
Microchip Technology - AT91SAM7X512-CU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM7®

Core Size 16/32-Bit

Speed 55MHz

Connectivity CANbus, Ethernet, I²C, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 62

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 1.95V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91sam7x512-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91sam7x512-cu-4431574
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

11.2.4.3 Exception Types

The ARM7TDMI supports five types of exception and a privileged processing mode for each type. The types of exceptions
are:

 fast interrupt (FIQ)

 normal interrupt (IRQ)

 memory aborts (used to implement memory protection or virtual memory)

 attempted execution of an undefined instruction

 software interrupts (SWIs)

Exceptions are generated by internal and external sources.

More than one exception can occur in the same time.

When an exception occurs, the banked version of R14 and the SPSR for the exception mode are used to save state.

To return after handling the exception, the SPSR is moved to the CPSR, and R14 is moved to the PC. This can be done
in two ways:

 by using a data-processing instruction with the S-bit set, and the PC as the destination

 by using the Load Multiple with Restore CPSR instruction (LDM)

11.2.5 ARM Instruction Set Overview

The ARM instruction set is divided into:

 Branch instructions

 Data processing instructions

 Status register transfer instructions

 Load and Store instructions

 Coprocessor instructions

 Exception-generating instructions

ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition code field (bit[31:28]).

Table 11-2 gives the ARM instruction mnemonic list.

Table 11-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move CDP Coprocessor Data Processing

ADD Add MVN Move Not

SUB Subtract ADC Add with Carry

RSB Reverse Subtract SBC Subtract with Carry

CMP Compare RSC Reverse Subtract with Carry

TST Test CMN Compare Negated

AND Logical AND TEQ Test Equivalence

EOR Logical Exclusive OR BIC Bit Clear

MUL Multiply ORR Logical (inclusive) OR

SMULL Sign Long Multiply MLA Multiply Accumulate

SMLAL Signed Long Multiply Accumulate UMULL Unsigned Long Multiply

MSR Move to Status Register UMLAL Unsigned Long Multiply Accumulate

B Branch MRS Move From Status Register

BX Branch and Exchange BL Branch and Link
41SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

117

PA18/SPI0_SPCK IN/OUT

INPUT

116 OUTPUT

115 CONTROL

114

PB9/EMDIO IN/OUT

INPUT

113 OUTPUT

112 CONTROL

111

PB8/EMDC IN/OUT

INPUT

110 OUTPUT

109 CONTROL

108

PB14/ERX3/SPI0_NPCS2 IN/OUT

INPUT

107 OUTPUT

106 CONTROL

105

PB13/ERX2/SPI0_NPCS1 IN/OUT

INPUT

104 OUTPUT

103 CONTROL

102

PB6/ERX1 IN/OUT

INPUT

101 OUTPUT

100 CONTROL

99

PB5/ERX0 IN/OUT

INPUT

98 OUTPUT

97 CONTROL

96

PB15/ERXDV/ECRSDV IN/OUT

INPUT

95 OUTPUT

94 CONTROL

93

PB17/ERXCK/SPI0_NPCS3 IN/OUT

INPUT

92 OUTPUT

91 CONTROL

90

PB7/ERXER IN/OUT

INPUT

89 OUTPUT

88 CONTROL

87

PB12/ETXER/TCLK0 IN/OUT

INPUT

86 OUTPUT

85 CONTROL

84

PB0/ETXCK/EREFCK/PCK0
PB0/ETXCK/ERE

FCK/PCK0

INPUT

83 OUTPUT

82 CONTROL

Table 12-2. SAM7X JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells
50SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

13.2.4.5 Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR:

 If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted,
depending on the programming of the field ERSTL. However, the resulting low level on NRST does not result in a
User Reset state.

 If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is enabled by default
and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset controller.

Figure 13-8. Watchdog Reset

Only if
WDRPROC = 0

SLCK

periph_nreset

proc_nreset

wd_fault

NRST
(nrst_out)

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

MCK

Processor Startup
= 3 cycles

Any
Freq.

