E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x128c-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 9-1. System Controller Block Diagram

Atmel

20. Fast Flash Programming Interface (FFPI)

20.1 Overview

The Fast Flash Programming Interface provides two solutions - parallel or serial - for high-volume programming using a standard gang programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM. Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities. The serial interface uses the standard IEEE 1149.1 JTAG protocol. It offers an optimized access to all the embedded Flash functionalities.

Although the Fast Flash Programming Mode is a dedicated mode for high volume programming, this mode not designed for in-situ programming.

20.2 Parallel Fast Flash Programming

20.2.1 Device Configuration

In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins is significant, the rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in bypass mode. Other pins must be left unconnected.

Figure 20-1. Parallel Programming Interface

Table 20-1.Signal Description List

Signal Name	Function	Туре	Active Level	Comments		
Power						
VDDFLASH	Flash Power Supply	Power				
VDDIO	I/O Lines Power Supply	Power				
VDDCORE	Core Power Supply	Power				

Figure 20-2. Parallel Programming Timing, Write Sequence

Table 20-4. Write Handshake

Step	Programmer Action	Device Action	Data I/O
1	Sets MODE and DATA signals	Waits for NCMD low	Input
2	Clears NCMD signal	Latches MODE and DATA	Input
3	Waits for RDY low	Clears RDY signal	Input
4	Releases MODE and DATA signals	Executes command and polls NCMD high	Input
5	Sets NCMD signal	Executes command and polls NCMD high	Input
6	Waits for RDY high	Sets RDY	Input

20.2.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 20-3 and Table 20-5.

Figure 20-3. Parallel Programming Timing, Read Sequence

Atmel

23.8.3 AIC Source Mode Register

Register Name:	: AIC_SM	AIC_SMR0AIC_SMR31								
Access Type:	Read-wi	Read-write								
Reset Value:	0x0									
31	30	29	28	27	26	25	24			
_	_	-	-	-	-	_	-			
23	22	21	20	19	18	17	16			
_	_	-	-	-	-	_	-			
15	14	13	12	11	10	9	8			
-	-	-	-	-	-	-	-			
7	6	5	4	3	2	1	0			
_	SRC	TYPE	-	-	PRIOR					

• PRIOR: Priority Level

Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).

The priority level is not used for the FIQ in the related SMR register AIC_SMRx.

• SRCTYPE: Interrupt Source Type

The active level or edge is not programmable for the internal interrupt sources.

SRCTYPE		Internal Interrupt Sources	External Interrupt Sources
0	0	High level Sensitive	Low level Sensitive
0	1	Positive edge triggered	Negative edge triggered
1	0	High level Sensitive	High level Sensitive
1	1	Positive edge triggered	Positive edge triggered

25.9.11 PMC Programmable Clock Register

Register Name Access Type:	: PMC_PC Read-wr	PMC_PCKx Read-write						
31	30	29	28	27	26	25	24	
_	_	—	-	-	-	_	_	
23	22	21	20	19	18	17	16	
-	-	—	-	-	-	-	—	
15	14	13	12	11	10	9	8	
-	-	—	-	-	-	-	—	
7	6	5	4	3	2	1	0	
_	_	_	PRES			PRES CSS		SS

CSS: Master Clock Selection

CSS		Clock Source Selection
0	0	Slow Clock is selected
0	1	Main Clock is selected
1	0	Reserved
1	1	PLL Clock is selected

• PRES: Programmable Clock Prescaler

	PRES		
0	0	0	Selected clock
0	0	1	Selected clock divided by 2
0	1	0	Selected clock divided by 4
0	1	1	Selected clock divided by 8
1	0	0	Selected clock divided by 16
1	0	1	Selected clock divided by 32
1	1	0	Selected clock divided by 64
1	1	1	Reserved

29.6.10 TWI Transmit Holding Register

Register Name:	TWI_TH	IR					
Access Type:	Гуре: Read-write						
31	30	29	28	27	26	25	24
-	_	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	_	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	—	-	-	-	-	_	-
7	6	5	4	3	2	1	0
			TXI	DATA			

