTIMEMARK: Mailbox Timemark

This field is active in Time Triggered Mode. Transmit operations are allowed when the internal timer counter reaches the Mailbox Timemark. See "Transmitting within a Time Window" on page 504.

In Timestamp Mode, MTIMEMARK is set to 0.

• PRIOR: Mailbox Priority

This field has no effect in receive and receive with overwrite modes. In these modes, the mailbox with the lowest number is serviced first.

When several mailboxes try to transmit a message at the same time, the mailbox with the highest priority is serviced first. If several mailboxes have the same priority, the mailbox with the lowest number is serviced first (i.e., MBx0 is serviced before MBx 15 if they have the same priority).

• MOT: Mailbox Object Type

This field allows the user to define the type of the mailbox. All mailboxes are independently configurable. Five different types are possible for each mailbox:

	МОТ		Mailbox Object Type
0	0	0	Mailbox is disabled. This prevents receiving or transmitting any messages with this mailbox.
0	0	1	Reception Mailbox. Mailbox is configured for reception. If a message is received while the mailbox data register is full, it is discarded.
0	1	0	Reception mailbox with overwrite. Mailbox is configured for reception. If a message is received while the mailbox is full, it overwrites the previous message.
0	1	1	Transmit mailbox. Mailbox is configured for transmission.
1	0	0	Consumer Mailbox. Mailbox is configured in reception but behaves as a Transmit Mailbox, i.e., it sends a remote frame and waits for an answer.
1	0	1	Producer Mailbox. Mailbox is configured in transmission but also behaves like a reception mailbox, i.e., it waits to receive a Remote Frame before sending its contents.
1	1	Х	Reserved

36.8.18 CAN Message Data High Register

Name: Access Type:	CAN_MI Read-wi									
31	30	29	28	27	26	25	24			
			M	DH						
23	22	21	20	19	18	17	16			
			M	DH						
15	14	13	12	11	10	9	8			
			M	DH						
7	6	5	4	3	2	1	0			
	MDH									

• MDH: Message Data High Value

When MRDY field is set in the CAN_MSRx register, the upper 32 bits of a received message are read or written by the software application. Otherwise, the MDH value is locked by the CAN controller to send/receive a new message.

In Receive with overwrite, the CAN controller may modify MDH value while the software application reads MDH and MDL registers. To check that MDH and MDL do not belong to different messages, the application has to check the MMI field in the CAN_MSRx register. In this mode, the software application must re-read CAN_MDH and CAN_MDL, while the MMI bit in the CAN_MSRx register is set.

Bytes are received/sent on the bus in the following order:

- 1. CAN_MDL[7:0]
- 2. CAN_MDL[15:8]
- 3. CAN_MDL[23:16]
- 4. CAN_MDL[31:24]
- 5. CAN_MDH[7:0]
- 6. CAN_MDH[15:8]
- 7. CAN_MDH[23:16]
- 8. CAN_MDH[31:24]

37.5.6 Transmit Buffer Queue Pointer Register

Register Name:	EMAC_TBQP							
Access Type:	Read-write							
31	30	29	28	27	26	25	24	
ADDR								
23	22	21	20	19	18	17	16	
ADDR								
15	14	13	12	11	10	9	8	
ADDR								
7	6	5	4	3	2	1	0	
ADDR					_	—		

This register points to the entry in the transmit buffer queue (descriptor list) currently being used. It is written with the start location of the transmit buffer descriptor list. The lower order bits increment as buffers are used up and wrap to their original values after either 1024 buffers or when the wrap bit of the entry is set. This register can only be written when bit 3 in the transmit status register is low.

As transmit buffer reads consist of bursts of two words, it is recommended that bit 2 is always written with zero to prevent a burst crossing a 1K boundary, in violation of section 3.6 of the AMBA specification.

• ADDR: Transmit buffer queue pointer address

Written with the address of the start of the transmit queue, reads as a pointer to the first buffer of the frame being transmitted or about to be transmitted.

