E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x128b-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.1 Reset Controller

- Based on one power-on reset cell and one brownout detector
- Status of the last reset, either Power-up Reset, Software Reset, User Reset, Watchdog Reset, Brownout Reset
- Controls the internal resets and the NRST pin output
- Allows to shape a signal on the NRST line, guaranteeing that the length of the pulse meets any requirement.

9.1.1 Brownout Detector and Power-on Reset

The SAM7X512/256/128 embeds one brownout detection circuit and a power-on reset cell. The power-on reset is supplied with and monitors VDDCORE.

Both signals are provided to the Flash to prevent any code corruption during power-up or power-down sequences or if brownouts occur on the power supplies.

The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low during power-up until VDDCORE goes over this voltage level. This signal goes to the reset controller and allows a full re-initialization of the device.

The brownout detector monitors the VDDCORE and VDDFLASH levels during operation by comparing them to a fixed trigger level. It secures system operations in the most difficult environments and prevents code corruption in case of brownout on the VDDCORE or VDDFLASH.

When the brownout detector is enabled and VDDCORE decreases to a value below the trigger level (Vbot18-, defined as Vbot18 - hyst/2), the brownout output is immediately activated.

When VDDCORE increases above the trigger level (Vbot18+, defined as Vbot18 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about 1µs.

The VDDCORE threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 1.68V with an accuracy of $\pm 2\%$ and is factory calibrated.

When the brownout detector is enabled and VDDFLASH decreases to a value below the trigger level (Vbot33-, defined as Vbot33 - hyst/2), the brownout output is immediately activated.

When VDDFLASH increases above the trigger level (Vbot33+, defined as Vbot33 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about 1µs.

The VDDFLASH threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 2.80V with an accuracy of \pm 3.5% and is factory calibrated.

The brownout detector is low-power, as it consumes less than 28 μ A static current. However, it can be deactivated to save its static current. In this case, it consumes less than 1 μ A. The deactivation is configured through the GPNVM bit 0 of the Flash.

18.4.2 MC Abort Status Register

Register Name	: MC_AS	R					
Access Type:	Read-or	nly					
Reset Value:	0x0						
Offset:	0x04						
31	30	29	28	27	26	25	24
-	_	-	-	-	SVMST_ARM	SVMST_PDC	SVMST_EMAC
23	22	21	20	19	18	17	16
-	_	-	-	-	MST_ARM	MST_PDC	MST_EMAC
15	14	13	12	11	10	9	8
-	_	-	-	ABTTYP		ABTSZ	
7	6	5	4	3	2	1	0
_	_	-	-	_	-	MISADD	UNDADD

• UNDADD: Undefined Address Abort Status

0: The last abort was not due to the access of an undefined address in the address space.

1: The last abort was due to the access of an undefined address in the address space.

• MISADD: Misaligned Address Abort Status

0: The last aborted access was not due to an address misalignment.

1: The last aborted access was due to an address misalignment.

• ABTSZ: Abort Size Status

AB	Abort Size	
0	0	Byte
0	1	Half-word
1	0	Word
1	1	Reserved

• ABTTYP: Abort Type Status

ABT	Abort Type	
0	0	Data Read
0	1	Data Write
1	0	Code Fetch
1	1	Reserved

• MST_EMAC: EMAC Abort Source

0: The last aborted access was not due to the EMAC.

1: The last aborted access was due to the EMAC.

Table 20-1. Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Comments	
VDDPLL	PLL Power Supply	Power			
GND	Ground	Ground			
	Clock	ks			
	Main Clock Input.				
XIN	This input can be tied to GND. In this case, the device is clocked by the internal RC oscillator.	Input		32KHz to 50MHz	
	Tes	t			
TST	Test Mode Select	Input	High	Must be connected to VDDIO	
PGMEN0	Test Mode Select	Input	High	Must be connected to VDDIO	
PGMEN1	Test Mode Select	Input	High	Must be connected to VDDIO	
	PIO)			
PGMNCMD	Valid command available	Input	Low	Pulled-up input at reset	
PGMRDY	0: Device is busy	0			
PGMRDY	1: Device is ready for a new command	Output	High	Pulled-up input at reset	
PGMNOE	Output Enable (active high)	Input	Low	Pulled-up input at reset	
PGMNVALID	0: DATA[15:0] is in input mode	Output	Low	Dulled up input at reast	
PGIVINVALID	1: DATA[15:0] is in output mode	Output	Low	Pulled-up input at reset	
PGMM[3:0]	Specifies DATA type (See Table 20-2)	Input		Pulled-up input at reset	
PGMD[15:0]	Bi-directional data bus	Input/Output		Pulled-up input at reset	

20.2.2 Signal Names

Depending on the MODE settings, DATA is latched in different internal registers.

