
Microchip Technology - AT91SAM7X128-CU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM7®

Core Size 16/32-Bit

Speed 55MHz

Connectivity CANbus, Ethernet, I²C, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 62

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 1.95V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x128-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91sam7x128-cu-4431571
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

15.4.4 Periodic Interval Timer Image Register

Register Name: PIT_PIIR

Access Type: Read-only

• CPIV: Current Periodic Interval Value

Returns the current value of the periodic interval timer.

• PICNT: Periodic Interval Counter

Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

31 30 29 28 27 26 25 24

PICNT

23 22 21 20 19 18 17 16

PICNT CPIV

15 14 13 12 11 10 9 8

CPIV

7 6 5 4 3 2 1 0

CPIV
81SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

• MST_PDC: PDC Abort Source

0: The last aborted access was not due to the PDC.

1: The last aborted access was due to the PDC.

• MST_ARM: ARM Abort Source

0: The last aborted access was not due to the ARM.

1: The last aborted access was due to the ARM.

• SVMST_EMAC: Saved EMAC Abort Source

0: No abort due to the EMAC occurred since the last read of MC_ASR or it is notified in the bit MST_EMAC.

1: At least one abort due to the EMAC occurred since the last read of MC_ASR.

• SVMST_PDC: Saved PDC Abort Source

0: No abort due to the PDC occurred since the last read of MC_ASR or it is notified in the bit MST_PDC.

1: At least one abort due to the PDC occurred since the last read of MC_ASR.

• SVMST_ARM: Saved ARM Abort Source

0: No abort due to the ARM occurred since the last read of MC_ASR or it is notified in the bit MST_ARM.

1: At least one abort due to the ARM occurred since the last read of MC_ASR.
97SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

In the same way, the Clear Lock command (CLB) is used to clear lock bits. All the lock bits can also be cleared by the
EA command.

Lock bits can be read using Get Lock Bit command (GLB). When a bit set in the Bit Mask is returned, then the
corresponding lock bit is active.

20.3.4.5 Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM) can be set with the Set GPNVM command (SGPB). Using this command, several
GP NVM bits can be activated at the same time. Bit 0 of Bit Mask corresponds to the first GPNVM bit and so on.

In the same way, the Clear GPNVM command (CGPB) is used to clear GP NVM bits. All the general-purpose NVM bits
are also cleared by the EA command.

GP NVM bits can be read using Get GPNVM Bit command (GGPB). When a bit set in the Bit Mask is returned, then the
corresponding GPNVM bit is set.

20.3.4.6 Flash Security Bit Command

Security bits can be set using Set Security Bit command (SSE). Once the security bit is active, the Fast Flash
programming is disabled. No other command can be run. Only an event on the Erase pin can erase the security bit once
the contents of the Flash have been erased.

The AT91SAM7X512 security bit is controlled by the EFC0. To use the Set Security Bit command, the EFC0 must be
selected using the Select EFC command.

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the Flash.

In order to erase the Flash, the user must perform the following:

 Power-off the chip

 Power-on the chip with TST = 0

Table 20-23. Set and Clear Lock Bit Command

Read/Write DR Data

Write SLB or CLB

Write Bit Mask

Table 20-24. Get Lock Bit Command

Read/Write DR Data

Write GLB

Read Bit Mask

Table 20-25. Set and Clear General-purpose NVM Bit Command

Read/Write DR Data

Write SGPB or CGPB

Write Bit Mask

Table 20-26. Get General-purpose NVM Bit Command

Read/Write DR Data

Write GGPB

Read Bit Mask

Table 20-27. Set Security Bit Command

Read/Write DR Data

Write SSE
126SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

22.4.3 PDC Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read-write

• TXPTR: Transmit Pointer Address

Address of the transmit buffer.

22.4.4 PDC Transmit Counter Register

Register Name: PERIPH_TCR

Access Type: Read-write

• TXCTR: Transmit Counter Value

TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral DMA transfer is stopped.

31 30 29 28 27 26 25 24

TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8

TXPTR

7 6 5 4 3 2 1 0

TXPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXCTR

7 6 5 4 3 2 1 0

TXCTR
138SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

 Sets the current interrupt to be the pending and enabled interrupt with the highest priority. The current level
is the priority level of the current interrupt.

 De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR must be read in order to
de-assert nIRQ.

 Automatically clears the interrupt, if it has been programmed to be edge-triggered.

 Pushes the current level and the current interrupt number on to the stack.

 Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service routine. This should start by
saving the link register (R14_irq) and SPSR_IRQ. The link register must be decremented by four when it is saved
if it is to be restored directly into the program counter at the end of the interrupt. For example, the instruction SUB
PC, LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-assertion of the nIRQ to be
taken into account by the core. This can happen if an interrupt with a higher priority than the current interrupt
occurs.

6. The interrupt handler can then proceed as required, saving the registers that will be used and restoring them at the
end. During this phase, an interrupt of higher priority than the current level will restart the sequence from step 1.

Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared during this phase.

7. The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that the interrupt is completed
in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indicate to the AIC that the cur-
rent interrupt is finished. This causes the current level to be popped from the stack, restoring the previous current
level if one exists on the stack. If another interrupt is pending, with lower or equal priority than the old current level
but with higher priority than the new current level, the nIRQ line is re-asserted, but the interrupt sequence does not
immediately start because the “I” bit is set in the core. SPSR_irq is restored. Finally, the saved value of the link reg-
ister is restored directly into the PC. This has the effect of returning from the interrupt to whatever was being
executed before, and of loading the CPSR with the stored SPSR, masking or unmasking the interrupts depending
on the state saved in SPSR_irq.

Note: The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of masking an inter-
rupt when the mask instruction was interrupted. Hence, when SPSR is restored, the mask instruction is
completed (interrupt is masked).
151SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Figure 24-2. Typical Crystal Connection

24.3.2 Main Oscillator Startup Time

The startup time of the Main Oscillator is given in the DC Characteristics section of the product datasheet. The startup
time depends on the crystal frequency and decreases when the frequency rises.

24.3.3 Main Oscillator Control

To minimize the power required to start up the system, the main oscillator is disabled after reset and slow clock is
selected.

The software enables or disables the main oscillator so as to reduce power consumption by clearing the MOSCEN bit in
the Main Oscillator Register (CKGR_MOR).

When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit in PMC_SR is
automatically cleared, indicating the main clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value corresponding to the
startup time of the oscillator. This startup time depends on the crystal frequency connected to the main oscillator.

When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscillator, the MOSCS bit in
PMC_SR (Status Register) is cleared and the counter starts counting down on the slow clock divided by 8 from the
OSCOUNT value. Since the OSCOUNT value is coded with 8 bits, the maximum startup time is about 62 ms.

When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Setting the MOSCS bit in
PMC_IMR can trigger an interrupt to the processor.

24.3.4 Main Clock Frequency Counter

The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency connected to the Main
Oscillator. Generally, this value is known by the system designer; however, it is useful for the boot program to configure
the device with the correct clock speed, independently of the application.

The Main Clock frequency counter starts incrementing at the Main Clock speed after the next rising edge of the Slow
Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS bit is set. Then, at the 16th falling edge of
Slow Clock, the MAINRDY bit in CKGR_MCFR (Main Clock Frequency Register) is set and the counter stops counting.
Its value can be read in the MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during 16 periods of
Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can be determined.

24.3.5 Main Oscillator Bypass

The user can input a clock on the device instead of connecting a crystal. In this case, the user has to provide the external
clock signal on the XIN pin. The input characteristics of the XIN pin under these conditions are given in the product
electrical characteristics section. The programmer has to be sure to set the OSCBYPASS bit to 1 and the MOSCEN bit to
0 in the Main OSC register (CKGR_MOR) for the external clock to operate properly.

1K

XIN XOUT GND

AT91SAM7X Microcontroller
169SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

write_register(CKGR_PLLR,0x00040805)

If PLL and divider are enabled, the PLL input clock is the main clock. PLL output clock is PLL input clock multiplied
by 5. Once CKGR_PLLR has been written, LOCK bit will be set after eight slow clock cycles.

4. Selection of Master Clock and Processor Clock

The Master Clock and the Processor Clock are configurable via the PMC_MCKR register.

The CSS field is used to select the Master Clock divider source. By default, the selected clock source is slow clock.

The PRES field is used to control the Master Clock prescaler. The user can choose between different values (1, 2,
4, 8, 16, 32, 64). Master Clock output is prescaler input divided by PRES parameter. By default, PRES parameter
is set to 1 which means that master clock is equal to slow clock.

Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR
register. This can be done either by polling the status register or by waiting for the interrupt line to be raised if the
associated interrupt to MCKRDY has been enabled in the PMC_IER register.

