

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C
Peripherals	POR, Temp Sensor, WDT
Number of I/O	20
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	Slope A/D
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic14000-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the Timer0 overflow and peripheral interrupts. Figure 4-5 shows the bits for the INTCON register.

Note: The TOIF will be set by the specified condition even if the corresponding Interrupt Enable Bit is cleared (interrupt disabled) or the GIE bit is cleared (all interrupts disabled). Before enabling interrupt, clear the interrupt flag, to ensure that the program does not immediately branch to the peripheral interrupt service routine

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Register: INTCON W: Writable
GIE	PEIE	TOIE	r	r	TOIF	r	r	Address: 0Bh or 8Bh R: Readable POR value: 0000 000xb U: Unimplemented,
bit7							bit0	read as '0' Reserved. This bit should be programmed as '0'. Use of this bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products. Reserved. This bit should be programmed as '0'. Use of this bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products. TOIF: TMR0 overflow interrupt flag 1 = The TMR0 has overflowed Must be cleared by software 0 = TMR0 did not overflow Reserved. This bit should be programmed as '0'. Use of this bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products.
								Reserved. This bit should be programmed as '0'. Use of this bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products.
								TOIE: TMR0 interrupt enable bit 1 = Enables TOIF interrupt
								0 = Disables T0IF interrupt
	L							PEIE: Peripheral interrupt enable bit
								1 = Enables all un-masked peripheral interrupts0 = Disables all peripheral interrupts
								GIE: Global interrupt enable
								1 = Enables all un-masked interrupts 0 = Disables all interrupts

FIGURE 4-5: INTCON REGISTER

4.2.2.6 PCON REGISTER

The Power Control (PCON) register status contains 2 flag bits to allow differentiation between a Power-on Reset, an external MCLR reset, WDT reset, or low-voltage condition (Figure 4-8).

These bits are cleared on POR. The user must set these bits following POR. On a subsequent reset if POR is cleared, this is an indication that the reset was due to a power-on reset condition.

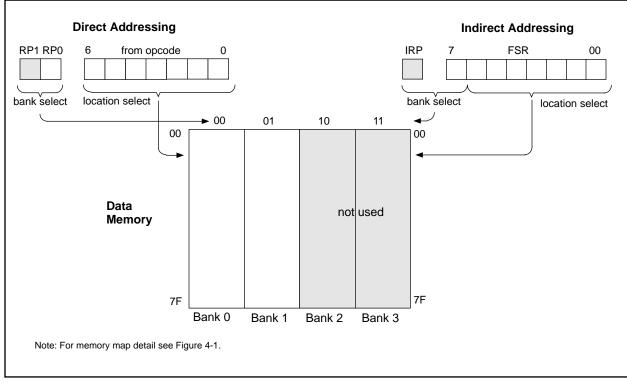
Note: $\overline{\text{LVD}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if $\overline{\text{LVD}}$ is cleared, indicating a low voltage condition has occurred.

R/W R/W R/W U U U U U W: Writable Register: PCON POR LVD r Readable Address: 8Eh R: Unimplemented, bit7 bit0 POR value: U: read as '0' 0000_000xb **LVD:** Low Voltage Detect Flag 1 = A low-voltage detect condition has not occurred. 0 = A low-voltage detect condition has occurred. Software must set this bit after a power-on-reset condition has occurred. **POR:** Power on Reset Flag 1 = A power on reset condition has not occurred. Reset must be due to some other source (WDT, MCLR). 0 = A power on reset condition has occurred. Software must set this bit after a power-on-reset condition has occurred. Unimplemented. Read as '0' Reserved. Bit 7 is reserved. This bit should be programmed as '0'.

FIGURE 4-8: PCON REGISTER

4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-10. However, IRP is not used in the PIC14000.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
			;yes continue

CONTINUE:

