

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	62
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x256c-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Number	Pin Name	Pin Type	Associated BSR Cells
9			INPUT
8	PA27DRXD/PCK3	IN/OUT	OUTPUT
7			CONTROL
6			INPUT
5	PA28/DTXD	IN/OUT	OUTPUT
4			CONTROL
3			INPUT
2	PA29/FIQ/SPI1_NPCS3	IN/OUT	OUTPUT
1			CONTROL

Table 12-2. SAM7X JTAG Boundary Scan Register (Continued)

15.4.1 Periodic Interval Timer Mode Register

Register Name:	: PIT_MR						
Access Type:	Read-w	rite					
31	30	29	28	27	26	25	24
-	—	_	_	—	—	PITIEN	PITEN
23	22	21	20	19	18	17	16
-	-	_	-		P	PIV	
15	14	13	12	11	10	9	8
			P	IV			
7	6	5	4	3	2	1	0
			Р	IV			

• PIV: Periodic Interval Value

Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to (PIV + 1).

• PITEN: Period Interval Timer Enabled

0 = The Periodic Interval Timer is disabled when the PIV value is reached.

1 = The Periodic Interval Timer is enabled.

• PITIEN: Periodic Interval Timer Interrupt Enable

0 = The bit PITS in PIT_SR has no effect on interrupt.

1 = The bit PITS in PIT_SR asserts interrupt.

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of the first address to access in the memory. It is possible, at any moment, to read the location in memory of the next transfer and the number of remaining transfers. The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The status for each channel is located in the peripheral status register. Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These control bits enable reading the pointer and counter registers safely without any risk of their changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX, RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.

RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

ENDTX flag is set when the PERIPH_TCR register reaches zero.

TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the peripheral status register.

22.3.2 Memory Pointers

Each peripheral is connected to the PDC by a receiver data channel and a transmitter data channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented by 1, 2 or 4, respectively for peripheral transfers.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is changed, and the PDC performs transfers using the new address.

22.3.3 Transfer Counters

There is one internal 16-bit transfer counter for each channel used to count the size of the block already transferred by its associated channel. These counters are decremented after each data transfer. When the counter reaches zero, the transfer is complete and the PDC stops transferring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated and the PDC counts transfers from the new value.

Programming the Next Counter/Pointer registers chains the buffers. The counters are decremented after each data transfer as stated above, but when the transfer counter reaches zero, the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the peripheral status register and can trigger an interrupt request to the AIC.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

22.3.4 Data Transfers

The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC which then requests access to the system bus. When access is granted, the PDC starts a read of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

22.4.7 PDC Transmit Next Pointer Register

Register Name:	PERIPH	_TNPR					
Access Type:	Read-wi	rite					
31	30	29	28	27	26	25	24
			TXN	IPTR			
23	22	21	20	19	18	17	16
			TXN	IPTR			
15	14	13	12	11	10	9	8
			TXN	IPTR			
7	6	5	4	3	2	1	0
			TXN	IPTR			

• TXNPTR: Transmit Next Pointer Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

22.4.8 PDC Transmit Next Counter Register

Register Name: Access Type:	PERIPH <u></u> Read-wr	_TNCR ite					
31	30	29	28	27	26	25	24
			-	-			
23	22	21	20	19	18	17	16
			-	-			
15	14	13	12	11	10	9	8
			IXT	NCR			
7	6	5	4	3	2	1	0
			IXT	NCR			

• TXNCR: Transmit Next Counter Value

TXNCR is the size of the next buffer to transmit.

23.8.12 AIC Interrupt Disable Command Register

Register Name: Access Type:	: AIC_IDC Write-on	R ly					
31	30	29	28	27	26	25	24
PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
23	22	21	20	19	18	17	16
PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
15	14	13	12	11	10	9	8
PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
7	6	5	4	3	2	1	0
PID7	PID6	PID5	PID4	PID3	PID2	SYS	FIQ

• FIQ, SYS, PID2-PID31: Interrupt Disable

0 = No effect.

1 = Disables corresponding interrupt.