The PMC_MCKR register must not be programmed in a single write operation. The preferred programming
sequence for the PMC_MCKR register is as follows:

 If a new value for CSS field corresponds to PLL Clock,

 Program the PRES field in the PMC_MCKR register.

 Wait for the MCKRDY bit to be set in the PMC_SR register.

 Program the CSS field in the PMC_MCKR register.

 Wait for the MCKRDY bit to be set in the PMC_SR register.

 If a new value for CSS field corresponds to Main Clock or Slow Clock,

 Program the CSS field in the PMC_MCKR register.

 Wait for the MCKRDY bit to be set in the PMC_SR register.

 Program the PRES field in the PMC_MCKR register.

 Wait for the MCKRDY bit to be set in the PMC_SR register.

If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY bit will go low to indi-
cate that the Master Clock and the Processor Clock are not ready yet. The user must wait for MCKRDY bit to be
set again before using the Master and Processor Clocks.

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in CKGR_PLLR, the
MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again, LOCK goes high and MCKRDY is
set.
While PLL is unlocked, the Master Clock selection is automatically changed to Main Clock. For further informa-
tion, see Section 25.8.2. “Clock Switching Waveforms” on page 177.

Code Example:
write_register(PMC_MCKR,0x00000001)

wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)

The Master Clock is main clock divided by 16.

The Processor Clock is the Master Clock.

5. Selection of Programmable clocks

Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and PMC_SCSR.
175SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

26.5.3 Debug Unit Interrupt Enable Register

Name: DBGU_IER

Access Type: Write-only

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Transfer Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt

• COMMTX: Enable COMMTX (from ARM) Interrupt

• COMMRX: Enable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
207SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

27.6.3 PIO Controller PIO Status Register

Name: PIO_PSR

Access Type: Read-only

• P0-P31: PIO Status

0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

27.6.4 PIO Controller Output Enable Register

Name: PIO_OER

Access Type: Write-only

• P0-P31: Output Enable

0 = No effect.

1 = Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
230SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without reprogramming the Mode
Register. Data written in SPI_TDR is 32 bits wide and defines the real data to be transmitted and the peripheral it is
destined to. Using the PDC in this mode requires 32-bit wide buffers, with the data in the LSBs and the PCS and
LASTXFER fields in the MSBs, however the SPI still controls the number of bits (8 to16) to be transferred through MISO
and MOSI lines with the chip select configuration registers. This is not the optimal means in term of memory size for the
buffers, but it provides a very effective means to exchange data with several peripherals without any intervention of the
processor.

28.6.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip Select lines, NPCS0 to
NPCS3 with an external logic. This can be enabled by writing the PCSDEC bit at 1 in the Mode Register (SPI_MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e. driven
low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of either the Mode Register or
the Transmit Data Register (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when not processing any
transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated, each chip select defines the
characteristics of up to four peripherals. As an example, SPI_CRS0 defines the characteristics of the externally decoded
peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible
peripherals on the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.

28.6.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in SPI_TDR is completed, the NPCS lines all
rise. This might lead to runtime error if the processor is too long in responding to an interrupt, and thus might lead to
difficulties for interfacing with some serial peripherals requiring the chip select line to remain active during a full set of
transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the CSAAT bit (Chip Select
Active After Transfer) at 1. This allows the chip select lines to remain in their current state (low = active) until transfer to
another peripheral is required.

Figure 28-8 shows different peripheral deselection cases and the effect of the CSAAT bit.
253SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

1 = Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.

• NSSR: NSS Rising

0 = No rising edge detected on NSS pin since last read.

1 = A rising edge occurred on NSS pin since last read.

• TXEMPTY: Transmission Registers Empty

0 = As soon as data is written in SPI_TDR.

1 = SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

• SPIENS: SPI Enable Status

0 = SPI is disabled.

1 = SPI is enabled.

Note: 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC.
263SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

30.7.10 USART Receiver Time-out Register

Name: US_RTOR

Access Type: Read-write

• TO: Time-out Value

0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TO

7 6 5 4 3 2 1 0

TO
333SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Figure 34-12. Stall Handshake (Data IN Transfer)

Figure 34-13. Stall Handshake (Data OUT Transfer)

Data IN Stall PIDPIDUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by
USB Device

Cleared by Firmware

Interrupt Pending

Data OUT PID Stall PID Data OUTUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by USB Device

Interrupt Pending
441SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

34.6.11 UDP FIFO Data Register

Register Name: UDP_ FDRx [x = 0..5]

Access Type: Read-write

• FIFO_DATA[7:0]: FIFO Data Value

The microcontroller can push or pop values in the FIFO through this register.