Table 20-2. Mod	e Coding	
MODE[3:0]	Symbol	Data
0000	CMDE	Command Register
0001	ADDR0	Address Register LSBs
0010	ADDR1	
0101	DATA	Data Register
Default	IDLE	No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command register.

Table 20-3.	Command Bit Coding
-------------	--------------------

DATA[15:0]	Symbol	Command Executed
0x0011	READ	Read Flash
0x0012	WP	Write Page Flash
0x0022	WPL	Write Page and Lock Flash
0x0032	EWP	Erase Page and Write Page

23.8.12 AIC Interrupt Disable Command Register

Register Name: Access Type:	AIC_IDC Write-on						
31	30	29	28	27	26	25	24
PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
23	22	21	20	19	18	17	16
PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
15	14	13	12	11	10	9	8
PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
7	6	5	4	3	2	1	0
PID7	PID6	PID5	PID4	PID3	PID2	SYS	FIQ

• FIQ, SYS, PID2-PID31: Interrupt Disable

0 = No effect.

1 = Disables corresponding interrupt.

23.8.13 AIC Interrupt Clear Command Register

Register Name: Access Type:	AIC_ICC Write-on						
31	30	29	28	27	26	25	24
PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
23	22	21	20	19	18	17	16
PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
15	14	13	12	11	10	9	8
PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
7	6	5	4	3	2	1	0
PID7	PID6	PID5	PID4	PID3	PID2	SYS	FIQ

• FIQ, SYS, PID2-PID31: Interrupt Clear

0 = No effect.

1 = Clears corresponding interrupt.

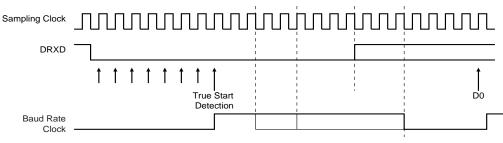
26.4.2 Receiver

26.4.2.1 Receiver Reset, Enable and Disable

After device reset, the Debug Unit receiver is disabled and must be enabled before being used. The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At this command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its operation.

The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data is being processed, this data is lost.


26.4.2.2 Start Detection and Data Sampling

The Debug Unit only supports asynchronous operations, and this affects only its receiver. The Debug Unit receiver detects the start of a received character by sampling the DRXD signal until it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if it is detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the DRXD at the theoretical midpoint of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected.

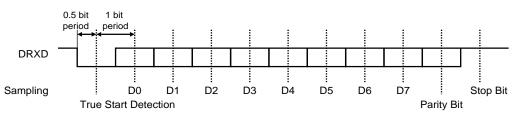

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 26-4. Start Bit Detection

Figure 26-5. Character Reception

Example: 8-bit, parity enabled 1 stop

26.4.2.3 Receiver Ready

When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY status bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the receive holding register DBGU_RHR is read.

28.6 Functional Description

28.6.1 Modes of Operation

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register. The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other purposes.

The data transfers are identically programmable for both modes of operations. The baud rate generator is activated only in Master Mode.

28.6.2 Data Transfer

Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with the NCPHA bit. These two parameters determine the edges of the clock signal on which data is driven and sampled. Each of the two parameters has two possible states, resulting in four possible combinations that are incompatible with one another. Thus, a master/slave pair must use the same parameter pair values to communicate. If multiple slaves are used and fixed in different configurations, the master must reconfigure itself each time it needs to communicate with a different slave.

Table 28-2 shows the four modes and corresponding parameter settings.

SPI Mode	CPOL	NCPHA
0	0	1
1	0	0
2	1	1
3	1	0

Table 28-2. SPI Bus Protocol Mode

Figure 28-3 and Figure 28-4 show examples of data transfers.

29.6.3 TWI Internal Address Register

Register Name:	TWI_IAE	DR					
Access Type:	Read-wr	ite					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
			IA	DR			
15	14	13	12	11	10	9	8
	IADR						
7	6	5	4	3	2	1	0
			IA	DR			

• IADR: Internal Address

0, 1, 2 or 3 bytes depending on IADRSZ.