23.8.13 AIC Interrupt Clear Command Register

Register Name: Access Type:	AIC_ICCF Write-only	R /					
31	30	29	28	27	26	25	24
PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
23	22	21	20	19	18	17	16
PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
15	14	13	12	11	10	9	8
PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
7	6	5	4	3	2	1	0
PID7	PID6	PID5	PID4	PID3	PID2	SYS	FIQ

• FIQ, SYS, PID2-PID31: Interrupt Clear

0 = No effect.

1 = Clears corresponding interrupt.

25.9.15 PMC Interrupt Mask Register

Register Name: Access Type:	: PMC_IM Read-on	IR Ily					
31	30	29	28	27	26	25	24
_	I	_	-	-	-	-	_
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
_	_	_	-	-	PCKRDY2	PCKRDY1	PCKRDY0
7	6	5	4	3	2	1	0
_	—	_	-	MCKRDY	LOCK	_	MOSCS

- MOSCS: Main Oscillator Status Interrupt Mask
- LOCK: PLL Lock Interrupt Mask
- MCKRDY: Master Clock Ready Interrupt Mask

• PCKRDYx: Programmable Clock Ready x Interrupt Mask

- 0 = The corresponding interrupt is enabled.
- 1 = The corresponding interrupt is disabled.

26.5.3 Debug Unit Interrupt Enable Register

Nama

Name.	0000_1						
Access Type:	Write-on	ly					
31	30	29	28	27	26	25	24
COMMRX	COMMTX	-	-	-	-	-	-
23	22	21	20	19	18	17	16
_	—	-	-	—	_	-	_
15	14	13	12	11	10	9	8
_	_		RXBUFF	TXBUFE	-	TXEMPTY	-
7	6	5	4	3	2	1	0
PARE	FRAME	OVRE	ENDTX	ENDRX	_	TXRDY	RXRDY

- RXRDY: Enable RXRDY Interrupt
- TXRDY: Enable TXRDY Interrupt
- ENDRX: Enable End of Receive Transfer Interrupt
- ENDTX: Enable End of Transmit Interrupt
- OVRE: Enable Overrun Error Interrupt
- FRAME: Enable Framing Error Interrupt
- PARE: Enable Parity Error Interrupt
- TXEMPTY: Enable TXEMPTY Interrupt
- TXBUFE: Enable Buffer Empty Interrupt
- RXBUFF: Enable Buffer Full Interrupt
- COMMTX: Enable COMMTX (from ARM) Interrupt
- COMMRX: Enable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Enables the corresponding interrupt.

• ARCH: Architecture Identifier

AR	СН	
Hex	Bin	Architecture
0x19	0001 1001	AT91SAM9xx Series
0x29	0010 1001	AT91SAM9XExx Series
0x34	0011 0100	AT91x34 Series
0x37	0011 0111	CAP7 Series
0x39	0011 1001	CAP9 Series
0x3B	0011 1011	CAP11 Series
0x40	0100 0000	AT91x40 Series
0x42	0100 0010	AT91x42 Series
0x55	0101 0101	AT91x55 Series
0x60	0110 0000	AT91SAM7Axx Series
0x61	0110 0001	AT91SAM7AQxx Series
0x63	0110 0011	AT91x63 Series
0x70	0111 0000	AT91SAM7Sxx Series
0x71	0111 0001	AT91SAM7XCxx Series
0x72	0111 0010	AT91SAM7SExx Series
0x73	0111 0011	AT91SAM7Lxx Series
0x75	0111 0101	AT91SAM7Xxx Series
0x92	1001 0010	AT91x92 Series
0xF0	1111 0000	AT75Cxx Series

• NVPTYP: Nonvolatile Program Memory Type

	NVPTYP		Memory
0	0	0	ROM
0	0	1	ROMless or on-chip Flash
1	0	0	SRAM emulating ROM
0	1	0	Embedded Flash Memory
			ROM and Embedded Flash Memory
0	1	1	NVPSIZ is ROM size NVPSIZ2 is Flash size

• EXT: Extension Flag

0 =Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

27.4.5 Synchronous Data Output

Controlling all parallel busses using several PIOs requires two successive write operations in the PIO_SODR and PIO_CODR registers. This may lead to unexpected transient values. The PIO controller offers a direct control of PIO outputs by single write access to PIO_ODSR (Output Data Status Register). Only bits unmasked by PIO_OWSR (Output Write Status Register) are written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER (Output Write Enable Register) and cleared by writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at 0x0.