• TXDATA: Transmit Holding Data

30.3 Application Block Diagram

Figure 30-2. Application Block Diagram

30.4 I/O Lines Description

able 30-1. I/O Line Description								
Name	Description	Туре	Active Level					
SCK	Serial Clock	I/O						
TXD	Transmit Serial Data	I/O						
RXD	Receive Serial Data	Input						
RI	Ring Indicator	Input	Low					
DSR	Data Set Ready	Input	Low					
DCD	Data Carrier Detect	Input	Low					
DTR	Data Terminal Ready	Output	Low					
CTS	Clear to Send	Input	Low					
RTS	Request to Send	Output	Low					

Figure 30-17. Connection with a Remote Device for Hardware Handshaking

Setting the USART to operate with hardware handshaking is performed by writing the USART_MODE field in the Mode Register (US_MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as described below and the level on the CTS pin modifies the behavior of the transmitter as described below. Using this mode requires using the PDC channel for reception. The transmitter can handle hardware handshaking in any case.

Figure 30-18 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high. Normally, the remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 30-18. Receiver Behavior when Operating with Hardware Handshaking

Figure 30-19 shows how the transmitter operates if hardware handshaking is enabled. The CTS pin disables the transmitter. If a character is being processing, the transmitter is disabled only after the completion of the current character and transmission of the next character happens as soon as the pin CTS falls.

30.6.4 ISO7816 Mode

The USART features an ISO7816-compatible operating mode. This mode permits interfacing with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link. Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.

Atmel

30.7.6 USART Channel Status Register

Name:	US_CSF	R					
Access Type:	Read-on	lly					
31	30	29	28	27	26	25	24
-	-	-	-	_	-	-	-
23	22	21	20	19	18	17	16
CTS	DCD	DSR	RI	CTSIC	DCDIC	DSRIC	RIIC
15	14	13	12	11	10	9	8
-	Ι	NACK	RXBUFF	TXBUFE	ITERATION	TXEMPTY	TIMEOUT
7	6	5	4	3	2	1	0
PARE	FRAME	OVRE	ENDTX	ENDRX	RXBRK	TXRDY	RXRDY

• RXRDY: Receiver Ready

0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready

0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

• RXBRK: Break Received/End of Break

0: No Break received or End of Break detected since the last RSTSTA.

1: Break Received or End of Break detected since the last RSTSTA.

• ENDRX: End of Receiver Transfer

0: The End of Transfer signal from the Receive PDC channel is inactive.

1: The End of Transfer signal from the Receive PDC channel is active.

• ENDTX: End of Transmitter Transfer

0: The End of Transfer signal from the Transmit PDC channel is inactive.

1: The End of Transfer signal from the Transmit PDC channel is active.

OVRE: Overrun Error

- 0: No overrun error has occurred since the last RSTSTA.
- 1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error

- 0: No stop bit has been detected low since the last RSTSTA.
- 1: At least one stop bit has been detected low since the last RSTSTA.

• PARE: Parity Error

0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out

0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).

• TXEMPTY: Transmitter Empty

0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

• ITERATION: Max number of Repetitions Reached

0: Maximum number of repetitions has not been reached since the last RSIT.

1: Maximum number of repetitions has been reached since the last RSIT.

• TXBUFE: Transmission Buffer Empty

0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

• RXBUFF: Reception Buffer Full

0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

NACK: Non Acknowledge

0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

• RIIC: Ring Indicator Input Change Flag

0: No input change has been detected on the RI pin since the last read of US_CSR.

1: At least one input change has been detected on the RI pin since the last read of US_CSR.

DSRIC: Data Set Ready Input Change Flag

0: No input change has been detected on the DSR pin since the last read of US_CSR.

1: At least one input change has been detected on the DSR pin since the last read of US_CSR.

• DCDIC: Data Carrier Detect Input Change Flag

0: No input change has been detected on the DCD pin since the last read of US_CSR.