RSTTYP Any XXX 0x2 = Watchdog Reset
62SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

15. Periodic Interval Timer (PIT)

15.1 Overview

The Periodic Interval Timer (PIT) provides the operating system’s scheduler interrupt. It is designed to offer maximum
accuracy and efficient management, even for systems with long response time.

15.2 Block Diagram

Figure 15-1. Periodic Interval Timer

20-bit
Counter

MCK/16

PIV

PIT_MR

CPIV PIT_PIVR PICNT

12-bit
Adder

0

0

read PIT_PIVR

CPIV PICNTPIT_PIIR

PITSPIT_SR

set

reset

PITIEN

PIT_MR

pit_irq

10

10

MCK

Prescaler

= ?
75SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Figure 18-3. Internal Memory Mapping

18.3.2.2 Internal Memory Area 0

The first 32 bytes of Internal Memory Area 0 contain the ARM processor exception vectors, in particular, the Reset
Vector at address 0x0.

Before execution of the remap command, the on-chip Flash is mapped into Internal Memory Area 0, so that the
ARM7TDMI reaches an executable instruction contained in Flash. After the remap command, the internal SRAM at
address 0x0020 0000 is mapped into Internal Memory Area 0. The memory mapped into Internal Memory Area 0 is
accessible in both its original location and at address 0x0.

18.3.3 Remap Command

After execution, the Remap Command causes the Internal SRAM to be accessed through the Internal Memory Area 0.

As the ARM vectors (Reset, Abort, Data Abort, Prefetch Abort, Undefined Instruction, Interrupt, and Fast Interrupt) are
mapped from address 0x0 to address 0x20, the Remap Command allows the user to redefine dynamically these vectors
under software control.

The Remap Command is accessible through the Memory Controller User Interface by writing the MC_RCR (Remap
Control Register) RCB field to one.

The Remap Command can be cancelled by writing the MC_RCR RCB field to one, which acts as a toggling command.
This allows easy debug of the user-defined boot sequence by offering a simple way to put the chip in the same
configuration as after a reset.

18.3.4 Abort Status

There are two reasons for an abort to occur:

 access to an undefined address

 an access to a misaligned address.

When an abort occurs, a signal is sent back to all the masters, regardless of which one has generated the access.
However, only the ARM7TDMI can take an abort signal into account, and only under the condition that it was generating
an access. The Peripheral DMA Controller and the EMAC do not handle the abort input signal. Note that the connections
are not represented in Figure 18-1.

To facilitate debug or for fault analysis by an operating system, the Memory Controller integrates an Abort Status register
set.

The full 32-bit wide abort address is saved in MC_AASR. Parameters of the access are saved in MC_ASR and include:

 the size of the request (field ABTSZ)

256M Bytes

Internal Memory Area 0

Undefined Areas
(Abort)

0x000F FFFF

0x001F FFFF

0x002F FFFF

0x0FFF FFFF

1 M Bytes

1 M Bytes

1 M Bytes

252 M Bytes

Internal Memory Area 1
Internal Flash

Internal Memory Area 2
Internal SRAM

0x0000 0000

0x0010 0000

0x0020 0000

0x0030 0000
Internal Memory Area 3

Internal ROM
0x003F FFFF
0x0040 0000

1 M Bytes
92SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

19.3.1 MC Flash Mode Register

Register Name: MC_FMR

Access Type: Read-write

Offset: (EFC0) 0x60

Offset: (EFC1) 0x70

• FRDY: Flash Ready Interrupt Enable

0: Flash Ready does not generate an interrupt.

1: Flash Ready generates an interrupt.

• LOCKE: Lock Error Interrupt Enable

0: Lock Error does not generate an interrupt.

1: Lock Error generates an interrupt.

• PROGE: Programming Error Interrupt Enable

0: Programming Error does not generate an interrupt.