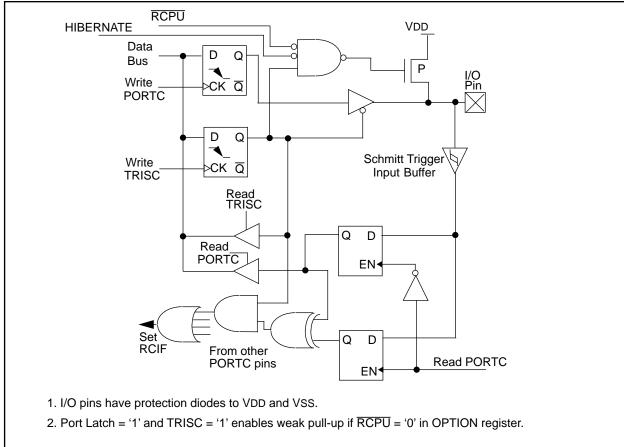


FIGURE 4-10: INDIRECT/INDIRECT ADDRESSING

TABLE 5-1: PORT RC0 PIN CONFIGURATION SUMMARY

RC0 Pin Configuration	TRISC<0>	RCPU OPTION<7>	CMAOE CMCON<1>	Comment
Digital Input (weak pull-up)	1	0	0	
Digital Input (no pull-up)	1	1	0	
Digital Output	0	Х	0	
Analog Output	0	Х	1	Must clear TRISC<0> to disable pull-up when used as an analog output.

FIGURE 5-4: BLOCK DIAGRAM OF PORTC<5:4> PINS

If the CMBOE bit (CMCON<5>) is set, the RD3/REFB pin becomes the programmable reference B output and pin RD2/CMPB becomes the comparator B output.

Note:	Setting CMBOE changes the definition of
	RD3/REFB and RD2/CMPB, bypassing
	the PORTD data and TRISD register set-
	tings.

PORTD<1:0> also serve multiple functions. These pins act as the I^2C data and clock lines when the I^2C module is enabled.

The TRISD register controls the direction of the Port D pins. A '1' in each location configures the corresponding port pin as an input. Upon reset, this register sets to FFh, meaning all PORTD pins are initially inputs. The data register should be initialized prior to configuring the port as outputs.

Unused inputs should not be left floating to avoid leakage currents. All pins have input protection diodes to VDD and VSS.

EXAN	IPLE 5-3:	INITIALIZING PORTD			
CLRF	PORTD	; Initialize PORTD data			
		; latches before setting			
		; the data direction			
		; register			
BSF	STATUS, RPO	;Select Bankl			
MOVLW	0xFF	; Value used to initialize			
		;data direction			
MOVWF	TRISD	;Set RD<7:0> as inputs			

5.4 <u>I/O Programming Considerations</u>

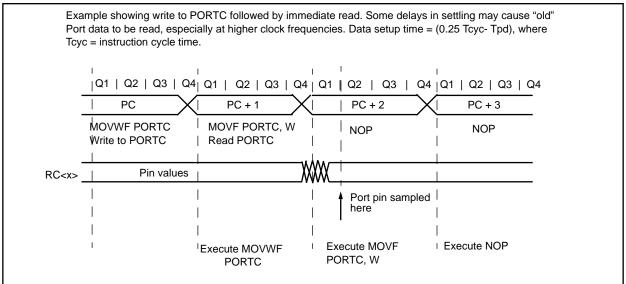
5.4.1 BI-DIRECTIONAL I/O PORTS

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. Some instructions operate internally as read-modify-write. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation, and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTC will cause all eight bits of PORTC to be read into the CPU. Then the BSF operation takes place on bit5 and PORTC is written to the output latches. If another bit of PORTC is used as a bi-directional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

A pin actively outputting a LOW or HIGH should not be driven from external devices at the same time in order to change the level on this pin ("wire-or", "wire-and"). The resulting high output currents may damage the chip.

Example 5-4 shows the effect of two sequential read modify write instructions (ex. ${\tt BCF}\,,\ {\tt BSF},$ etc.) on an I/O Port.

EXAMPLE 5-4: READ MODIFY WRITE INSTRUCTIONS ON AN I/O PORT


; Initial PORT settings:	PORTC<7:4> Inputs
; ;	PORTC<3:0> Outputs
; PORTC<7:6> have externa	l pull-up and are not
; connected to other circ	uitry
;	
;	PORT latch PORT pins
;	
BCF PORTC, 7	;01pp pppp 11pp pppp
BCF PORTC, 6	;10pp pppp 11pp pppp
BSF STATUS, RPO	;
BCF TRISC, 7	;10pp pppp 11pp pppp
BCF TRISC, 6	;10pp pppp 10pp pppp
;	
;Note that the user may	have expected the pin
; values to be 00pp pppp.	The 2nd BCF caused
;RC7 to be latched as th	e pin value (High).