1: At least one input change has been detected on the DCD pin since the last read of US_CSR.

• CTSIC: Clear to Send Input Change Flag

0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.

• CP0: Compare 0 Interrupt Mask

0: The Compare 0 Interrupt is disabled.

1: The Compare 0 Interrupt is enabled.

• CP1: Compare 1 Interrupt Mask

0: The Compare 1 Interrupt is disabled.

1: The Compare 1 Interrupt is enabled.

• TXSYN: Tx Sync Interrupt Mask

0: The Tx Sync Interrupt is disabled.

1: The Tx Sync Interrupt is enabled.

• RXSYN: Rx Sync Interrupt Mask

0: The Rx Sync Interrupt is disabled.

1: The Rx Sync Interrupt is enabled.

33.5.1 PWM Clock Generator

Figure 33-2. Functional View of the Clock Generator Block Diagram

Caution: Before using the PWM macrocell, the programmer must first enable the PWM clock in the Power Management Controller (PMC).

The PWM macrocell master clock, MCK, is divided in the clock generator module to provide different clocks available for all channels. Each channel can independently select one of the divided clocks.

The clock generator is divided in three blocks:

- a modulo n counter which provides 11 clocks: F_{MCK}, F_{MCK}/2, F_{MCK}/4, F_{MCK}/8, F_{MCK}/16, F_{MCK}/32, F_{MCK}/64, F_{MCK}/128, F_{MCK}/256, F_{MCK}/512, F_{MCK}/1024
- two linear dividers (1, 1/2, 1/3, ... 1/255) that provide two separate clocks: clkA and clkB

Each linear divider can independently divide one of the clocks of the modulo n counter. The selection of the clock to be divided is made according to the PREA (PREB) field of the PWM Mode register (PWM_MR). The resulting clock clkA (clkB) is the clock selected divided by DIVA (DIVB) field value in the PWM Mode register (PWM_MR).

After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) in the PWM Mode register are set to 0. This implies that after reset clkA (clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except clock "clk". This situation is also true when the PWM master clock is turned off through the Power Management Controller.

35.6.6 ADC Status Register

Register Name:	ADC_SF	R					
Access Type:	Read-on	ly					
31	30	29	28	27	26	25	24
-	-	_	-	-	-	-	-
23	22	21	20	19	18	17	16
—	-	_	—	RXBUFF	ENDRX	GOVRE	DRDY
15	14	13	12	11	10	9	8
OVRE7	OVRE6	OVRE5	OVRE4	OVRE3	OVRE2	OVRE1	OVRE0
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0

• EOCx: End of Conversion x

0 = Corresponding analog channel is disabled, or the conversion is not finished.

1 = Corresponding analog channel is enabled and conversion is complete.

• OVREx: Overrun Error x

0 = No overrun error on the corresponding channel since the last read of ADC_SR.

1 = There has been an overrun error on the corresponding channel since the last read of ADC_SR.

• DRDY: Data Ready

0 = No data has been converted since the last read of ADC_LCDR.

1 = At least one data has been converted and is available in ADC_LCDR.

• GOVRE: General Overrun Error

0 = No General Overrun Error occurred since the last read of ADC_SR.

1 = At least one General Overrun Error has occurred since the last read of ADC_SR.

• ENDRX: End of RX Buffer

0 = The Receive Counter Register has not reached 0 since the last write in ADC_RCR or ADC_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in ADC_RCR or ADC_RNCR.

RXBUFF: RX Buffer Full

0 = ADC_RCR or ADC_RNCR have a value other than 0.

1 = Both ADC_RCR and ADC_RNCR have a value of 0.

• MACR: Abort Request for Mailbox x

Mailbox Object Type	Description
Receive	No action
Receive with overwrite	No action
Transmit	Cancels transfer request if the message has not been transmitted to the CAN transceiver.
Consumer	Cancels the current transfer before the remote frame has been sent.
Producer	Cancels the current transfer. The next remote frame will not be serviced.

