

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x128c-aur

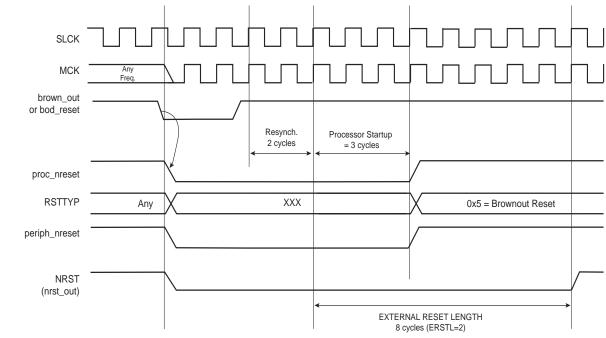
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Configuration Summary of the SAM7X512/256/128

The SAM7X512, SAM7X256 and SAM7X128 differ only in memory sizes. Table 1-1 summarizes the configurations of the three devices.

Table 1-1.	Configuration Summary
------------	-----------------------


Device	Flash	Flash Organization	SRAM
SAM7X512	512 Kbytes	Dual-plane	128 Kbytes
SAM7X256	256 Kbytes	Single-plane	64 Kbytes
SAM7X128	128 Kbytes	Single-plane	32 Kbytes

13.2.4.3 Brownout Reset

When the brown_out/bod_reset signal is asserted, the Reset State Manager immediately enters the Brownout Reset. In this state, the processor, the peripheral and the external reset lines are asserted.

The Brownout Reset is left 3 Slow Clock cycles after the rising edge of brown_out/bod_reset after a two-cycle resynchronization. An external reset is also triggered.

When the processor reset is released, the field RSTTYP in RSTC_SR is loaded with the value 0x5, thus indicating that the last reset is a Brownout Reset.

Figure 13-6. Brownout Reset State

13.3 Reset Controller (RSTC) User Interface

Table 13-1. Register Mapping

Offset	Register	Name	Access	Reset
0x00	Control Register	RSTC_CR	Write-only	-
0x04	Status Register	RSTC_SR	Read-only	0x0000_0000
0x08	Mode Register	RSTC_MR	Read-write	0x0000_0000

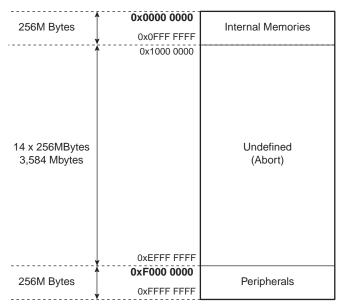
It is made up of:

- A bus arbiter
- An address decoder
- An abort status
- A misalignment detector
- An Embedded Flash Controller

The MC handles only little-endian mode accesses. The masters work in little-endian mode only.

18.3.1 Bus Arbiter

The Memory Controller has a simple, hard-wired priority bus arbiter that gives the control of the bus to one of the three masters. The EMAC has the highest priority; the Peripheral DMA Controller has the medium priority; the ARM processor has the lowest one.


18.3.2 Address Decoder

The Memory Controller features an Address Decoder that first decodes the four highest bits of the 32-bit address bus and defines three separate areas:

- One 256-Mbyte address space for the internal memories
- One 256-Mbyte address space reserved for the embedded peripherals
- An undefined address space of 3584M bytes representing fourteen 256-Mbyte areas that return an Abort if accessed