RXBYTECNT in the corresponding UDP_ CSRx register is the number of bytes to be read from the FIFO (sent by the host).

The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be more
than the physical memory size associated to the endpoint. Refer to the Universal Serial Bus Specification, Rev. 2.0 for more
information.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

FIFO_DATA
461SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

35.5.7 ADC Timings

Each ADC has its own minimal Startup Time that is programmed through the field STARTUP in the Mode Register
ADC_MR.

In the same way, a minimal Sample and Hold Time is necessary for the ADC to guarantee the best converted final value
between two channels selection. This time has to be programmed through the bitfield SHTIM in the Mode Register
ADC_MR.

Warning: No input buffer amplifier to isolate the source is included in the ADC. This must be taken into consideration to
program a precise value in the SHTIM field. See the section, ADC Characteristics in the product datasheet.
469SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

36.8.1 CAN Mode Register

Name: CAN_MR

Access Type: Read-write

• CANEN: CAN Controller Enable

0 = The CAN Controller is disabled.

1 = The CAN Controller is enabled.

• LPM: Disable/Enable Low Power Mode

w Power Mode.

1 = Enable Low Power M

CAN controller enters Low Power Mode once all pending messages have been transmitted.

• ABM: Disable/Enable Autobaud/Listen mode

0 = Disable Autobaud/listen mode.

1 = Enable Autobaud/listen mode.

• OVL: Disable/Enable Overload Frame

0 = No overload frame is generated.

1 = An overload frame is generated after each successful reception for mailboxes configured in Receive with/without overwrite
Mode, Producer and Consumer.

• TEOF: Timestamp messages at each end of Frame

0 = The value of CAN_TIM is captured in the CAN_TIMESTP register at each Start Of Frame.

1 = The value of CAN_TIM is captured in the CAN_TIMESTP register at each End Of Frame.

• TTM: Disable/Enable Time Triggered Mode

0 = Time Triggered Mode is disabled.

1 = Time Triggered Mode is enabled.

• TIMFRZ: Enable Timer Freeze

0 = The internal timer continues to be incremented after it reached 0xFFFF.

1 = The internal timer stops incrementing after reaching 0xFFFF. It is restarted after a timer reset. See “Freezing the Internal
Timer Counter” on page 504.

• DRPT: Disable Repeat

31 30 29 28 27 26 25 24

– – – – – RXSYNC

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DRPT TIMFRZ TTM TEOF OVL ABM LPM CANEN
507SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

To receive frames, the buffer descriptors must be initialized by writing an appropriate address to bits 31 to 2 in the first
word of each list entry. Bit zero must be written with zero. Bit one is the wrap bit and indicates the last entry in the list.

The start location of the receive buffer descriptor list must be written to the receive buffer queue pointer register before
setting the receive enable bit in the network control register to enable receive. As soon as the receive block starts writing
received frame data to the receive FIFO, the receive buffer manager reads the first receive buffer location pointed to by
the receive buffer queue pointer register.

If the filter block then indicates that the frame should be copied to memory, the receive data DMA operation starts writing
data into the receive buffer. If an error occurs, the buffer is recovered. If the current buffer pointer has its wrap bit set or is
the 1024th descriptor, the next receive buffer location is read from the beginning of the receive descriptor list. Otherwise,
the next receive buffer location is read from the next word in memory.

There is an 11-bit counter to count out the 2048 word locations of a maximum length, receive buffer descriptor list. This is
added with the value originally written to the receive buffer queue pointer register to produce a pointer into the list. A read
of the receive buffer queue pointer register returns the pointer value, which is the queue entry currently being accessed.
The counter is reset after receive status is written to a descriptor that has its wrap bit set or rolls over to zero after 1024
descriptors have been accessed. The value written to the receive buffer pointer register may be any word-aligned
address, provided that there are at least 2048 word locations available between the pointer and the top of the memory.

Section 3.6 of the AMBA™ 2.0 specification states that bursts should not cross 1K boundaries. As receive buffer manager
writes are bursts of two words, to ensure that this does not occur, it is best to write the pointer register with the least three
significant bits set to zero. As receive buffers are used, the receive buffer manager sets bit zero of the first word of the
descriptor to indicate used. If a receive error is detected the receive buffer currently being written is recovered. Previous
buffers are not recovered. Software should search through the used bits in the buffer descriptors to find out how many
frames have been received. It should be checking the start-of-frame and end-of-frame bits, and not rely on the value
returned by the receive buffer queue pointer register which changes continuously as more buffers are used.