It is possible to set MACR field for several mailboxes in the same time, setting several bits to the CAN_ACR register.

• MTCR: Mailbox Transfer Command

Mailbox Object Type	Description
Receive	Allows the reception of the next message.
Receive with overwrite	Triggers a new reception.
Transmit	Sends data prepared in the mailbox as soon as possible.
Consumer	Sends a remote transmission frame.
Producer	Sends data prepared in the mailbox after receiving a remote frame from a Consumer.

This flag clears the MRDY and MABT flags in the CAN_MSRx register.

When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn. The mailbox with the highest priority is serviced first. If several mailboxes have the same priority, the mailbox with the lowest number is serviced first (i.e., MBx0 will be serviced before MBx 15 if they have the same priority).

It is possible to set MTCR for several mailboxes at the same time by writing to the CAN_TCR register.

Table 37-1. Receive Buffer Descriptor Entry (Continued)

Bit	Function
14	Start of frame - when set the buffer contains the start of a frame. If both bits 15 and 14 are set, then the buffer contains a whole frame.
13:12	Receive buffer offset - indicates the number of bytes by which the data in the first buffer is offset from the word address. Updated with the current values of the network configuration register. If jumbo frame mode is enabled through bit 3 of the network configuration register, then bits 13:12 of the receive buffer descriptor entry are used to indicate bits 13:12 of the frame length.
11.0	Length of frame including ECS (if selected) Bits 13:12 are also used if jumbo frame mode is selected

To receive frames, the buffer descriptors must be initialized by writing an appropriate address to bits 31 to 2 in the first word of each list entry. Bit zero must be written with zero. Bit one is the wrap bit and indicates the last entry in the list.

The start location of the receive buffer descriptor list must be written to the receive buffer queue pointer register before setting the receive enable bit in the network control register to enable receive. As soon as the receive block starts writing received frame data to the receive FIFO, the receive buffer manager reads the first receive buffer location pointed to by the receive buffer queue pointer register.

If the filter block then indicates that the frame should be copied to memory, the receive data DMA operation starts writing data into the receive buffer. If an error occurs, the buffer is recovered. If the current buffer pointer has its wrap bit set or is the 1024th descriptor, the next receive buffer location is read from the beginning of the receive descriptor list. Otherwise, the next receive buffer location is read from the next word in memory.

There is an 11-bit counter to count out the 2048 word locations of a maximum length, receive buffer descriptor list. This is added with the value originally written to the receive buffer queue pointer register to produce a pointer into the list. A read of the receive buffer queue pointer register returns the pointer value, which is the queue entry currently being accessed. The counter is reset after receive status is written to a descriptor that has its wrap bit set or rolls over to zero after 1024 descriptors have been accessed. The value written to the receive buffer pointer register may be any word-aligned address, provided that there are at least 2048 word locations available between the pointer and the top of the memory.

Section 3.6 of the AMBA[™] 2.0 specification states that bursts should not cross 1K boundaries. As receive buffer manager writes are bursts of two words, to ensure that this does not occur, it is best to write the pointer register with the least three significant bits set to zero. As receive buffers are used, the receive buffer manager sets bit zero of the first word of the descriptor to indicate *used*. If a receive error is detected the receive buffer currently being written is recovered. Previous buffers are not recovered. Software should search through the *used* bits in the buffer descriptors to find out how many frames have been received. It should be checking the start-of-frame and end-of-frame bits, and not rely on the value returned by the receive buffer queue pointer register which changes continuously as more buffers are used.

For CRC errored frames, excessive length frames or length field mismatched frames, all of which are counted in the statistics registers, it is possible that a frame fragment might be stored in a sequence of receive buffers. Software can detect this by looking for start of frame bit set in a buffer following a buffer with no end of frame bit set.

For a properly working Ethernet system, there should be no excessively long frames or frames greater than 128 bytes with CRC/FCS errors. Collision fragments are less than 128 bytes long. Therefore, it is a rare occurrence to find a frame fragment in a receive buffer.