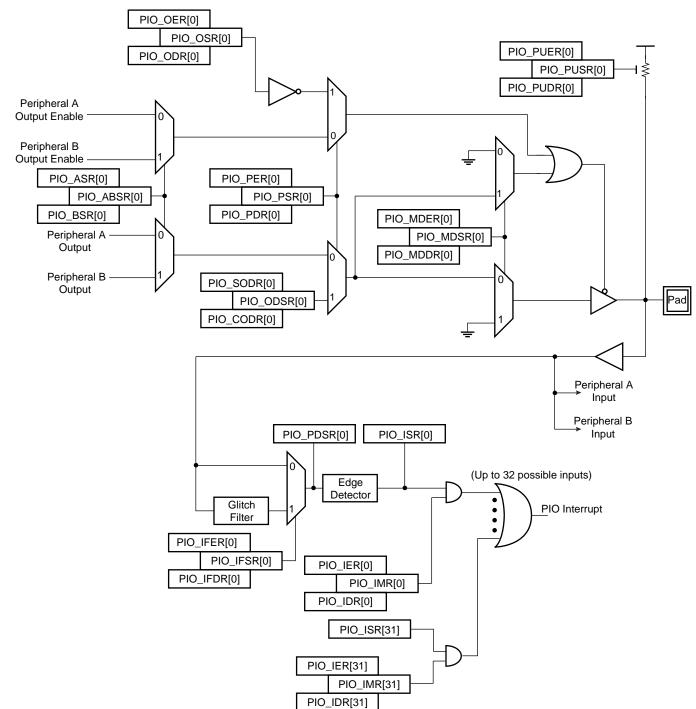
Figure 18-2 shows the assignment of the 256-Mbyte memory areas.

Figure 18-2. Memory Areas

18.3.2.1 Internal Memory Mapping

Within the Internal Memory address space, the Address Decoder of the Memory Controller decodes eight more address bits to allocate 1-Mbyte address spaces for the embedded memories.

The allocated memories are accessed all along the 1-Mbyte address space and so are repeated n times within this address space, n equaling 1M bytes divided by the size of the memory.


When the address of the access is undefined within the internal memory area, the Address Decoder returns an Abort to the master.

Atmel

Figure 25-4.	Switch Master Clock from Main Clock to Slow Clock
	Slow Clock
	Main Clock
	MCKRDY
	Master Clock
	Write PMC_MCKR
Figure 25-5.	Change PLL Programming
-	
	LOCK
	MCKRDY
	Write CKGR_PLLR

27.4 Functional Description

The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O is represented in Figure 27-3. In this description each signal shown represents but one of up to 32 possible indexes.

Figure 27-3. I/O Line Control Logic

27.4.1 Pull-up Resistor Control

Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers

Atmel

27.6.11 PIO Controller Clear Output Data Register

Name:	PIO_CO	DR					
Access Type:	Write-onl	У					
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Set Output Data

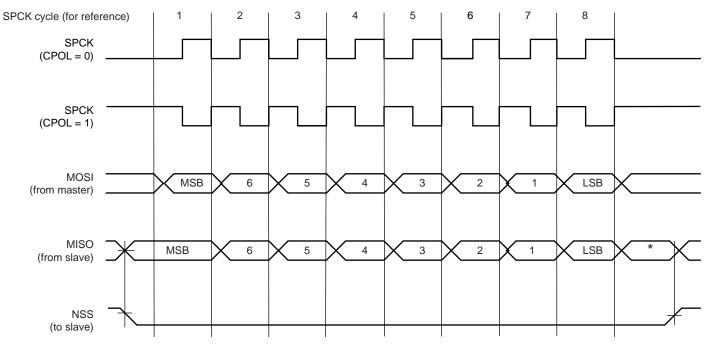
0 = No effect.

1 = Clears the data to be driven on the I/O line.

27.6.12 PIO Controller Output Data Status Register

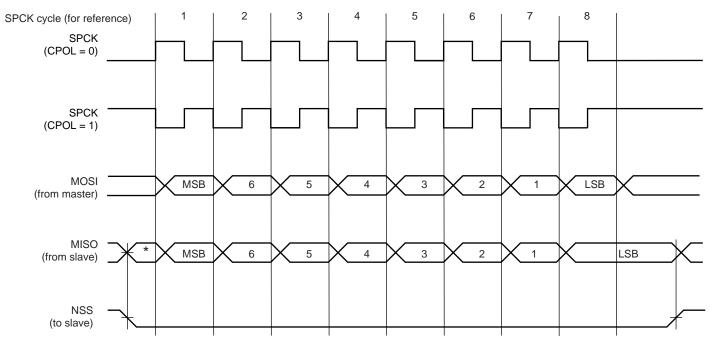
Name:	PIO ODSR
Nume.	110_0001

Access Type: Read-only or Read-write


31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Output Data Status

0 = The data to be driven on the I/O line is 0.


1 = The data to be driven on the I/O line is 1.

* Not defined, but normally MSB of previous character received.

Figure 28-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

* Not defined but normally LSB of previous character transmitted.