© 1996 Microchip Technology Inc.

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle. Therefore, care must be exercised if a write operation is followed by a read operation on the same I/O port.

The sequence of instructions should be such to allow the pin voltage to stabilize before the next instruction which causes that port to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-13: SUCCESSIVE I/O OPERATION

7.5.1.1 ADDRESSING

Once the I²C module has been enabled, the I²C waits for a START to occur. Following the START, the 8-bits are shifted into the I²CSR. All incoming bits are sampled with the rising edge of the clock (SCL) line. The I²CSR<7:1> is compared to the I²CADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and I²COV bits are clear, the following things happen:

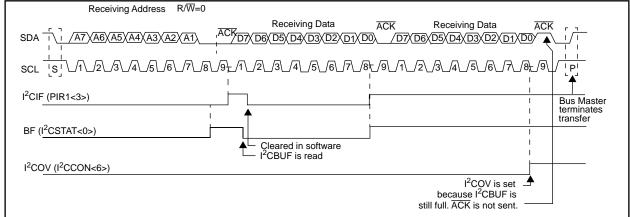
- I²CSR loaded into I²CBUF
- Buffer Full (BF) bit is set
- ACK pulse is generated
- I²C Interrupt Flag (I²CIF) is set (interrupt is generated if enabled (I²CIE set) on falling edge of ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 7-5). The five most significant bits (MSbs) of the first address byte specify if this is a 10-bit address. The R/W bit (bit 0) must specify a write, so the slave device will received the second address byte. For a 10-bit address the first byte would equal '1 1 1 1 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address are as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (I²CIF, BF and UA are set).
- Update I²CADD with second (low) byte of address (clears UA and releases SCL line).
- 3. Read I²CBUF (clears BF) and clear I²CIF.

- 4. Receive second (low) byte of address (I²CIF, BF and UA are set).
- Update I²CADD with first (high) byte of address (clears UA, if match releases SCL line).
- 6. Read I²CBUF (clears BF) and clear I²CIF
- 7. Receive Repeated START.
- 8. Receive first (high) byte of address (I²CIF and BF are set).
- 9. Read I²CBUF (clears BF) and clear I²CIF.

7.5.1.2 RECEPTION


When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the I²CSTAT register is cleared. The received address is loaded into the I²CBUF.

When the address byte overflow condition exists then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either the BF bit (I²CSTAT<0>) is set or the I²COV bit (I²CCON<6>) is set (Figure 7-14).

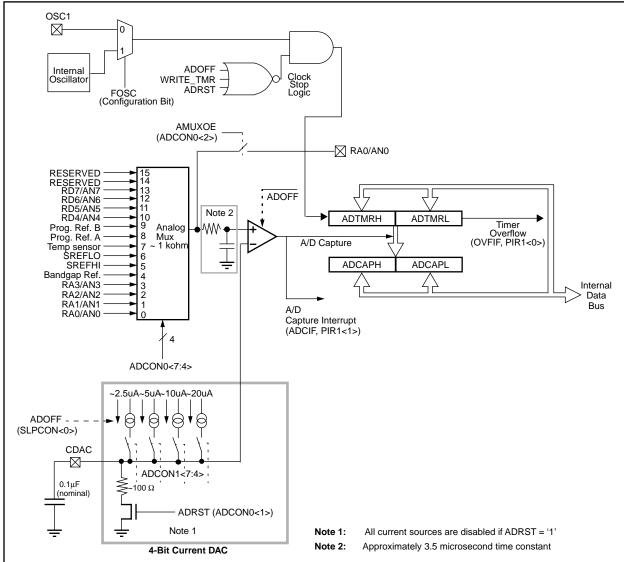
An I^2CIF interrupt is generated for each data transfer byte. The I^2CIF bit must be cleared in software, and the I^2CSTAT register is used to determine the status of the byte. In master mode with slave enabled, three interrupt sources are possible. Reading BF, P and S will indicate the source of the interrupt.

Caution: BF is set after receipt of eight bits and automatically cleared after the I²CBUF is read. However, the flag is not actually cleared until receipt of the acknowledge pulse. Otherwise extra reads appear to be valid.

FIGURE 7-14: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Caution: Reading or writing the ADTMR register during an A/D conversion cycle can produce unpredictable results and is not recommended.