If bit zero is set when the receive buffer manager reads the location of the receive buffer, then the buffer has already been used and cannot be used again until software has processed the frame and cleared bit zero. In this case, the DMA block sets the buffer not available bit in the receive status register and triggers an interrupt.

If bit zero is set when the receive buffer manager reads the location of the receive buffer and a frame is being received, the frame is discarded and the receive resource error statistics register is incremented.

A receive overrun condition occurs when bus was not granted in time or because HRESP was not OK (bus error). In a receive overrun condition, the receive overrun interrupt is asserted and the buffer currently being written is recovered. The next frame received with an address that is recognized reuses the buffer.

If bit 17 of the network configuration register is set, the FCS of received frames shall not be copied to memory. The frame length indicated in the receive status field shall be reduced by four bytes in this case.

37.5.26.3 Single Collision Frames Register

Register Name	EMAC_S	SCF					
Access Type:	Read-wr	ite					
31	30	29	28	27	26	25	24
_	-	-	-	_	-	-	-
00	00	04	00	10	40	47	40
23	22	21	20	19	18	17	16
-	_	_	-	_	_	_	-
15	14	13	12	11	10	9	8
SCF							
7	6	5	4	3	2	1	0
SCF							

• SCF: Single Collision Frames

A 16-bit register counting the number of frames experiencing a single collision before being successfully transmitted, i.e., no underrun.

37.5.26.4 Multicollision Frames Register

Register Name Access Type:	: EMAC_I Read-wi	MCF rite					
31	30	29	28	27	26	25	24
_	-	-	-	_	_	-	-
23	22	21	20	19	18	17	16
_	-	-	-	_	_	_	-
15	14	13	12	11	10	9	8
MCF							
7	6	5	4	3	2	1	0
	MCF						

• MCF: Multicollision Frames

A 16-bit register counting the number of frames experiencing between two and fifteen collisions prior to being successfully transmitted, i.e., no underrun and not too many retries.

38.8.3 SPI Characteristics

Figure 38-6. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

41.5 AT91SAM7X256/128 Errata - Rev. B Parts

Refer to Section 41.1 "Marking" on page 607.

Note: AT91SAM7X256 Revision B chip ID is 0x275B 0940. AT91SAM7X128 Revision B chip ID is 0x275A 0740.

41.5.1 Analog-to-Digital Converter (ADC)

41.5.1.1 ADC: DRDY Bit Cleared

The DRDY Flag should be clear only after a read of ADC_LCDR (Last Converted Data Register). A read of any ADC_CDRx register (Channel Data Register) automatically clears the DRDY flag. Problem Fix/Workaround:

None

41.5.1.2 ADC: DRDY not Cleared on Disable

When reading LCDR at the same instant as an end of conversion, with DRDY already active, DRDY is kept active regardless of the enable status of the current channel. This sets DRDY, whereas new data is not stored. Problem Fix/Workaround

None

41.5.1.3 ADC: DRDY Possibly Skipped due to CDR Read

Reading CDR for channel "y" at the same instant as an end of conversion on channel "x" with EOC[x] already active, leads to skipping to set the DRDY flag if channel "x" is enabled. Problem Fix/Workaround

Use of DRDY functionality with access to CDR registers should be avoided.

41.5.1.4 ADC: Possible Skip on DRDY when Disabling a Channel

DRDY does not rise when disabling channel "y" at the same time as an end of "x" channel conversion, although data is stored into CDRx and LCDR.

Problem Fix/Workaround

None.

41.5.1.5 ADC: GOVRE Bit is not Updated

Read of the Status Register at the same instant as an end of conversion leads to skipping the update of the GOVRE (general overrun) flag. GOVRE is neither reset nor set.

For example, if reading the status while an end of conversion is occurring and:

- 1. GOVRE is active but DRDY is inactive, does not correspond to a new general overrun condition but the GOVRE flag is not reset.
- 2. GOVRE is inactive but DRDY is active, does correspond to a new general overrun condition but the GOVRE flag is not set.