40. AT91SAM7X Ordering Information

MRL A Ordering Code	MRL B Ordering Code	MRL C Ordering Code	Package	Package Type	Temperature Operating Range	
AT91SAM7X512-AU	AT91SAM7X512B-AU		LQFP 100		Industrial (-40°C to 85°C)	
_	AT91SAM7X512B-AUR	-	LQFP 100 ⁽¹⁾	Green		
AT91SAM7X512-CU	AT91SAM7X512B-CU		TFBGA 100		(-+0 0 10 05 0)	
AT91SAM7X256-AU	AT91SAM7X256B-AU	AT91SAM7X256C-AU	LQFP 100	Green	Industrial	
AT91SAM7X256-CU	AT91SAM7X256B-CU	AT91SAM7X256C-CU	TFBGA 100	Green	(-40°C to 85°C)	
AT91SAM7X128-AU	AT91SAM7X128B-AU	AT91SAM7X128C-AU	LQFP 100	Crean	Industrial	
AT91SAM7X128-CU	AT91SAM7X128B-CU	AT91SAM7X128C-CU	TFBGA 100	Green	(-40°C to 85°C)	

Table 40-1.Ordering Information

Note: 1. Packing type is tape and reel.

Version 6120I	Comments			
	Ordering Information:			
	Table 40-1, "Ordering Information"			
	The following ordering codes added to the table for MRL C.			
	AT91SAM7X256C-AU	7371		
	AT91SAM7X256C-CU			
	AT91SAM7X128C-AU			
	AT91SAM7X128C-CU			
	Overview:			
	Section 9.5 "Debug Unit"	rfo		
	"Chip ID Registers", Chip IDs updated with reference to MRL A, B or C.			
	Product Series Naming Convention:			
	Except for part ordering and library references, AT91 prefix dropped from most nomenclature.	rfo		
	AT91SAM7X becomes SAM7X.			
	Errata:			
	Table 41-1, "Errata Summary Table", added.	7371		
	Section 41.7 "AT91SAM7X256/128 Errata - Rev. C Parts", added.			
	Section 41.3 "AT91SAM7X256/128 Errata - Rev. A Parts", added note specific to Rev A chip IDs.			
	Section 41.4 "AT91SAM7X512 Errata - Rev. A Parts", added note specific to Rev A chip ID.			
	Section 41.5 "AT91SAM7X256/128 Errata - Rev. B Parts", added note specific to Rev B chip IDs.	rfo		
	Section 41.4.3.1 "EFC: Embedded Flash Access Time" Problem Fix/Workaround, revised.			
	Section 41.3.10.3 "USART: RXBRK Flag Error in Asynchronous Mode", Revised.			
	Section 41.4.11.3 "USART: RXBRK Flag Error in Asynchronous Mode", Revised.	6624		
	Section 41.5.10.3 "USART: RXBRK Flag Error in Asynchronous Mode", Revised.			
	Electrical Characteristics:			
	Table 38-2, "DC Characteristics" V_{OI} and V_{OH} rows revised (removed 1.65 to 1.95V V_{VDDIO} values).	7211		
	Table 38-9, Table 38-10, Table 38-10, fixed typos in Units column: μ W or W => μ \Omega or Ω .	6484		
	EFC:			
	Section 19.2.4.4 "General-purpose NVM Bits", updated the last paragraph.	6233		
	Figure 19-6, "Example of Partial Page Programming" Text added befow figure	6825		
	Debug and Test Features:	7054		
	"MANUFACTURER IDENTITY[11:1]", AT91SAM7X128: JTAG ID Code value is 05B1_603F.	7354		

	16.1 16.2 16.3 16.4	Overview Block Diagram Functional Description Watchdog Timer (WDT) User Interface	. 82 . 83
17.	Volta 17.1 17.2	age Regulator Mode Controller (VREG)	. 88
18.	Mem 18.1 18.2 18.3 18.4	ory Controller (MC) Overview Block Diagram Functional Description Memory Controller (MC) User Interface	. 90 . 90 . 90
19.	Embe 19.1 19.2 19.3	edded Flash Controller (EFC)	.99 .99
20.	Fast 20.1 20.2 20.3	Flash Programming Interface (FFPI) Overview Parallel Fast Flash Programming Serial Fast Flash Programming	113 113
21.	AT91 21.1 21.2 21.3 21.4 21.5	1SAM Boot Program Overview Flow Diagram Device Initialization SAM-BA Boot Hardware and Software Constraints	128 128 128 129
22.	Perip 22.1 22.2 22.3 22.4	oheral DMA Controller (PDC) Overview Block Diagram Functional Description Peripheral DMA Controller (PDC) User Interface	134 134 134
23.	Adva 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8	Anced Interrupt Controller (AIC) Overview Block Diagram Application Block Diagram AIC Detailed Block Diagram I/O Line Description Product Dependencies Functional Description Advanced Interrupt Controller (AIC) User Interface	143 143 144 144 144 145 146
24.	Clock 24.1 24.2 24.3 24.4	k Generator Overview Slow Clock RC Oscillator Main Oscillator Divider and PLL Block.	168 168 168