27.4.6 Multi Drive Control (Open Drain)

Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This feature permits several drivers to be connected on the I/O line which is driven low only by each device. An external pull-up resistor (or enabling of the internal one) is generally required to guarantee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

27.4.7 Output Line Timings

Figure 27-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 27-4 also shows when the feedback in PIO_PDSR is available.

Figure 27-4. Output Line Timings

27.4.8 Inputs

The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This register indicates the level of the I/O lines regardless of their configuration, whether uniquely as an input or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

27.4.9 Input Glitch Filtering

Optional input glitch filters are independently programmable on each I/O line. When the glitch filter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically rejected, while a pulse with a duration of 1

28.6.3.1 Master Mode Block Diagram

29.5 Functional Description

29.5.1 Transfer format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure 29-4 on page 271).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure 29-3 on page 271).

- A high-to-low transition on the TWD line while TWCK is high defines the START condition.
- A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 29-3. START and STOP Conditions

Figure 29-4. Transfer Format

29.5.2 Modes of Operation

The TWI has two modes of operation:

- Master transmitter mode
- Master receiver mode

The TWI Control Register (TWI_CR) allows configuration of the interface in Master Mode. In this mode, it generates the clock according to the value programmed in the Clock Waveform Generator Register (TWI_CWGR). This register defines the TWCK signal completely, enabling the interface to be adapted to a wide range of clocks.

29.5.3 Master Transmitter Mode

After the master initiates a Start condition when writing into the Transmit Holding Register, TWI_THR, it sends a 7-bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer direction, 0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master polls the data line during this clock pulse and sets the Not Acknowledge bit (**NACK**) in the status register if the slave does not acknowledge the byte. As with the other status bits, an interrupt can be generated if enabled in the interrupt enable register (TWI_IER). If the slave acknowledges the byte, the data written in the TWI_THR, is then shifted in the internal shifter and transferred. When an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR. When no more data is written into the TWI_THR, the master generates a stop condition to end the transfer. The end of the complete transfer is marked by the TWI_TXCOMP bit set to one. See Figure 29-5, Figure 29-6, and Figure 29-7.

35.5.4 Conversion Results

When a conversion is completed, the resulting 10-bit digital value is stored in the Channel Data Register (ADC_CDR) of the current channel and in the ADC Last Converted Data Register (ADC_LCDR).

The channel EOC bit in the Status Register (ADC_SR) is set and the DRDY is set. In the case of a connected PDC channel, DRDY rising triggers a data transfer request. In any case, either EOC and DRDY can trigger an interrupt.

Reading one of the ADC_CDR registers clears the corresponding EOC bit. Reading ADC_LCDR clears the DRDY bit and the EOC bit corresponding to the last converted channel.

Figure 35-2. EOCx and DRDY Flag Behavior

Figure 36-10. Possible Initialization Procedure

36.7.2 CAN Controller Interrupt Handling

There are two different types of interrupts. One type of interrupt is a message-object related interrupt, the other is a system interrupt that handles errors or system-related interrupt sources.

All interrupt sources can be masked by writing the corresponding field in the CAN_IDR register. They can be unmasked by writing to the CAN_IER register. After a power-up reset, all interrupt sources are disabled (masked). The current mask status can be checked by reading the CAN_IMR register.

The CAN_SR register gives all interrupt source states.