1: Programming Error generates an interrupt.

• NEBP: No Erase Before Programming

0: A page erase is performed before programming.

1: No erase is performed before programming.

• FWS: Flash Wait State

This field defines the number of wait states for read and write operations:

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

FMCN

15 14 13 12 11 10 9 8

– – – – – – FWS

7 6 5 4 3 2 1 0

NEBP – – – PROGE LOCKE – FRDY

FWS Read Operations Write Operations

0 1 cycle 2 cycles

1 2 cycles 3 cycles

2 3 cycles 4 cycles

3 4 cycles 4 cycles
108SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Figure 23-10. Fast Forcing

Source 0 _ FIQ

Input Stage

Automatic Clear

Input Stage

Automatic Clear

Source n

AIC_IPR

AIC_IMR

AIC_FFSR

AIC_IPR

AIC_IMR

Priority
Manager

nFIQ

nIRQ

Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.

Read FVR if Fast Forcing is
disabled on Sources 1 to 31.
154SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without reprogramming the Mode
Register. Data written in SPI_TDR is 32 bits wide and defines the real data to be transmitted and the peripheral it is
destined to. Using the PDC in this mode requires 32-bit wide buffers, with the data in the LSBs and the PCS and
LASTXFER fields in the MSBs, however the SPI still controls the number of bits (8 to16) to be transferred through MISO
and MOSI lines with the chip select configuration registers. This is not the optimal means in term of memory size for the
buffers, but it provides a very effective means to exchange data with several peripherals without any intervention of the
processor.

28.6.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip Select lines, NPCS0 to
NPCS3 with an external logic. This can be enabled by writing the PCSDEC bit at 1 in the Mode Register (SPI_MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e. driven
low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of either the Mode Register or
the Transmit Data Register (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when not processing any
transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated, each chip select defines the
characteristics of up to four peripherals. As an example, SPI_CRS0 defines the characteristics of the externally decoded
peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible
peripherals on the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.

28.6.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in SPI_TDR is completed, the NPCS lines all
rise. This might lead to runtime error if the processor is too long in responding to an interrupt, and thus might lead to
difficulties for interfacing with some serial peripherals requiring the chip select line to remain active during a full set of
transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the CSAAT bit (Chip Select
Active After Transfer) at 1. This allows the chip select lines to remain in their current state (low = active) until transfer to
another peripheral is required.

Figure 28-8 shows different peripheral deselection cases and the effect of the CSAAT bit.
253SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

31. Synchronous Serial Controller (SSC)

31.1 Overview

The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link with external devices. It
supports many serial synchronous communication protocols generally used in audio and telecom applications such as
I2S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The receiver and the transmitter
each interface with three signals: the TD/RD signal for data, the TK/RK signal for the clock and the TF/RF signal for the
Frame Sync. The transfers can be programmed to start automatically or on different events detected on the Frame Sync
signal.

The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits permit a continuous high bit
rate data transfer without processor intervention.

Featuring connection to two PDC channels, the SSC permits interfacing with low processor overhead to the following:

 CODEC’s in master or slave mode

 DAC through dedicated serial interface, particularly I2S

 Magnetic card reader

31.2 Block Diagram

Figure 31-1. Block Diagram

SSC Interface PIO

PDC

APB Bridge

MCK

ASB

APB

TF

TK

TD

RF

RK

RD
Interrupt Control

SSC Interrupt

PMC
337SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

31.8.2 SSC Clock Mode Register

Name: SSC_CMR

Access Type: Read-write

• DIV: Clock Divider

0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The mini-
mum bit rate is MCK/2 x 4095 = MCK/8190.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – DIV

7 6 5 4 3 2 1 0

DIV
353SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

31.8.14 SSC Interrupt Enable Register

Name: SSC_IER

Access Type: Write-only

• TXRDY: Transmit Ready Interrupt Enable

0: No effect.

1: Enables the Transmit Ready Interrupt.