For CRC errored frames, excessive length frames or length field mismatched frames, all of which are counted in the
statistics registers, it is possible that a frame fragment might be stored in a sequence of receive buffers. Software can
detect this by looking for start of frame bit set in a buffer following a buffer with no end of frame bit set.

For a properly working Ethernet system, there should be no excessively long frames or frames greater than 128 bytes
with CRC/FCS errors. Collision fragments are less than 128 bytes long. Therefore, it is a rare occurrence to find a frame
fragment in a receive buffer.

If bit zero is set when the receive buffer manager reads the location of the receive buffer, then the buffer has already
been used and cannot be used again until software has processed the frame and cleared bit zero. In this case, the DMA
block sets the buffer not available bit in the receive status register and triggers an interrupt.

If bit zero is set when the receive buffer manager reads the location of the receive buffer and a frame is being received,
the frame is discarded and the receive resource error statistics register is incremented.

A receive overrun condition occurs when bus was not granted in time or because HRESP was not OK (bus error). In a
receive overrun condition, the receive overrun interrupt is asserted and the buffer currently being written is recovered.
The next frame received with an address that is recognized reuses the buffer.

If bit 17 of the network configuration register is set, the FCS of received frames shall not be copied to memory. The frame
length indicated in the receive status field shall be reduced by four bytes in this case.

14
Start of frame - when set the buffer contains the start of a frame. If both bits 15 and 14 are set, then the buffer contains a
whole frame.

13:12

Receive buffer offset - indicates the number of bytes by which the data in the first buffer is offset from the word address.
Updated with the current values of the network configuration register. If jumbo frame mode is enabled through bit 3 of the
network configuration register, then bits 13:12 of the receive buffer descriptor entry are used to indicate bits 13:12 of the
frame length.

11:0 Length of frame including FCS (if selected). Bits 13:12 are also used if jumbo frame mode is selected.

Table 37-1. Receive Buffer Descriptor Entry (Continued)

Bit Function
538SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

37.3.11 PHY Maintenance

The register EMAC_MAN enables the EMAC to communicate with a PHY by means of the MDIO interface. It is used
during auto-negotiation to ensure that the EMAC and the PHY are configured for the same speed and duplex
configuration.

The PHY maintenance register is implemented as a shift register. Writing to the register starts a shift operation which is
signalled as complete when bit two is set in the network status register (about 2000 MCK cycles later when bit ten is set
to zero, and bit eleven is set to one in the network configuration register). An interrupt is generated as this bit is set.
During this time, the MSB of the register is output on the MDIO pin and the LSB updated from the MDIO pin with each
MDC cycle. This causes transmission of a PHY management frame on MDIO.

Reading during the shift operation returns the current contents of the shift register. At the end of management operation,
the bits have shifted back to their original locations. For a read operation, the data bits are updated with data read from
the PHY. It is important to write the correct values to the register to ensure a valid PHY management frame is produced.

The MDIO interface can read IEEE 802.3 clause 45 PHYs as well as clause 22 PHYs. To read clause 45 PHYs,
bits[31:28] should be written as 0x0011. For a description of MDC generation, see the network configuration register in
the “Network Control Register” on page 550.

37.3.12 Media Independent Interface

The Ethernet MAC is capable of interfacing to both RMII and MII Interfaces. The RMII bit in the EMAC_USRIO register
controls the interface that is selected. When this bit is set, the RMII interface is selected, else the MII interface is
selected.

The MII and RMII interface are capable of both 10Mb/s and 100Mb/s data rates as described in the IEEE 802.3u
standard. The signals used by the MII and RMII interfaces are described in Table 37-5.

The intent of the RMII is to provide a reduced pin count alternative to the IEEE 802.3u MII. It uses 2 bits for transmit
(ETX0 and ETX1) and two bits for receive (ERX0 and ERX1). There is a Transmit Enable (ETXEN), a Receive Error
(ERXER), a Carrier Sense (ECRS_DV), and a 50 MHz Reference Clock (ETXCK_EREFCK) for 100Mb/s data rate.