- Low significant byte address in 10-bit mode addresses.

Table 30-2.	Baud Rate Example (OVER = 0) (Continued)
-------------	--

Source Clock	Expected Baud Rate	Calculation Result	CD	Actual Baud Rate	Error
18 432 000	38 400	30.00	30	38 400.00	0.00%
24 000 000	38 400	39.06	39	38 461.54	0.16%
24 576 000	38 400	40.00	40	38 400.00	0.00%
25 000 000	38 400	40.69	40	38 109.76	0.76%
32 000 000	38 400	52.08	52	38 461.54	0.16%
32 768 000	38 400	53.33	53	38 641.51	0.63%
33 000 000	38 400	53.71	54	38 194.44	0.54%
40 000 000	38 400	65.10	65	38 461.54	0.16%
50 000 000	38 400	81.38	81	38 580.25	0.47%

The baud rate is calculated with the following formula:

 $BaudRate = MCK/CD \times 16$

The baud rate error is calculated with the following formula. It is not recommended to work with an error higher than 5%.

 $Error = 1 - \left(\frac{ExpectedBaudRate}{ActualBaudRate}\right)$

30.6.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output frequency changes by only integer multiples of the reference frequency. An approach to this problem is to integrate a fractional N clock generator that has a high resolution. The generator architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock. This fractional part is programmed with the FP field in the Baud Rate Generator Register (US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock divider. This feature is only available when using USART normal mode. The fractional Baud Rate is calculated using the following formula:

 $Baudrate = \frac{SelectedClock}{\left(8(2 - Over)\left(CD + \frac{FP}{8}\right)\right)}$

The modified architecture is presented below:

30.7.8 USART Transmit Holding Register

Name:	US_THR	ł					
Access Type:	Write-on	ly					
31	30	29	28	27	26	25	24
-	_	_	-	-	-	-	-
23	22	21	20	19	18	17	16
-	_	_	-	-	-	_	-
15	14	13	12	11	10	9	8
TXSYNH	-	-	-	-	-	—	TXCHR
7	6	5	4	3	2	1	0
			TX	CHR			

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

• TXSYNH: Sync Field to be transmitted

0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

30.7.11 USART Transmitter Timeguard Register

Name:	US_TTO	US_TTGR							
Access Type:	Read-wi	rite							
31	30	29	28	27	26	25	24		
-	_	-	-	-	-	_	-		
23	22	21	20	19	18	17	16		
-	_	-	-	-	_	-	-		
15	14	13	12	11	10	9	8		
-	-	-	-	-	_	_	-		
7	6	5	4	3	2	1	0		
			Т	G					

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

32.6.5 TC Channel Mode Register: Waveform Mode

Register Name:TC_CMRx [x=0..2] (WAVE = 1)Access Type:Read-write

31	30	29	28	27	26	25	24
BSV	/TRG	B	EVT	BC	PC	BCPB	
23	22	21	20	19	18	17	16
ASV	WTRG A		AEEVT ACPC A		AEEVT		CPA
15	14	13	12	11	10	9	8
WAVE	WAW	WAVSEL ENETRG		B EEVT		EEVTEDG	
7	6	5	4	3	2	1	0
CPCDIS	CPCSTOP	BURST CLKI TCCLKS					

• TCCLKS: Clock Selection

	TCCLKS			
0	0	0	TIMER_CLOCK1	
0	0	1	TIMER_CLOCK2	
0	1	0	TIMER_CLOCK3	
0	1	1	TIMER_CLOCK4	
1	0	0	TIMER_CLOCK5	
1	0	1	XC0	
1	1	0	XC1	
1	1	1	XC2	

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

BURST		
0	0	The clock is not gated by an external signal.
0	1	XC0 is ANDed with the selected clock.
1	0	XC1 is ANDed with the selected clock.
1	1	XC2 is ANDed with the selected clock.

• CPCSTOP: Counter Clock Stopped with RC Compare

0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

CPCDIS: Counter Clock Disable with RC Compare

0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

Atmel

32.6.11 TC Interrupt Enable Register

Register Name Access Type:		TC_IERx [x=02] Write-only						
31	30	29	28	27	26			
-	-	-	-	-	-			
23	22	21	20	19	18			
-	_	_	_	_	_			
15	14	13	12	11	10			
-	-	-	-	-	-			
7	6	5	4	3	2			
ETRGS	LDRBS	LDRAS	CPCS	CPBS	CPAS			

COVFS: Counter Overflow

0 = No effect.