• TXEMPTY: Transmit Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Empty Interrupt.

• ENDTX: End of Transmission Interrupt Enable

0: No effect.

1: Enables the End of Transmission Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Buffer Empty Interrupt

• RXRDY: Receive Ready Interrupt Enable

0: No effect.

1: Enables the Receive Ready Interrupt.

• OVRUN: Receive Overrun Interrupt Enable

0: No effect.

1: Enables the Receive Overrun Interrupt.

• ENDRX: End of Reception Interrupt Enable

0: No effect.

1: Enables the End of Reception Interrupt.

• RXBUFF: Receive Buffer Full Interrupt Enable

0: No effect.

1: Enables the Receive Buffer Full Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY
368SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Figure 32-5. Capture Mode

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
C

C
ap

tu
re

R

eg
is

te
r

A

C
ap

tu
re

R

eg
is

te
r

B
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

A
B

E
T

R
G

S
W

T
R

G

E
T

R
G

E
D

G
C

P
C

T
R

G

TC1_IMR

T
rig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

S
Y

N
C

1

M
T

IO
B

T
IO

A

M
T

IO
A

LD
R

A

LD
B

S
T

O
P

If
R

A
 is

 n
ot

 lo
ad

ed
or

 R
B

 is
 L

oa
de

d
If

R
A

 is
 L

oa
de

d

LD
B

D
IS

CPCS

IN
T

E
dg

e
D

et
ec

to
r

E
dg

e
D

et
ec

to
r

LD
R

B

E
dg

e
D

et
ec

to
r

C
LK

O
V

F

R
E

S
E

T

T
im

er
/C

ou
nt

er
 C

ha
nn

el
381SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

32.5.12 External Event/Trigger Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOB. The
external event selected can then be used as a trigger.

The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines the trigger edge for
each of the possible external triggers (rising, falling or both). If EEVTEDG is cleared (none), no external event is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output and the compare register
B is not used to generate waveforms and subsequently no IRQs. In this case the TC channel can only generate a
waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in TC_CMR.

As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can also be
used as a trigger depending on the parameter WAVSEL.

32.5.13 Output Controller

The output controller defines the output level changes on TIOA and TIOB following an event. TIOB control is used only if
TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare. RA compare controls
TIOA and RB compare controls TIOB. Each of these events can be programmed to set, clear or toggle the output as
defined in the corresponding parameter in TC_CMR.
388SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

To prevent overwriting the PWM_CUPDx by software, the user can use status events in order to synchronize his
software. Two methods are possible. In both, the user must enable the dedicated interrupt in PWM_IER at PWM
Controller level.

The first method (polling method) consists of reading the relevant status bit in PWM_ISR Register according to the
enabled channel(s). See Figure 33-7.

The second method uses an Interrupt Service Routine associated with the PWM channel.

Note: Reading the PWM_ISR register automatically clears CHIDx flags.

Figure 33-7. Polling Method

Note: Polarity and alignment can be modified only when the channel is disabled.

33.5.3.4 Interrupts

Depending on the interrupt mask in the PWM_IMR register, an interrupt is generated at the end of the corresponding
channel period. The interrupt remains active until a read operation in the PWM_ISR register occurs.

A channel interrupt is enabled by setting the corresponding bit in the PWM_IER register. A channel interrupt is disabled
by setting the corresponding bit in the PWM_IDR register.

Writing in PWM_CUPDx
The last write has been taken into account

CHIDx = 1

Writing in CPD field
Update of the Period or Duty Cycle

PWM_ISR Read
Acknowledgement and clear previous register state

YES
414SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

34.5.3.2 Entering Attached State

When no device is connected, the USB DP and DM signals are tied to GND by 15 KΩ pull-down resistors integrated in
the hub downstream ports. When a device is attached to a hub downstream port, the device connects a 1.5 KΩ pull-up
resistor on DP. The USB bus line goes into IDLE state, DP is pulled up by the device 1.5 KΩ resistor to 3.3V and DM is
pulled down by the 15 KΩ resistor of the host.