Note:	The correct sequence for writing the							
	ADTMR register is HI byte followed by LO							
	byte. Reversing this order will prevent the							
	A/D timer from running.							


During conversion one or both of the following events will occur:

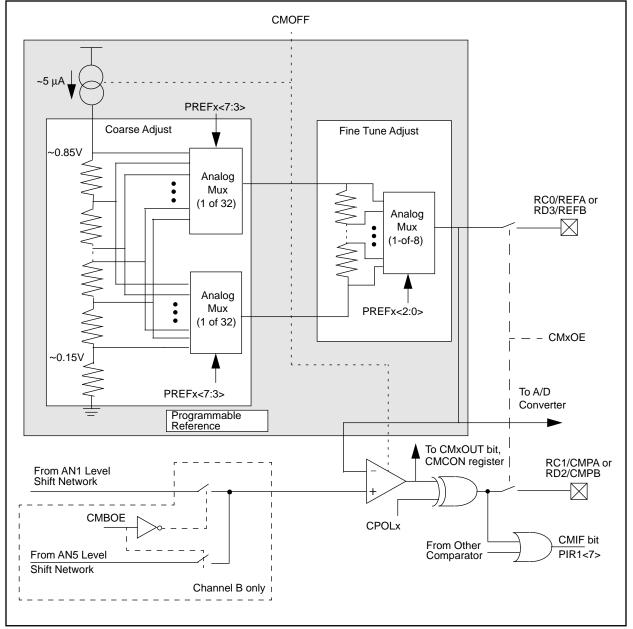
- 1. capture event
- 2. timer overflow

In a capture event, the comparator trips when the slope voltage on the CDAC output exceeds the input voltage, causing the comparator output to transition from high to low. This causes a transfer of the current timer count to the capture register and sets the ADCIF flag (PIR1<1>).

A CPU interrupt will be generated if bit ADCIE (PIE1<1>) is set to '1' (interrupt enabled). In addition, the Global Interrupt Enable and Peripheral Interrupt Enables (INTCON<7,6>) must also be set. Software is responsible for clearing the ADCIF flag prior to the next conversion cycle. Note that this interrupt can only occur once per conversion cycle.

In a timer overflow condition, the timer rolls over from FFFFh to 0000h, and a capture overflow flag (OVFIF) is asserted (PIR1<0>). The timer continues to increment following a timer overflow. A CPU interrupt can be generated if bit OVFIE (PIE1<0>) is set (interrupt enabled). In addition, the Global Interrupt Enable and Peripheral Interrupt Enables (INTCON<7,6>) must also be set. Software is responsible for clearing the OVFIF flag prior to the next conversion cycle.

FIGURE 8-1: A/D BLOCK DIAGRAM


Two registers PREFA (9Bh) and PREFB (9Ch) are used to select the reference output voltages. The PREFx<7:3> bits select the output from the coarse ladder, while PREFx<2:0> bits are for the fine-tune adjustment. Table 9-1 and Table 9-2 show the reference decoding.

These voltages are visible at either RC0/REFA or RD3/REFB pins by setting the CMAOE (CMCON<1>) or CMBOE (CMCON<5>) bits. Setting CMxOE does not affect the reference voltages. It only enables the pin function regardless of the port TRIS register setting. These outputs are not buffered, so they cannot directly drive any DC loads.

The reference outputs are also connected to two independent comparators, COMPA and COMPB. Thus, the references can be used to set the comparator trippoints. The A/D converter can also monitor the reference outputs via A/D channels 8 and 9. Refer to Section 8 for the description of the A/D operation.

The programmable reference output is designed to track the output from the level shift network. However, there will always be some mismatch due to component drift. For best accuracy, the A/D should be used to periodically calibrate the references to the desired set-point.

FIGURE 9-3: COMPARATOR AND PROGRAMMABLE REFERENCE BLOCK DIAGRAM (ONE OF TWO SHOWN)

TABLE 10-3. STATUS BITS AND THEIR SIGNIFICANCE	TABLE 10-3:	STATUS BITS AND THEIR SIGNIFICANCE
--	-------------	------------------------------------

POR	TO	PD	Meaning			
0	1	1	Power-On Reset			
0	0	Х	Illegal, TO is set on POR			
0	Х	0	Illegal, PD is set on POR			
1	0	1	WDT reset during normal operation			
1	0	0	WDT time-out wakeup from sleep			
1	1	1	MCLR reset during normal operation			
1	1	0	MCLR reset during SLEEP or HIBERNATE, or interrupt wake-up from SLEEP or HIBERNATE.			