1 = Enables the Counter Overflow Interrupt.

LOVRS: Load Overrun

0 = No effect.

1 = Enables the Load Overrun Interrupt.

• CPAS: RA Compare

0 = No effect.

1 = Enables the RA Compare Interrupt.

CPBS: RB Compare

0 = No effect.

1 = Enables the RB Compare Interrupt.

CPCS: RC Compare

0 = No effect.

1 = Enables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Enables the RA Load Interrupt.

LDRBS: RB Loading

0 = No effect.

1 = Enables the RB Load Interrupt.

• ETRGS: External Trigger

0 = No effect.

1 = Enables the External Trigger Interrupt.

Atmel

25

_

17

—

9

_

1 LOVRS 24

_

16

-

8

_ 0

COVFS

35.6.7 ADC Last Converted Data Register

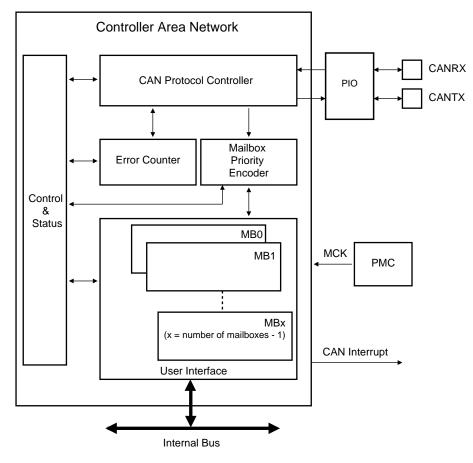
Register Name:	ADC_LC	ADC_LCDR							
Access Type:	Read-on	ly							
31	30	29	28	27	26	25	24		
-	_	_	-	-	-	-	-		
23	22	21	20	19	18	17	16		
-	_	_	-	-	-	-	-		
15	14	13	12	11	10	9	8		
-	-					LD	ATA		
7	6	5	4	3	2	1	0		
			LD	ATA					

• LDATA: Last Data Converted

The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion is completed.

35.6.8 ADC Interrupt Enable Register

Register Name: Access Type:	ADC_IEI Write-on						
31	30	29	28	27	26	25	24
-	_	—	-	-	_	—	-
23	22	21	20	19	18	17	16
-	_	-	-	RXBUFF	ENDRX	GOVRE	DRDY
15	14	13	12	11	10	9	8
OVRE7	OVRE6	OVRE5	OVRE4	OVRE3	OVRE2	OVRE1	OVRE0
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0


- EOCx: End of Conversion Interrupt Enable x
- OVREx: Overrun Error Interrupt Enable x
- DRDY: Data Ready Interrupt Enable
- GOVRE: General Overrun Error Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- RXBUFF: Receive Buffer Full Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

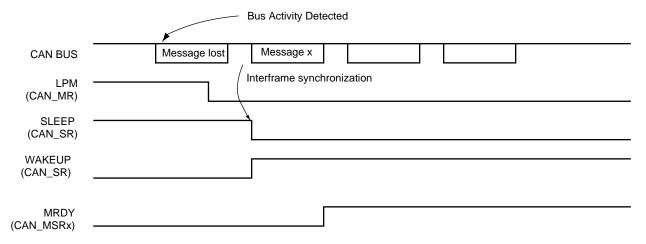

36.2 Block Diagram

Figure 36-1. CAN Block Diagram

Atmel

Figure 36-9. Disabling Low-power Mode

36.7 Functional Description

36.7.1 CAN Controller Initialization

After power-up reset, the CAN controller is disabled. The CAN controller clock must be activated by the Power Management Controller (PMC) and the CAN controller interrupt line must be enabled by the interrupt controller (AIC).

The CAN controller must be initialized with the CAN network parameters. The CAN_BR register defines the sampling point in the bit time period. CAN_BR must be set before the CAN controller is enabled by setting the CANEN field in the CAN_MR register.

The CAN controller is enabled by setting the CANEN flag in the CAN_MR register. At this stage, the internal CAN controller state machine is reset, error counters are reset to 0, error flags are reset to 0.