After pullup connection, the device enters the powered state. In this state, the UDPCK and MCK must be enabled in the
Power Management Controller. The transceiver can remain disabled.

34.5.3.3 From Powered State to Default State

After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmaskable flag ENDBUSRES is
set in the register UDP_ISR and an interrupt is triggered.

Once the ENDBUSRES interrupt has been triggered, the device enters Default State. In this state, the UDP software
must:

 Enable the default endpoint, setting the EPEDS flag in the UDP_CSR[0] register and, optionally, enabling the
interrupt for endpoint 0 by writing 1 to the UDP_IER register. The enumeration then begins by a control transfer.

 Configure the interrupt mask register which has been reset by the USB reset detection

 Enable the transceiver clearing the TXVDIS flag in the UDP_TXVC register.

In this state UDPCK and MCK must be enabled.

Warning: Each time an ENDBUSRES interrupt is triggered, the Interrupt Mask Register and UDP_CSR registers have
been reset.

34.5.3.4 From Default State to Address State

After a set address standard device request, the USB host peripheral enters the address state.

Warning: Before the device enters in address state, it must achieve the Status IN transaction of the control transfer, i.e.,
the UDP device sets its new address once the TXCOMP flag in the UDP_CSR[0] register has been received and cleared.

To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STAT register, sets its new
address, and sets the FEN bit in the UDP_FADDR register.

34.5.3.5 From Address State to Configured State

Once a valid Set Configuration standard request has been received and acknowledged, the device enables endpoints
corresponding to the current configuration. This is done by setting the EPEDS and EPTYPE fields in the UDP_CSRx
registers and, optionally, enabling corresponding interrupts in the UDP_IER register.

34.5.3.6 Entering in Suspend State

When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the UDP_ISR register is set. This
triggers an interrupt if the corresponding bit is set in the UDP_IMR register.This flag is cleared by writing to the UDP_ICR
register. Then the device enters Suspend Mode.

In this state bus powered devices must drain less than 500uA from the 5V VBUS. As an example, the microcontroller
switches to slow clock, disables the PLL and main oscillator, and goes into Idle Mode. It may also switch off other devices
on the board.

The USB device peripheral clocks can be switched off. Resume event is asynchronously detected. MCK and UDPCK
can be switched off in the Power Management controller and the USB transceiver can be disabled by setting the TXVDIS
field in the UDP_TXVC register.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral.
Switching off MCK for the UDP peripheral must be one of the last operations after writing to the UDP_TXVC and
acknowledging the RXSUSP.

34.5.3.7 Receiving a Host Resume

In suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver and clocks are disabled
(however the pullup shall not be removed).
444SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

34.6.12 UDP Transceiver Control Register

Register Name: UDP_ TXVC

Access Type: Read-write

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write opera-
tions to the UDP registers including the UDP_TXCV register.

• TXVDIS: Transceiver Disable

When UDP is disabled, power consumption can be reduced significantly by disabling the embedded transceiver. This can be
done by setting TXVDIS field.

To enable the transceiver, TXVDIS must be cleared.

NOTE: If the USB pullup is not connected on DP, the user should not write in any UDP register other than the UDP_ TXVC regis-
ter. This is because if DP and DM are floating at 0, or pulled down, then SE0 is received by the device with the consequence of a
USB Reset.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXVDIS

7 6 5 4 3 2 1 0

– – – – – – – –
462SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

36.6 CAN Controller Features

36.6.1 CAN Protocol Overview

The Controller Area Network (CAN) is a multi-master serial communication protocol that efficiently supports real-time
control with a very high level of security with bit rates up to 1 Mbit/s.

The CAN protocol supports four different frame types:

 Data frames: They carry data from a transmitter node to the receiver nodes. The overall maximum data frame
length is 108 bits for a standard frame and 128 bits for an extended frame.