10.4 Low-Voltage Detector

The PIC14000 contains an integrated low-voltage detector. The supply voltage is divided and compared to the bandgap reference output. If the supply voltage (VDD) falls below VTRIP-, then the low-voltage detector will cause \overline{LVD} (PCON<0>) to be reset. This bit can be read by software to determine if a low voltage condition occurred. This bit must be set by software.

The nominal values of the low-voltage detector trip points are as follows:

- VTRIP- = 2.55V
- VTRIP+ = 2.60V
- Hysteresis (VTRIP+ VTRIP-) = 55 mV

10.5 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST)</u>

10.5.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

10.5.2 POWER-UP TIMER (PWRT)

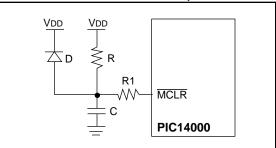
The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from \overrightarrow{POR} . The power-up timer operates from a local internal oscillator. The chip is kept in reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, \overrightarrow{PWRTE} , can disable (if set, or unprogrammed) or enable (if cleared, or programmed) the power-up timer.

The power-up timer delay will vary from chip to chip and due to VDD and temperature.

10.5.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over. This guarantees that the crystal oscillator or resonator has started and stabilized.

10.5.4 IN OSCILLATOR START-UP


There is an 8-cycle delay in IN mode to ensure stability only after a Power-on Reset (POR) or wake-up from SLEEP.

10.5.5 TIMEOUT SEQUENCE

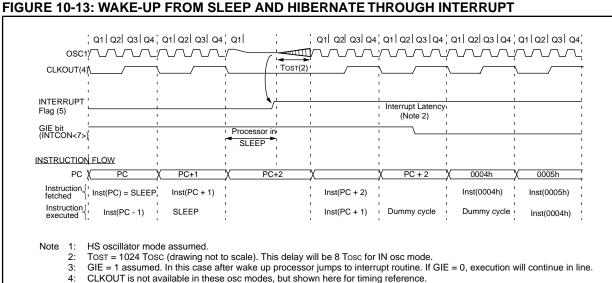
On power-up the time-out sequence is as follows: First the PWRT time-out is invoked after POR has expired. The OST is activated only in HS (crystal oscillator) mode. The total time-out will vary based on the oscillator configuration and PWRTE status. For example, in IN mode, with PWRTE unprogrammed (PWRT disabled), there will be no time-out delay at all. Figure 13-4 depicts the power-on reset time-out sequences.

Table 10-4 shows the reset conditions for some special registers, while Table 10-5 shows the reset conditions for all registers.

FIGURE 10-8: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- External power-on reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
- 2. R < 40 K Ω is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μ A). A larger voltage drop will degrade VIH level on MCLR pin.
- 3. R1 = 100 Ω to 1 K Ω will limit any current flowing into $\overline{\text{MCLR}}$ from external capacitor C in the event of $\overline{\text{MCLR}}$ pin breakdown due to ESD or EOS.

TABLE 10-4: RESET CONDITION FOR SPECIAL REGISTERS


Condition	PCL Addr: 02h	STATUS Addr: 03h	PCON Addr: 8Eh	
Power-on Reset	000h	0001 1xxx	00x	
MCLR reset during normal operation	000h	0001 luuu	uux	
MCLR reset during SLEEP	000h	0001 Ouuu	uux	
WDT reset during normal operation	000h	0000 luuu	uux	
WDT during SLEEP	PC + 1	นนน0 0นนน	uux	
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uux	

Legend: u = unchanged

x = unknown

- = unimplemented, read as '0'

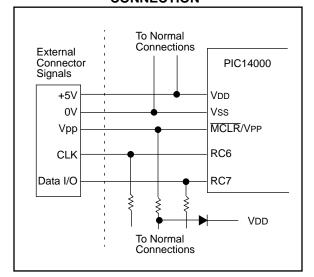
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

CLKOUT is not available in these osc modes
Refer to Section 10.8 for sources.

10.9 Code Protection

The code in the program memory can be protected by programming the code protect bits. When code protected, the contents of the program memory cannot be read out. In code-protected mode, the configuration word (2007h) will not be scrambled, allowing reading of all configuration bits.