Problem Fix/Workaround

None

41.5.1.6 ADC: GOVRE Bit is not Set when Reading CDR

When reading CDRy (Channel Data Register y) at the same instant as an end of conversion on channel "x" with the following conditions:

41.6 AT91SAM7X512 Errata - Rev. B Parts

Refer to Section 41.1 "Marking" on page 607. Note: AT91SAM7X512 Revision B chip ID is 0x0x275C 0A41.

41.6.1 Analog-to-Digital Converter (ADC)

41.6.1.1 ADC: DRDY Bit Cleared

The DRDY Flag should be clear only after a read of ADC_LCDR (Last Converted Data Register). A read of any ADC_CDRx register (Channel Data Register) automatically clears the DRDY flag. Problem Fix/Workaround:

None

41.6.1.2 ADC: DRDY not Cleared on Disable

When reading LCDR at the same instant as an end of conversion, with DRDY already active, DRDY is kept active regardless of the enable status of the current channel. This sets DRDY, whereas new data is not stored. Problem Fix/Workaround

None

41.6.1.3 ADC: DRDY Possibly Skipped due to CDR Read

Reading CDR for channel "y" at the same instant as an end of conversion on channel "x" with EOC[x] already active, leads to skipping to set the DRDY flag if channel "x" is enabled. Problem Fix/Workaround

Problem Fix/Workaround

Use of DRDY functionality with access to CDR registers should be avoided.

41.6.1.4 ADC: Possible Skip on DRDY when Disabling a Channel

DRDY does not rise when disabling channel "y" at the same time as an end of "x" channel conversion, although data is stored into CDRx and LCDR.

Problem Fix/Workaround

None.

41.6.1.5 ADC: GOVRE Bit is not Updated

Read of the Status Register at the same instant as an end of conversion leads to skipping the update of the GOVRE (general overrun) flag. GOVRE is neither reset nor set.

For example, if reading the status while an end of conversion is occurring and:

- 1. GOVRE is active but DRDY is inactive, does not correspond to a new general overrun condition but the GOVRE flag is not reset.
- 2. GOVRE is inactive but DRDY is active, does correspond to a new general overrun condition but the GOVRE flag is not set.

Problem Fix/Workaround

None

41.6.1.6 ADC: GOVRE Bit is not Set when Reading CDR

When reading CDRy (Channel Data Register y) at the same instant as an end of conversion on channel "x" with the following conditions:

EOC[x] already active,

Version 6120H (Continued)	Comments	Change Request Ref.
	UDP:	
	Section 34.6 "USB Device Port (UDP) User Interface", reset value for UDP_RST_EP is 0x000_0000.	5049
	Table 34-1, "USB Endpoint Description", footnote added to Dual-Bank heading.	5150
	Section 34.5.2.5 "Transmit Data Cancellation", added to datasheet	
	Section 34.6.9 "UDP Reset Endpoint Register", added steps to clear endpoints.	
	Electrical Characteristics:	
	Table 38-2, "DC Characteristics", CMOS conditions added to IO for VOL and VOH.	rfo
	Table 38-16, "External Voltage Reference Input", added ADVREF input w/conditions "8-bit resolution mode".	
	Mechanical Characteristics:	
	Table 39-1, "100-lead LQFP Package Dimensions", Symbol line A, Inch Max value is 0.063	5608
	Ordering Information: Section 40. "AT91SAM7X Ordering Information", MLR B parts added to ordering information.	6064
	Errata:	
	Section 41.5 "AT91SAM7X256/128 Errata - Rev. B Parts", added to errata.	6064
	Section 41.4.3.1 "EFC: Embedded Flash Access Time", added to SAM7X512 erraa.	5989
	Section 41.4.8.7 "SPI: Software Reset must be Written Twice" added to errata.	5786
	USART: XOFF Character Bad Behavior, removed from errata.	5338