 Remote frames: A destination node can request data from the source by sending a remote frame with an identifier
that matches the identifier of the required data frame. The appropriate data source node then sends a data frame
as a response to this node request.

 Error frames: An error frame is generated by any node that detects a bus error.

 Overload frames: They provide an extra delay between the preceding and the successive data frames or remote
frames.

The Atmel CAN controller provides the CPU with full functionality of the CAN protocol V2.0 Part A and V2.0 Part B. It
minimizes the CPU load in communication overhead. The Data Link Layer and part of the physical layer are
automatically handled by the CAN controller itself.

The CPU reads or writes data or messages via the CAN controller mailboxes. An identifier is assigned to each mailbox.
The CAN controller encapsulates or decodes data messages to build or to decode bus data frames. Remote frames,
error frames and overload frames are automatically handled by the CAN controller under supervision of the software
application.

36.6.2 Mailbox Organization

The CAN module has 8 buffers, also called channels or mailboxes. An identifier that corresponds to the CAN identifier is
defined for each active mailbox. Message identifiers can match the standard frame identifier or the extended frame
identifier. This identifier is defined for the first time during the CAN initialization, but can be dynamically reconfigured later
so that the mailbox can handle a new message family. Several mailboxes can be configured with the same ID.

Each mailbox can be configured in receive or in transmit mode independently. The mailbox object type is defined in the
MOT field of the CAN_MMRx register.

36.6.2.1 Message Acceptance Procedure

If the MIDE field in the CAN_MIDx register is set, the mailbox can handle the extended format identifier; otherwise, the
mailbox handles the standard format identifier. Once a new message is received, its ID is masked with the CAN_MAMx
value and compared with the CAN_MIDx value. If accepted, the message ID is copied to the CAN_MIDx register.
484SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

36.6.4.5 Fault Confinement

To distinguish between temporary and permanent failures, every CAN controller has two error counters: REC (Receive
Error Counter) and TEC (Transmit Error Counter). The two counters are incremented upon detected errors and are
decremented upon correct transmissions or receptions, respectively. Depending on the counter values, the state of the
node changes: the initial state of the CAN controller is Error Active, meaning that the controller can send Error Active
flags. The controller changes to the Error Passive state if there is an accumulation of errors. If the CAN controller fails or
if there is an extreme accumulation of errors, there is a state transition to Bus Off.

Figure 36-7. Line Error Mode

An error active unit takes part in bus communication and sends an active error frame when the CAN controller detects an
error.

An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit waits before initiating further
transmission.

A bus off unit is not allowed to have any influence on the bus.

For fault confinement, two errors counters (TEC and REC) are implemented. These counters are accessible via the
CAN_ECR register. The state of the CAN controller is automatically updated according to these counter values. If the
CAN controller is in Error Active state, then the ERRA bit is set in the CAN_SR register. The corresponding interrupt is
pending while the interrupt is not masked in the CAN_IMR register. If the CAN controller is in Error Passive Mode, then
the ERRP bit is set in the CAN_SR register and an interrupt remains pending while the ERRP bit is set in the CAN_IMR
register. If the CAN is in Bus Off Mode, then the BOFF bit is set in the CAN_SR register. As for ERRP and ERRA, an
interrupt is pending while the BOFF bit is set in the CAN_IMR register.

When one of the error counters values exceeds 96, an increased error rate is indicated to the controller through the
WARN bit in CAN_SR register, but the node remains error active. The corresponding interrupt is pending while the
interrupt is set in the CAN_IMR register.

Refer to the Bosch CAN specification v2.0 for details on fault confinement.

36.6.4.6 Error Interrupt Handler

WARN, BOFF, ERRA and ERRP (CAN_SR) represent the current status of the CAN bus and are not latched. They
reflect the current TEC and REC (CAN_ECR) values as described in Section 36.6.4.5 “Fault Confinement” on page 492.