28.7.6 SPI Interrupt Enable Register

Name: Access Type:	SPI_IER Write-on						
31	30	29	28	27	26	25	24
_	_	-	-	-	—	-	-
23	22	21	20	19	18	17	16
—	_	-	—	—	—	—	—
15	14	13	12	11	10	9	8
-	—	-	_	-	-	TXEMPTY	NSSR
7	6	5	4	3	2	1	0
TXBUFE	RXBUFF	ENDTX	ENDRX	OVRES	MODF	TDRE	RDRF

- RDRF: Receive Data Register Full Interrupt Enable
- TDRE: SPI Transmit Data Register Empty Interrupt Enable
- MODF: Mode Fault Error Interrupt Enable
- OVRES: Overrun Error Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- ENDTX: End of Transmit Buffer Interrupt Enable
- RXBUFF: Receive Buffer Full Interrupt Enable
- TXBUFE: Transmit Buffer Empty Interrupt Enable
- TXEMPTY: Transmission Registers Empty Enable
- NSSR: NSS Rising Interrupt Enable

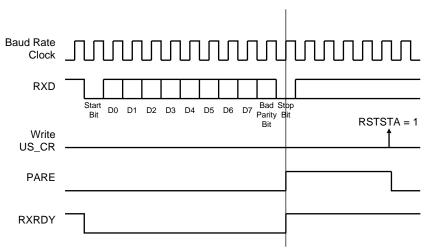
0 = No effect.

1 = Enables the corresponding interrupt.

30.6.3.5 Parity

The USART supports five parity modes selected by programming the PAR field in the Mode Register (US_MR). The PAR field also enables the Multidrop mode, see "Multidrop Mode" on page 305. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a number of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received 1s and reports a parity error if the sampled parity bit does not correspond. If odd parity is selected, the parity generator of the transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received 1s and reports a parity error if the sampled parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received 1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The receiver parity checker reports an error if the parity does not generate any parity bit and the receiver does not report any parity error.


Table 30-6 shows an example of the parity bit for the character 0x41 (character ASCII "A") depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added when a parity is odd, or 0 is added when a parity is even.

Character	Hexa	Binary	Parity Bit	Parity Mode
A	0x41	0100 0001	1	Odd
A	0x41	0100 0001	0	Even
A	0x41	0100 0001	1	Mark
A	0x41	0100 0001	0	Space
A	0x41	0100 0001	None	None

Table 30-6.Parity Bit Examples

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1. Figure 30-12 illustrates the parity bit status setting and clearing.

Figure 30-12. Parity Error

33.6.12 PWM Channel Counter Register

Register Name: Access Type:	PWM_C Read-or	CNT[0X-1]						
31	30	29	28	27	26	25	24	
			C	NT				
23	22	21	20	19	18	17	16	
			C	NT				
15	14	13	12	11	10	9	8	
CNT								
7	6	5	4	3	2	1	0	
	CNT							

• CNT: Channel Counter Register

Internal counter value. This register is reset when:

- the channel is enabled (writing CHIDx in the PWM_ENA register).
- the counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is left aligned.

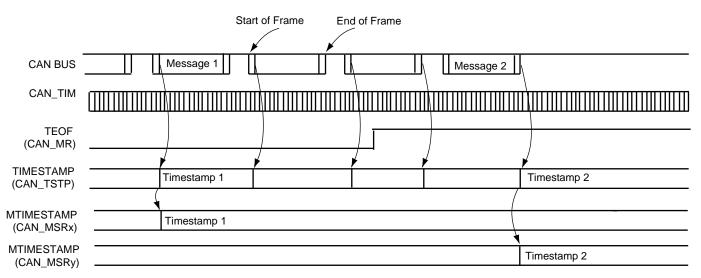
the consumer mailbox must have a lower number than the Receive with Overwrite mailbox. The transfer command can be triggered for all mailboxes at the same time by setting several MBx fields in the CAN_TCR register.