The following events may initiate one of the two interrupts:

- Message object interrupt
 - Data registers in the mailbox object are available to the application. In Receive Mode, a new message was received. In Transmit Mode, a message was transmitted successfully.
 - A sent transmission was aborted.
- System interrupts
 - Bus off interrupt: The CAN module enters the bus off state.
 - Error passive interrupt: The CAN module enters Error Passive Mode.
 - Error Active Mode: The CAN module is neither in Error Passive Mode nor in Bus Off mode.
 - Warn Limit interrupt: The CAN module is in Error-active Mode, but at least one of its error counter value exceeds 96.
 - Wake-up interrupt: This interrupt is generated after a wake-up and a bus synchronization.
 - Sleep interrupt: This interrupt is generated after a Low-power Mode enable once all pending messages in transmission have been sent.
 - Internal timer counter overflow interrupt: This interrupt is generated when the internal timer rolls over.

36.8.8 CAN Timestamp Register

Name:	CAN_TI	MESTP					
Access Type:	Read-on	ly					
31	30	29	28	27	26	25	24
_	-	_	-	-	-	-	-
23	22	21	20	19	18	17	16
_	—	—	—	-	—	_	-
15	14	13	12	11	10	9	8
MTIMESTAMP15	MTIMESTAMP14	MTIMESTAMP13	MTIMESTAMP12	MTIMESTAMP11	MTIMESTAMP10	MTIMESTAMP9	MTIMESTAMP8
7	6	5	4	3	2	1	0
MTIMESTAMP7	MTIMESTAMP6	MTIMESTAMP5	MTIMESTAMP4	MTIMESTAMP3	MTIMESTAMP2	MTIMESTAMP1	MTIMESTAMP0

• MTIMESTAMPx: Timestamp

This field represents the internal CAN controller 16-bit timer value.

If the TEOF bit is cleared in the CAN_MR register, the internal Timer Counter value is captured in the MTIMESTAMP field at each start of frame. Else the value is captured at each end of frame. When the value is captured, the TSTP flag is set in the CAN_SR register. If the TSTP mask in the CAN_IMR register is set, an interrupt is generated while TSTP flag is set in the CAN_SR register. This flag is cleared by reading the CAN_SR register.

Note: The CAN_TIMESTP register is reset when the CAN is disabled then enabled thanks to the CANEN bit in the CAN_MR.

37.4 Programming Interface

37.4.1 Initialization

37.4.1.1 Configuration

Initialization of the EMAC configuration (e.g., loop-back mode, frequency ratios) must be done while the transmit and receive circuits are disabled. See the description of the network control register and network configuration register earlier in this document.

To change loop-back mode, the following sequence of operations must be followed:

- 1. Write to network control register to disable transmit and receive circuits.
- 2. Write to network control register to change loop-back mode.
- 3. Write to network control register to re-enable transmit or receive circuits.

Note: These writes to network control register cannot be combined in any way.

37.4.1.2 Receive Buffer List

Receive data is written to areas of data (i.e., buffers) in system memory. These buffers are listed in another data structure that also resides in main memory. This data structure (receive buffer queue) is a sequence of descriptor entries as defined in "Receive Buffer Descriptor Entry" on page 537. It points to this data structure.

Figure 37-2. Receive Buffer List

To create the list of buffers:

- 1. Allocate a number (n) of buffers of 128 bytes in system memory.
- 2. Allocate an area 2*n* words for the receive buffer descriptor entry in system memory and create *n* entries in this list. Mark all entries in this list as owned by EMAC, i.e., bit 0 of word 0 set to 0.
- 3. If less than 1024 buffers are defined, the last descriptor must be marked with the wrap bit (bit 1 in word 0 set to 1).
- 4. Write address of receive buffer descriptor entry to EMAC register receive_buffer queue pointer.
- 5. The receive circuits can then be enabled by writing to the address recognition registers and then to the network control register.

37.4.1.3 Transmit Buffer List

Transmit data is read from areas of data (the buffers) in system memory These buffers are listed in another data structure that also resides in main memory. This data structure (Transmit Buffer Queue) is a sequence of descriptor entries (as defined in Table 37-2 on page 539) that points to this data structure.