Once the CAN controller is enabled, bus synchronization is done automatically by scanning eleven recessive bits. The WAKEUP bit in the CAN_SR register is automatically set to 1 when the CAN controller is synchronized (WAKEUP and SLEEP are stuck at 0 after a reset).

The CAN controller can start listening to the network in Autobaud Mode. In this case, the error counters are locked and a mailbox may be configured in Receive Mode. By scanning error flags, the CAN_BR register values synchronized with the network. Once no error has been detected, the application disables the Autobaud Mode, clearing the ABM field in the CAN_MR register.

36.8.18 CAN Message Data High Register

Name: Access Type:	CAN_MI Read-wi						
31	30	29	28	27	26	25	24
			M	DH			
23	22	21	20	19	18	17	16
			M	DH			
15	14	13	12	11	10	9	8
			M	DH			
7	6	5	4	3	2	1	0
			M	DH			

• MDH: Message Data High Value

When MRDY field is set in the CAN_MSRx register, the upper 32 bits of a received message are read or written by the software application. Otherwise, the MDH value is locked by the CAN controller to send/receive a new message.

In Receive with overwrite, the CAN controller may modify MDH value while the software application reads MDH and MDL registers. To check that MDH and MDL do not belong to different messages, the application has to check the MMI field in the CAN_MSRx register. In this mode, the software application must re-read CAN_MDH and CAN_MDL, while the MMI bit in the CAN_MSRx register is set.

Bytes are received/sent on the bus in the following order:

- 1. CAN_MDL[7:0]
- 2. CAN_MDL[15:8]
- 3. CAN_MDL[23:16]
- 4. CAN_MDL[31:24]
- 5. CAN_MDH[7:0]
- 6. CAN_MDH[15:8]
- 7. CAN_MDH[23:16]
- 8. CAN_MDH[31:24]

Table 37-2. Transmit Buffe

Transmit Buffer Descriptor Entry (Continued)

Bit	Function				
	Used. Needs to be zero for the EMAC to read data from the transmit buffer. The EMAC sets this to one for the first buffer of a frame once it has been successfully transmitted.				
31	Software has to clear this bit before the buffer can be used again.				
	Note: This bit is only set for the first buffer in a frame unlike receive where all buffers have the Used bit set once used.				
30	Wrap. Marks last descriptor in transmit buffer descriptor list.				
29	Retry limit exceeded, transmit error detected				
28	Transmit underrun, occurs either when hresp is not OK (bus error) or the transmit data could not be fetched in time or when buffers are exhausted in mid frame.				
27	Buffers exhausted in mid frame				
26:17	Reserved				
16	No CRC. When set, no CRC is appended to the current frame. This bit only needs to be set for the last buffer of a frame.				
15	Last buffer. When set, this bit indicates the last buffer in the current frame has been reached.				
14:11	Reserved				
10:0	Length of buffer				

37.3.2 Transmit Block

This block transmits frames in accordance with the Ethernet IEEE 802.3 CSMA/CD protocol. Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the transmit FIFO a word at a time. Data is transmitted least significant nibble first. If necessary, padding is added to increase the frame length to 60 bytes. CRC is calculated as a 32-bit polynomial. This is inverted and appended to the end of the frame, taking the frame length to a minimum of 64 bytes. If the No CRC bit is set in the second word of the last buffer descriptor of a transmit frame, neither pad nor CRC are appended.

In full-duplex mode, frames are transmitted immediately. Back-to-back frames are transmitted at least 96 bit times apart to guarantee the interframe gap.

In half-duplex mode, the transmitter checks carrier sense. If asserted, it waits for it to de-assert and then starts transmission after the interframe gap of 96 bit times. If the collision signal is asserted during transmission, the transmitter transmits a jam sequence of 32 bits taken from the data register and then retry transmission after the back off time has elapsed.

The back-off time is based on an XOR of the 10 least significant bits of the data coming from the transmit FIFO and a 10bit pseudo random number generator. The number of bits used depends on the number of collisions seen. After the first collision, 1 bit is used, after the second 2, and so on up to 10. Above 10, all 10 bits are used. An error is indicated and no further attempts are made if 16 attempts cause collisions.

If transmit DMA underruns, bad CRC is automatically appended using the same mechanism as jam insertion and the tx_er signal is asserted. For a properly configured system, this should never happen.