Figure 36-18. Consumer Handling

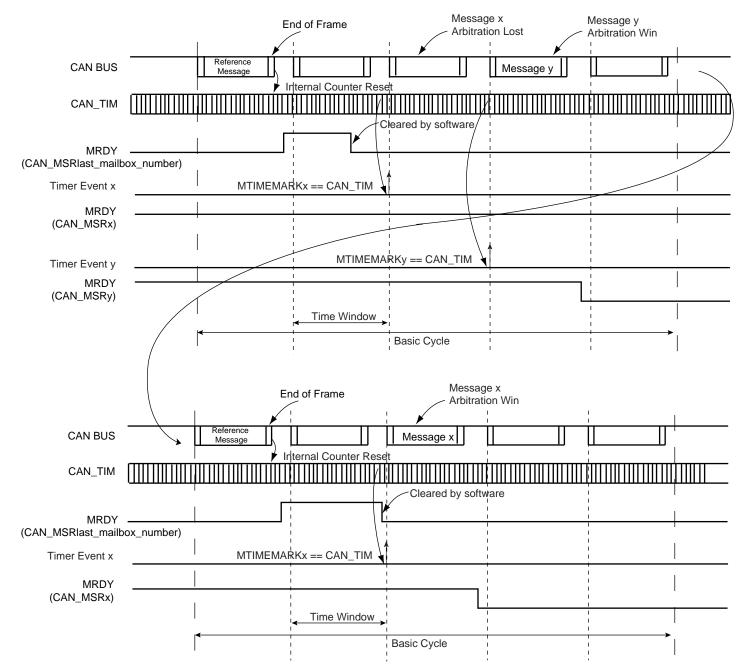
CAN BUS		Remote Frame	Message x	Remote Frame	Message y	
MRDY (CAN_MSRx)				٦		
MMI (CAN_MSRx)						
MTCR (CAN_MCRx)	↑			≜		
(CAN_MDLx CAN_MDHx)				Message x		Message y

36.7.4 CAN Controller Timing Modes

Using the free running 16-bit internal timer, the CAN controller can be set in one of the two following timing modes:


- Timestamping Mode: The value of the internal timer is captured at each Start Of Frame or each End Of Frame.
- Time Triggered Mode: The mailbox transfer operation is triggered when the internal timer reaches the mailbox trigger.

Timestamping Mode is enabled by clearing the TTM bit in the CAN_MR register. Time Triggered Mode is enabled by setting the TTM bit in the CAN_MR register.


36.7.4.1 Timestamping Mode

Each mailbox has its own timestamp value. Each time a message is sent or received by a mailbox, the 16-bit value MTIMESTAMP of the CAN_TIMESTP register is transferred to the LSB bits of the CAN_MSRx register. The value read in the CAN_MSRx register corresponds to the internal timer value at the Start Of Frame or the End Of Frame of the message handled by the mailbox.

Figure 36-19. Mailbox Timestamp

Figure 36-21. Time Triggered Operations

37.5.2 Network Configuration Register

Register Name	EMAC_I	EMAC_NCFGR							
Access Type:	Read-w	ite							
31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	-		
23	22	21	20	19	18	17	16		
-	-	-	-	IRXFCS	EFRHD	DRFCS	RLCE		
15	14	13	12	11 10		9	8		
RB	OF	PAE	RTY	CI	_K		BIG		
7	6	5	4	3	2	1	0		
UNI	MTI	NBC	CAF	JFRAME	—	FD	SPD		

• SPD: Speed

Set to 1 to indicate 100 Mbit/s operation, 0 for 10 Mbit/s.

• FD: Full Duplex

If set to 1, the transmit block ignores the state of collision and carrier sense and allows receive while transmitting.

• CAF: Copy All Frames

When set to 1, all valid frames are received.

• JFRAME: Jumbo Frames

Set to one to enable jumbo frames of up to 10240 bytes to be accepted.

NBC: No Broadcast

When set to 1, frames addressed to the broadcast address of all ones are not received.

• MTI: Multicast Hash Enable

When set, multicast frames are received when the 6-bit hash function of the destination address points to a bit that is set in the hash register.

• UNI: Unicast Hash Enable

When set, unicast frames are received when the 6-bit hash function of the destination address points to a bit that is set in the hash register.

• BIG: Receive 1536 bytes frames

Setting this bit means the EMAC receives frames up to 1536 bytes in length. Normally, the EMAC would reject any frame above 1518 bytes.