Based on that, if these bits are used as an interrupt, the user can enter into an interrupt and not see the corresponding
status register if the TEC and REC counter have changed their state. When entering Bus Off Mode, the only way to exit
from this state is 128 occurrences of 11 consecutive recessive bits or a CAN controller reset.

In Error Active Mode, the user reads:

 ERRA =1

ERROR
ACTIVE

ERROR
PASSIVE BUS OFF

TEC > 255

Init

TEC < 127
and

REC < 127

TEC >127
or

REC > 127

128 occurences of 11 consecutive recessive bits
or

CAN controller reset
492SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

Figure 36-15. Transmitting Messages

36.7.3.6 Remote Frame Handling

Producer/consumer model is an efficient means of handling broadcasted messages. The push model allows a producer
to broadcast messages; the pull model allows a customer to ask for messages.

Figure 36-16. Producer / Consumer Model

In Pull Mode, a consumer transmits a remote frame to the producer. When the producer receives a remote frame, it
sends the answer accepted by one or many consumers. Using transmit and receive mailboxes, a consumer must
dedicate two mailboxes, one in Transmit Mode to send remote frames, and at least one in Receive Mode to capture the
producer’s answer. The same structure is applicable to a producer: one reception mailbox is required to get the remote
frame and one transmit mailbox to answer.

Mailboxes can be configured in Producer or Consumer Mode. A lonely mailbox can handle the remote frame and the
answer. With 8 mailboxes, the CAN controller can handle 8 independent producers/consumers.

MTCR
(CAN_MCRx)

MRDY
(CAN_MSRx)

CAN BUS MBx message

Reading CAN_MSRx

Writing CAN_MDHx &
 CAN_MDLx

MBx message

MACR
(CAN_MCRx)

Abort MBx message Try to Abort MBx message

MABT
(CAN_MSRx)

CAN Data Frame

CAN Remote Frame

CAN Data Frame

Indication(s)
Request

Request(s)Indications

Response

Confirmation(s)

PUSH MODEL

PULL MODEL

Producer

Producer

Consumer

Consumer
501SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

9.6 Periodic Interval Timer . 28

9.7 Watchdog Timer . 28

9.8 Real-time Timer . 28

9.9 PIO Controllers . 28

9.10 Voltage Regulator Controller. 29

10. Peripherals . 30
10.1 User Interface . 30

10.2 Peripheral Identifiers . 30

10.3 Peripheral Multiplexing on PIO Lines . 31

10.4 PIO Controller A Multiplexing . 32

10.5 PIO Controller B Multiplexing . 33

10.6 Ethernet MAC . 34

10.7 Serial Peripheral Interface . 34

10.8 Two-wire Interface . 34

10.9 USART . 35

10.10 Serial Synchronous Controller . 35

10.11 Timer Counter . 35

10.12 Pulse Width Modulation Controller . 36

10.13 USB Device Port . 36

10.14 CAN Controller . 36

10.15 Analog-to-Digital Converter. 37

11. ARM7TDMI Processor Overview . 38
11.1 Overview . 38

11.2 ARM7TDMI Processor . 39

12. Debug and Test Features . 44
12.1 Description . 44

12.2 Block Diagram. 44

12.3 Application Examples . 45

12.4 Debug and Test Pin Description . 46

12.5 Functional Description . 46

13. Reset Controller (RSTC) . 55
13.1 Block Diagram. 55

13.2 Functional Description . 56

13.3 Reset Controller (RSTC) User Interface . 65

14. Real-time Timer (RTT) . 69
14.1 Overview . 69

14.2 Block Diagram. 69

14.3 Functional Description . 69

14.4 Real-time Timer (RTT) User Interface . 71

15. Periodic Interval Timer (PIT) . 75
15.1 Overview . 75

15.2 Block Diagram. 75

15.3 Functional Description . 76

15.4 Periodic Interval Timer (PIT) User Interface . 77

16. Watchdog Timer (WDT) . 82
657SAM7X Series [DATASHEET]
6120K–ATARM–11-Feb-14