If the back pressure bit is set in the network control register in half duplex mode, the transmit block transmits 64 bits of data, which can consist of 16 nibbles of 1011 or in bit-rate mode 64 1s, whenever it sees an incoming frame to force a collision. This provides a way of implementing flow control in half-duplex mode.

37.5.8 Interrupt Status Register

Register Name: Access Type:		EMAC_ISR Read-write									
31	30	29	28	27	26	25	24				
_	-	_	_	_	_	_	—				
23	22	21	20	19	18	17	16				
-	—	-	-	-	-	-	-				
15	14	13	12	11	10	9	8				
—	—	PTZ	PFR	HRESP	ROVR		-				
7	6	5	4	3	2	1	0				
TCOMP	TXERR	RLE	TUND	TXUBR	RXUBR	RCOMP	MFD				

• MFD: Management Frame Done

The PHY maintenance register has completed its operation. Cleared on read.

• RCOMP: Receive Complete

A frame has been stored in memory. Cleared on read.

• RXUBR: Receive Used Bit Read

Set when a receive buffer descriptor is read with its used bit set. Cleared on read.

• TXUBR: Transmit Used Bit Read

Set when a transmit buffer descriptor is read with its used bit set. Cleared on read.

• TUND: Ethernet Transmit Buffer Underrun

The transmit DMA did not fetch frame data in time for it to be transmitted or hresp returned not OK. Also set if a used bit is read mid-frame or when a new transmit queue pointer is written. Cleared on read.

• RLE: Retry Limit Exceeded

Cleared on read.

• TXERR: Transmit Error

Transmit buffers exhausted in mid-frame - transmit error. Cleared on read.

• TCOMP: Transmit Complete

Set when a frame has been transmitted. Cleared on read.

ROVR: Receive Overrun

Set when the receive overrun status bit gets set. Cleared on read.

• HRESP: Hresp not OK

Set when the DMA block sees ${\tt a}\ {\tt bus}\ {\tt error}.$ Cleared on read.

PFR: Pause Frame Received

Indicates a valid pause has been received. Cleared on a read.

• PTZ: Pause Time Zero

Set when the pause time register, 0x38 decrements to zero. Cleared on a read.

Atmel

37.5.24 Type ID Checking Register

Register Name: Access Type:		EMAC_TID Read-write									
31	30	29	28	27	26	25	24				
-	-	_	_	_	_	_	—				
23	22	21	20	19	18	17	16				
-	_	_	_	_	_	_	-				
15	14	13	12	11	10	9	8				
TID											
7	6	5	4	3	2	1	0				
TID											

• TID: Type ID Checking

For use in comparisons with received frames TypeID/Length field.

41.4.10.5 TWI: Software Reset

when a software reset is performed during a frame and when TWCK is low, it is impossible to initiate a new transfer in READ or WRITE mode.

Problem Fix/Workaround

None.

41.4.11 Universal Synchronous Asynchronous Receiver Transmitter (USART)

41.4.11.1 USART: CTS in Hardware Handshaking

When Hardware Handshaking is used and if CTS goes low near the end of the start bit, a character can be lost.

CTS must not go high during a time slot occurring between 2 Master Clock periods before and 16 Master Clock periods after the rising edge of the start bit.

Problem Fix/Workaround

None.

41.4.11.2 USART: Hardware Handshaking – Two Characters Sent

If CTS switches from 0 to 1 during the TX of a character and if the holding register (US_THR) is not empty, the content of US_THR will also be transmitted.

Problem Fix/Workaround

Don't use the PDC in transmit mode and do not fill US_THR before TXEMPTY is set at 1.

41.4.11.3 USART: RXBRK Flag Error in Asynchronous Mode

In receiver mode, when there are two consecutive characters (without time guard in between), RXBRK is not taken into account. As a result, the RXBRK flag is not enabled correctly and the frame error flag is set Problem Fix/Workaround

Constraints on the transmitter device connected to the SAM7X USART receiver side:

The transmitter may use the timeguard feature or send two STOP conditions. Only one STOP condition is taken into account by the receiver state machine. After this STOP condition, as there is no valid data, the receiver state machine will go in idle mode and enable the RXBRK flag.

41.4.11.4 USART: DCD is Active High instead of Low.

The DCD signal is active at High level in the USART Modem Mode .

DCD should be active at Low level.

Problem Fix/Workaround

Add an inverter.

Atmel