10.10 In-Circuit Serial Programming


PIC14000 can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RC6/SCL and RC7/SDA pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIH. RC6 then becomes the programming clock and RC7 becomes the programmed data. Both RC6 and RC7 are Schmitt trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device. For complete details about serial programming, please refer to the *PIC16C6X/7X Programming Specifications* (Literature #DS30228).

A typical in-system serial programming connection is shown in Figure 10-14.

FIGURE 10-14: TYPICAL IN-SYSTEM SERIAL PROGRAMMING CONNECTION

11.1 Instruction Descriptions

ADDLW	Add Literal and W						
Syntax:	[label] ADDLW k						
Operands:	$0 \le k \le 255$						
Operation:	$(W) + k \to (W)$						
Status Affected:	C, DC, Z						
Encoding:	11	111x	kkkk	kkkk			
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ADDLW	0x15					
	Before Instruction W = 0x10 After Instruction W = 0x25						

ANDLW	And Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction W = 0xA3 After Instruction

W = 0x03

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) + (f) \rightarrow (dest)
Status Affected:	C, DC, Z
Encoding:	00 0111 dfff ffff
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ADDWF FSR, 0
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0101 dfff ffff
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	ANDWF FSR, 1
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02

MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

12.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

12.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

12.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

12.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

12.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

12.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

12.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

A.6 PIC16C8X Family of Devices

DS40122B-page 138

				Clock		Memory			Peripherals	erals						Features	Γ
				FOOTBAN CONST	TIOLUS	\mathbb{N}		all de la	(Hans)		Sloute		\mathbb{N}	$\left \right\rangle$	\setminus	GUILLE	
			TO TOUS	50101 50100 10 10 10	ڔ	(s)	ALL DE		100 m			583) 11			SHON	1950 - 1010 1950 - 1010 1911	
		THE MELT		THE STATES OF A ST	IDOW J	1001 COI PONE SAN PONE	E LOC		Sile of the Star of the Source				$\langle \dot{\mathbf{v}} \rangle$	Ins Reality Services	S III I	Solution out the second	
PIC16C923	ω	, 44	176	TMR0, TMR1, TMR2	7	SPI/I ² C			4 Com 32 Seg		25	27	Ĩ.	Yes		64-pin SDIP ⁽¹⁾ , TQFP, 68-pin PLCC, DIE	
PIC16C924	8	4K	176	TMR0, TMR1, TMR2	7	SPI/I ² C	1	5	4 Com 32 Seg	ი	25	27	3.0-6.0	Yes		64-pin SDIP ⁽¹⁾ , TQFP, 68-pin PLCC, DIE	
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, s All PIC16CXX Family devices use serial programming with clock pin RB6 and dat Note 1: Please contact your local Microchip representative for availability of this package.	C16/17 C16CX e conte	r Fami (X Fan act you	All PIC16/17 Family devic All PIC16CXX Family dev Please contact your local	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7 Please contact your local Microchip representative for availability of this package.	/er-on al pro(preser	Reset, se gramming ntative for	electab with c availa	le Watt lock pi oility oi	chdog Tir n RB6 ar f this pac	ner, se id data kage.	lectab pin R	le cod B7.	e protect	and hig	h I/O d	ces have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. vices use serial programming with clock pin RB6 and data pin RB7. I Microchip representative for availability of this package.	

A.7 PIC16C9XX Family Of Devices

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent		
RE:	Reader Response			
Fro	m: Name			
	Company			
٨٣٣	Telephone: ()	FAX: ()		
	plication (optional):			
VVO	uld you like a reply?YN			
Dev	vice: PIC14000 Literatu	re Number: DS40122B		
Que	estions:			
1	What are the best features of this docume	ant?		
2.	How does this document meet your hards	ware and software development needs?		
3.	Do you find the organization of this data s	sheet easy to follow? If not, why?		
4.	What additions to the data sheet do you t	hink would enhance the structure and subject?		
5.	What deletions from the data sheet could	be made without affecting the overall usefulness?		
_				
6.	Is there any incorrect or misleading inform	nation (what and where)?		
7	How would you improve this document?			
7.	now would you improve this document?			
8.	How would you improve our software, sys	stems, and silicon products?		
5.				

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190

Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02