To create this list of buffers:

37.5.5 Receive Buffer Queue Pointer Register

Register Name:	EMAC_I	RBQP					
Access Type:	Read-wi	rite					
31	30	29	28	27	26	25	24
			AD	DR			
23	22	21	20	19	18	17	16
			AD	DR			
15	14	13	12	11	10	9	8
			AD	DR			
7	6	5	4	3	2	1	0
		AD	DR			_	_

This register points to the entry in the receive buffer queue (descriptor list) currently being used. It is written with the start location of the receive buffer descriptor list. The lower order bits increment as buffers are used up and wrap to their original values after either 1024 buffers or when the wrap bit of the entry is set.

Reading this register returns the location of the descriptor currently being accessed. This value increments as buffers are used. Software should not use this register for determining where to remove received frames from the queue as it constantly changes as new frames are received. Software should instead work its way through the buffer descriptor queue checking the used bits.

Receive buffer writes also comprise bursts of two words and, as with transmit buffer reads, it is recommended that bit 2 is always written with zero to prevent a burst crossing a 1K boundary, in violation of section 3.6 of the AMBA specification.

• ADDR: Receive buffer queue pointer address

Written with the address of the start of the receive queue, reads as a pointer to the current buffer being used.

37.5.18 Specific Address 2 Bottom Register

Register Name:	EMAC_S	SA2B					
Access Type:	Read-wr	ite					
31	30	29	28	27	26	25	24
			AD	DR			
23	22	21	20	19	18	17	16
			AD	DR			
15	14	13	12	11	10	9	8
			AD	DR			
7	6	5	4	3	2	1	0
			AD	DR			

ADDR

Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received.

		- I - J					
Register Name	: EMAC_	SA2T					
Access Type:	Read-w	vrite					
31	30	29	28	27	26	25	24
_	-	-	-	-	_	-	-
23	22	21	20	19	18	17	16
_	—	-	-	-	-	-	_
15	14	13	12	11	10	9	8
ADDR							
7	6	5	4	3	2	1	0
	ADDR						

37.5.19 Specific Address 2 Top Register

• ADDR

The most significant bits of the destination address, that is bits 47 to 32.

37.5.26.7 Alignment Errors Register

Register Name	EMAC_/	ALE					
Access Type:	Read-wr	rite					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	_	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	—	-	—	—	Ι	-
7	6	5	4	3	2	1	0
	ALE						

• ALE: Alignment Errors

An 8-bit register counting frames that are not an integral number of bytes long and have bad CRC when their length is truncated to an integral number of bytes and are between 64 and 1518 bytes in length (1536 if bit 8 set in network configuration register). This register is also incremented if a symbol error is detected and the frame is of valid length and does not have an integral number of bytes.

Register Name	: EMAC_I Bead-wr	DTF					
Access Type.	itead wi	ite					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11 TE	10	9	8
			D	11			
7	6	5	4	3	2	1	0
			D	TF			

37.5.26.8 Deferred Transmission Frames Register

• DTF: Deferred Transmission Frames

A 16-bit register counting the number of frames experiencing deferral due to carrier sense being active on their first attempt at transmission. Frames involved in any collision are not counted nor are frames that experienced a transmit underrun.

38.4.2 Main Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
1/(t _{CPMAIN})	Crystal Oscillator Frequency		3	16	20	MHz
C _{L1} , C _{L2}	Internal Load Capacitance $(C_{L1} = C_{L2})$	Integrated Load Capacitance ((XIN or XOUT))	34	40	46	pF
C _L ⁽⁶⁾	Equivalent Load Capacitance	Integrated Load Capacitance (XIN and XOUT in series)	17	20	23	pF
	Duty Cycle		30	50	70	%
t _{ST}	Startup Time	$\begin{split} V_{\text{DDPLL}} &= 1.2 \text{ to } 2V \\ C_{\text{S}} &= 3 \text{ pF}^{(1)} \text{ 1/(t}_{\text{CPMAIN}}) = 3 \text{ MHz} \\ C_{\text{S}} &= 7 \text{ pF}^{(1)} \text{ 1/(t}_{\text{CPMAIN}}) = 16 \text{ MHz} \\ C_{\text{S}} &= 7 \text{ pF}^{(1)} \text{ 1/(t}_{\text{CPMAIN}}) = 20 \text{ MHz} \end{split}$			14.5 1.4 1	ms
IDDST	Standby Current Consumption	Standby mode			1	μA
P _{ON}	Drive level	@3 MHz @8 MHz @16 MHz @20 MHz			15 30 50 50	μΩ
I _{DD ON}	Current dissipation	@3 MHz ⁽²⁾ @8 MHz ⁽³⁾ @16 MHz ⁽⁴⁾ @20 MHz ⁽⁵⁾		150 150 300 400	250 250 450 550	μA
C _{LEXT} ⁽⁶⁾	Maximum external capacitor on XIN and XOUT				10	pF