37.3.12.1 RMII Transmit and Receive Operation

The same signals are used internally for both the RMII and the MII operations. The RMII maps these signals in a more
pin-efficient manner. The transmit and receive bits are converted from a 4-bit parallel format to a 2-bit parallel scheme
that is clocked at twice the rate. The carrier sense and data valid signals are combined into the ECRSDV signal. This
signal contains information on carrier sense, FIFO status, and validity of the data. Transmit error bit (ETXER) and
collision detect (ECOL) are not used in RMII mode.

Table 37-5. Pin Configuration

Pin Name MII RMII

ETXCK_EREFCK ETXCK: Transmit Clock EREFCK: Reference Clock

ECRS ECRS: Carrier Sense

ECOL ECOL: Collision Detect

ERXDV ERXDV: Data Valid ECRSDV: Carrier Sense/Data Valid

ERX0 - ERX3 ERX0 - ERX3: 4-bit Receive Data ERX0 - ERX1: 2-bit Receive Data

ERXER ERXER: Receive Error ERXER: Receive Error

ERXCK ERXCK: Receive Clock

ETXEN ETXEN: Transmit Enable ETXEN: Transmit Enable

ETX0-ETX3 ETX0 - ETX3: 4-bit Transmit Data ETX0 - ETX1: 2-bit Transmit Data

ETXER ETXER: Transmit Error
544SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

37.5.26.5 Frames Received OK Register

Register Name: EMAC_FRO

Access Type: Read-write

• FROK: Frames Received OK

A 24-bit register counting the number of good frames received, i.e., address recognized and successfully copied to memory. A
good frame is of length 64 to 1518 bytes (1536 if bit 8 set in network configuration register) and has no FCS, alignment or receive
symbol errors.

37.5.26.6 Frames Check Sequence Errors Register

Register Name: EMAC_FCSE

Access Type: Read-write

• FCSE: Frame Check Sequence Errors

An 8-bit register counting frames that are an integral number of bytes, have bad CRC and are between 64 and 1518 bytes in
length (1536 if bit 8 set in network configuration register). This register is also incremented if a symbol error is detected and the
frame is of valid length and has an integral number of bytes.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

FROK

15 14 13 12 11 10 9 8

FROK

7 6 5 4 3 2 1 0

FROK

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

FCSE
573SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Version
6120I Comments

Change
Request
Ref.

Ordering Information:

Table 40-1, “Ordering Information”

The following ordering codes added to the table for MRL C.

AT91SAM7X256C-AU

AT91SAM7X256C-CU

AT91SAM7X128C-AU

AT91SAM7X128C-CU

7371

Overview:

Section 9.5 ”Debug Unit”

“Chip ID Registers” , Chip IDs updated with reference to MRL A, B or C.

rfo

Product Series Naming Convention:

Except for part ordering and library references, AT91 prefix dropped from most nomenclature.

AT91SAM7X becomes SAM7X.

rfo

Errata:

Table 41-1, “Errata Summary Table”, added.

Section 41.7 ”AT91SAM7X256/128 Errata - Rev. C Parts”, added.

7371

Section 41.3 ”AT91SAM7X256/128 Errata - Rev. A Parts”, added note specific to Rev A chip IDs.

Section 41.4 ”AT91SAM7X512 Errata - Rev. A Parts”, added note specific to Rev A chip ID.

Section 41.5 ”AT91SAM7X256/128 Errata - Rev. B Parts”, added note specific to Rev B chip IDs.

Section 41.4.3.1 ”EFC: Embedded Flash Access Time” Problem Fix/Workaround, revised.

rfo

Section 41.3.10.3 ”USART: RXBRK Flag Error in Asynchronous Mode”, Revised.

Section 41.4.11.3 ”USART: RXBRK Flag Error in Asynchronous Mode”, Revised.

Section 41.5.10.3 ”USART: RXBRK Flag Error in Asynchronous Mode”, Revised.

6624

Electrical Characteristics:

Table 38-2, “DC Characteristics” VOL and VOH rows revised (removed 1.65 t0 1.95V VVDDIO values).

Table 38-9, Table 38-10, Table 38-10, fixed typos in Units column: µW or W => µΩ or Ω.

7211

6484

EFC:

Section 19.2.4.4 ”General-purpose NVM Bits”, updated the last paragraph.

Figure 19-6,”Example of Partial Page Programming” Text added befow figure

6233

6825

Debug and Test Features:

“MANUFACTURER IDENTITY[11:1]” , AT91SAM7X128: JTAG ID Code value is 05B1_603F.
7354
646SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