37.5.26.11 Transmit Underrun Errors Register

Register Name:	EMAC_	EMAC_TUND							
Access Type:	Read-w	Read-write							
31	30	29	28	27	26	25	24		
-	_	-	-	-	-	-	-		
23	22	21	20	19	18	17	16		
_	_	_	-	-	_	_	-		
15	14	13	12	11	10	9	8		
-	-	-	-	-	-	-	-		
7	6	5	4	3	2	1	0		
			TU	ND					

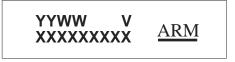
• TUND: Transmit Underruns

An 8-bit register counting the number of frames not transmitted due to a transmit DMA underrun. If this register is incremented, then no other statistics register is incremented.

37.5.26.12Carrier S	ense Errors	Register
---------------------	-------------	----------

Register Name: Access Type:	: EMAC_0 Read-wr						
31	30	29	28	27	26	25	24
-	_	—	-	—	—	—	—
23	22	21	20	19	18	17	16
-	_	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	—	-	-	-	-	-	-
7	6	5	4	3 SE	2	1	0
			0.	JL			

• CSE: Carrier Sense Errors


An 8-bit register counting the number of frames transmitted where carrier sense was not seen during transmission or where carrier sense was deasserted after being asserted in a transmit frame without collision (no underrun). Only incremented in halfduplex mode. The only effect of a carrier sense error is to increment this register. The behavior of the other statistics registers is unaffected by the detection of a carrier sense error.

41. SAM7X512/256/128 Errata

41.1 Marking

All devices are marked with the Atmel logo and the ordering code.

Additional marking has the following format:

where

- "YY": manufactory year
- "WW": manufactory week
- "V": revision
- "XXXXXXXXX": lot number

Part	SAM7Xx Product Revision or Manufacturing Number Errata	SAM7X512 rev A	SAM7X512 rev B	SAM7X256/128 rev A	SAM7X256/128 rev B	SAM7X256/128 rev C
SPI	LASTXFER (Last Transfer) behavior	Х	Х	Х	Х	_
SPI	SPCK Behavior in Master Mode	Х	Х	Х	Х	-
SPI	Chip Select and Fixed Mode	Х	Х	Х	Х	-
SPI	Baudrate Set to 1	Х	Х	Х	Х	_
SPI	Bad Serial Clock Generation on 2nd Chip Select	Х	Х	Х	Х	Х
SSC	Periodic Transmission Limitations in Master Mode	Х	Х	Х	Х	-
SSC	Transmitter Limitations in Slave Mode	Х	Х	Х	Х	-
SSC	Transmitter Limitations in Slave Mode	Х	Х	Х	Х	-
TWI	Clock Divider	Х	Х	Х	Х	_
TWI	Software Reset	Х	Х	Х	Х	_
TWI	Disabling Does not Operate Correctly	Х	Х	Х	Х	-
TWI	NACK Status Bit Lost	Х	Х	Х	Х	_
TWI	Possible Receive Holding Register Corruption	Х	Х	Х	Х	-
USART	CTS in Hardware Handshaking	Х	Х	Х	Х	_
USART	Hardware Handshaking – Two Characters Sent	Х	Х	Х	Х	-
USART	RXBRK Flag Error in Asynchronous Mode	Х	Х	Х	Х	-
USART	DCD is active High instead of Low	Х	Х	Х	Х	Х

Table 41-1. Errata Summary Table (Continued)

41.5 AT91SAM7X256/128 Errata - Rev. B Parts

Refer to Section 41.1 "Marking" on page 607.

Note: AT91SAM7X256 Revision B chip ID is 0x275B 0940. AT91SAM7X128 Revision B chip ID is 0x275A 0740.

41.5.1 Analog-to-Digital Converter (ADC)

41.5.1.1 ADC: DRDY Bit Cleared

The DRDY Flag should be clear only after a read of ADC_LCDR (Last Converted Data Register). A read of any ADC_CDRx register (Channel Data Register) automatically clears the DRDY flag. Problem Fix/Workaround:

None

41.5.1.2 ADC: DRDY not Cleared on Disable

When reading LCDR at the same instant as an end of conversion, with DRDY already active, DRDY is kept active regardless of the enable status of the current channel. This sets DRDY, whereas new data is not stored. Problem Fix/Workaround

None

41.5.1.3 ADC: DRDY Possibly Skipped due to CDR Read

Reading CDR for channel "y" at the same instant as an end of conversion on channel "x" with EOC[x] already active, leads to skipping to set the DRDY flag if channel "x" is enabled. Problem Fix/Workaround

Use of DRDY functionality with access to CDR registers should be avoided.