Table 38-9.	Main	Oscillator	Characteristics

Notes: 1. C_S is the shunt capacitance.

- 2. $R_S = 100-200 \Omega$; $C_{SHUNT} = 2.0 2.5 \text{ pF}$; $C_M = 2 1.5 \text{ fF}$ (typ, worst case) using 1 K ohm serial resistor on xout.
- 3. $R_{S} = 50-100 \Omega$; $C_{SHUNT} = 2.0 2.5 \text{ pF}$; $C_{M} = 4 3 \text{ fF}$ (typ, worst case).
- 4. $R_S = 25-50 \Omega$; $C_{SHUNT} = 2.5 3.0 \text{ pF}$; $C_M = 7 5 \text{ fF}$ (typ, worst case).
- 5. $R_S = 20-50 \ \Omega$; $C_{SHUNT} = 3.2 4.0 \ pF$; $C_M = 10 8 \ fF$ (typ, worst case).
- 6. C_L and C_{LEXT} \rightarrow

41.3.4.2 PIO: Electrical Characteristics on NRST, PA0-PA30 and PB0-PB26

When NRST or PA0 - PA30 or PB0 - PB26 are set as digital inputs with pull-up enabled, the voltage of the I/O stabilizes at VPull-up.

Vpull-up

VPull-up Min	VPull-up Max
VDDIO - 0.65 V	VDDIO - 0.45 V

This condition causes a leakage through VDDIO. This leakage is 45 μ A per pad in worst case at 3.3 V.

I	Lea	ka	ge
---	-----	----	----

Parameter	Тур	Max	
I Leakage at 3,3V	2.5 µA	45 µA	

Problem Fix/Workaround

It is recommended to use an external pull-up if needed.

41.3.4.3 PIO: Drive Low NRST, PA0-PA30 and PB0-PB26

When NRST or PA0 - PA30 or PB0 - PB26 are set as digital inputs with pull-up enabled, driving the I/O with an output impedance higher than 500 ohms may not drive the I/O to a logical zero. Problem Fix/Workaround

Output impedance must be lower than 500 ohms.

41.3.5 Pulse Width Modulation Controller (PWM)

41.3.5.1 PWM: Update when PWM_CCNTx = 0 or 1

If the Channel Counter Register value is 0 or 1, the Channel Period Register or Channel Duty Cycle Register is directly modified when writing the Channel Update Register. Problem Fix/Workaround

Check the Channel Counter Register before writing the update register.

41.3.5.2 PWM: Update when PWM_CPRDx = 0

When Channel Period Register equals 0, the period update is not operational. Problem Fix/Workaround

Do not write 0 in the period register.

41.3.5.3 PWM: Counter Start Value

In left aligned mode, the first start value of the counter is 0. For the other periods, the counter starts at 1. Problem Fix/Workaround

None.

41.3.5.4 PWM: Behavior of CHIDx Status Bits in the PWM_SR Register

Erratic behavior of the CHIDx status bit in the PWM_SR Register. When a channel is disabled by writing in the PWM_DIS Register just after enabling it (before completion of a Clock Period of the clock selected for the channel), the PWM line is internally disabled but the CHIDx status bit in the PWM_SR stays at 1. Problem Fix/Workaround