41.5.1.4 ADC: Possible Skip on DRDY when Disabling a Channel

DRDY does not rise when disabling channel "y" at the same time as an end of "x" channel conversion, although data is stored into CDRx and LCDR.

Problem Fix/Workaround

None.

41.5.1.5 ADC: GOVRE Bit is not Updated

Read of the Status Register at the same instant as an end of conversion leads to skipping the update of the GOVRE (general overrun) flag. GOVRE is neither reset nor set.

For example, if reading the status while an end of conversion is occurring and:

- 1. GOVRE is active but DRDY is inactive, does not correspond to a new general overrun condition but the GOVRE flag is not reset.
- 2. GOVRE is inactive but DRDY is active, does correspond to a new general overrun condition but the GOVRE flag is not set.

Problem Fix/Workaround

None

41.5.1.6 ADC: GOVRE Bit is not Set when Reading CDR

When reading CDRy (Channel Data Register y) at the same instant as an end of conversion on channel "x" with the following conditions:

Version 6120H (Continued)) Comments						
	UDP:						
	Section 34.6 "USB Device Port (UDP) User Interface", reset value for UDP_RST_EP is 0x000_0000.						
	Table 34-1, "USB Endpoint Description", footnote added to Dual-Bank heading.	5150					
	Section 34.5.2.5 "Transmit Data Cancellation", added to datasheet						
	Section 34.6.9 "UDP Reset Endpoint Register", added steps to clear endpoints.						
	Electrical Characteristics:						
	Table 38-2, "DC Characteristics", CMOS conditions added to IO for VOL and VOH.	rfo					
	Table 38-16, "External Voltage Reference Input", added ADVREF input w/conditions "8-bit resolution mode".						
	Mechanical Characteristics:						
	Table 39-1, "100-lead LQFP Package Dimensions", Symbol line A, Inch Max value is 0.063	5608					
	Ordering Information:						
	Section 40. "AT91SAM7X Ordering Information", MLR B parts added to ordering information.						
	Errata:						
	Section 41.5 "AT91SAM7X256/128 Errata - Rev. B Parts", added to errata.	6064					
	Section 41.4.3.1 "EFC: Embedded Flash Access Time", added to SAM7X512 erraa.						
	Section 41.4.8.7 "SPI: Software Reset must be Written Twice" added to errata.						
	USART: XOFF Character Bad Behavior, removed from errata.	5338					

De	scription						
Fe	atures						
1.	Configuration Summary of the SAM7X512/256/128 4						
2.	SAM7X512/256/128 Block Diagram						
3.	Signal Description						
4.	Package 9 4.1 100-lead LQFP Package Outline 9 4.2 100-lead LQFP Pinout 9 4.3 100-ball TFBGA Package Outline 10 4.4 100-ball TFBGA Pinout 10						
5.	Power Considerations115.1Power Supplies115.2Power Consumption115.3Voltage Regulator115.4Typical Powering Schematics11						
6.	I/O Lines Considerations 13 6.1 JTAG Port Pins 13 6.2 Test Pin 13 6.3 Reset Pin 13 6.4 ERASE Pin 13 6.5 PIO Controller Lines 13 6.6 I/O Lines Current Drawing 14						
7.	Processor and Architecture157.1ARM7TDMI Processor157.2Debug and Test Features157.3Memory Controller157.4Peripheral DMA Controller16						
8.	Memories 17 8.1 SAM7X512 17 8.2 SAM7X256 17 8.3 SAM7X128 17 8.4 Memory Mapping 17 8.5 Embedded Flash 20 8.6 Fast Flash Programming Interface 22 8.7 SAM-BA Boot Assistant 22						
9.	System Controller239.1Reset Controller259.2Clock Generator269.3Power Management Controller279.4Advanced Interrupt Controller279.5Debug Unit28						