

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	l²C
Peripherals	POR, Temp Sensor, WDT
Number of I/O	20
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	Slope A/D
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic14000-04i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.2 OPTION REGISTER

The OPTION register (Address 81h) is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, TMR0, and the weak pull-ups on PORTC<5:0>. Bit 6 is reserved.

FIGURE 4-4: OPTION REGISTER

R/W RCPU	r		PSA	PS2	PS1	PS0 bit0	Regi Addr POR	ster: ess: value:	OPTION 81h FFh	W: Writa R: Read U: Unim Read	able dable plemented. d as '0'
						PS2:PS0	PRES PS2	CALER PS1	VALUE PS0	TMR0 RATE	WDT RATE
							0	0	0	1:2	1:1
							0	0	1	1:4	1:2
							0	1	1	1.0	1.4 1.8
							1	0	0	1 · 32	1 16
							1	õ	1	1:64	1:32
							1	1	0	1 : 128	1 : 64
							1	1	1	1 : 256	1 : 128
					_	PSA: Preso	aler ass	ignmen	t bit		
						1 = Prescale 0 = Prescale	er assigi er assigi	ned to th ned to T	ne WDT MR0		
						TOSE . TMR	0 source	edae			
						1 = Increme 0 = Increme	ent on hig ent on lo	gh-to-lov w-to-hig	w transition h transition	on RC3/T0CKI on RC3/T0CKI	pin pin
						TOCS: TMR	0 clock	source			
						1 = Transitio	n on RC	3/T0Ck	(I pin		
						0 = Internal	instructi	on cycle	clock (CLk	(OUT)	
					_	Reserved. T general purp upward com	his bit s ose rea patibility	hould b d/write i with fut	e programn s not recom ture product	ned as a '1'. Use nmended since t ts.	e of this bit as his may affect
						RCPU: POF	RTC pull	-up ena	ble		
						1 = PORTC 0 = PORTC	; pull-up	s are dis s are en	abled over	riding any port la dividual port-late	atch value (RC<5:0> only th values (RC<5:0>)

Note: To achieve a 1:1 prescaler assignment, assign the prescaler to the WDT (PSA=1)

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte, PCL, is a readable and writable register. The high byte of the PC (PCH) is not directly readable or writable. PCLATH is a holding register for PC<12:8> where contents are transferred to the upper byte of the program counter. When PC is loaded with a new value during a CALL, GOTO or a write to PCL, the high bits of PC are loaded from PCLATH as shown in Figure 4-9.

FIGURE 4-9: LOADING OF PC IN DIFFERENT SITUATIONS

Note: On POR, the contents of the PCLATH register are unknown. The PCLATH should be initialized before a CALL, GOTO, or any instruction that modifies the PCL register is executed.

4.3.1 COMPUTED GOTO

When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note "Table Read Using the PIC16CXX" (AN556).

4.3.2 STACK

The PIC14000 has an 8 deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed in the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer. This means that after the stack has been "PUSHed" eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instruction mnemonics called PUSH nor POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, or RETFIE instructions, or the vectoring to an interrupt address

4.3.3 PROGRAM MEMORY PAGING

The PIC14000 has 4K of program memory, but the CALL and GOTO instructions only have a 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 4K program memory address range, there must be another bit to specify the program memory page. This paging bit comes from the PCLATH<3> bit (Figure 4-9). When doing a CALL or GOTO instruction, the user must ensure that this page bit (PCLATH<3>) is programmed to the desired program memory page. If a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> is not required for the return instructions (which pops the PC from the stack).

Note: The PIC14000 ignores the PCLATH<4> bit, which is used for program memory pages 2 and 3 (1000h-1FFFh). The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products.

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0X50	00			
BSF	PCLATH,	3	;	Select page 1 (800h-FFFh)
CALL	SUB1_P1		;	Call subroutine in
	:		;	page 1 (800h-FFFh)
	:			
	:			
ORG 0X90	00			
SUB1 P1	:		;	called subroutine
	:		;	page 1 (800h-FFFh)
	:			
RETURN			;	return to page 0
			;	(000h-7FFh)

5.0 I/O PORTS

The PIC14000 has three ports, PORTA, PORTC and PORTD, described in the following paragraphs. Generally, PORTA is used as the analog input port. PORTC is used for general purpose I/O and for host communication. PORTD provides additional I/O lines. Four lines of PORTD may function as analog inputs.

5.1 PORTA and TRISA

PORTA is a 4-bit wide port with data register located at location 05h and corresponding data direction register (TRISA) at 85h. PORTA can operate as either analog inputs for the internal A/D converter or as general purpose digital I/O ports. These inputs are Schmitt Triggers when used as digital inputs, and have CMOS drivers as outputs.

PORTA pins are multiplexed with analog inputs. ADCON1<1:0> bits control whether these pins are analog or digital as shown in Section 8.7. When configured to the digital mode, reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. When selected as an analog input, these pins will read as '0's.

Note:	On Reset, PORTA is configured as analog
	inputs

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs. A '1' in each location configures the corresponding port pin as an input. This register resets to all '1's, meaning all PORTA pins are initially inputs. The data register should be initialized prior to configuring the port as outputs. See Figure 5-2 and Figure 5-3.

PORTA inputs go through a Schmitt Trigger AND gate that is disabled when the input is in analog mode. Refer to Figure 5-1.

Note that bits RA<7:4> are unimplemented and always read as '0'. Unused inputs should not be left floating to avoid leakage currents. All pins have input protection diodes to VDD and VSS.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x0F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<3:0> as inputs

FIGURE 5-1: PORTA BLOCK DIAGRAM

© 1996 Microchip Technology Inc.

07h		Bit 7	,	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC		RC7/SE	SDAA RC6/SCLA RC5 RC		RC4	RC3/T0CKI	RC2	RC1/CMPA	RC0/REFA	
Read/Write		R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR value	xxh	х		х	х	х	х	х	х	Х
Bit	N	lame	Fun	ction						
B7	RC7	7/SDAA	Syr Thi cau I ² C	nchronous seri s pin can also use a CPU inte mode.	/O for I ² s a gene his pin h	C interface. Als ral purpose I/C as an N-chanr	so is the). If enal nel pull-ເ	serial program bled, a change up to VDD whic	iming data line. on this pin can h is disabled in	
B6	RC	6/SCLA	Synchronous serial clock for I ² C interface. Also is the serial prog can also serve as a general purpose I/O. If enabled, a change CPU interrupt. This pin has an N-channel pull-up to VDD which					al programming hange on this p which is disable	g clock. This pin bin can cause a ed in I ² C mode.	
B5	RC5	LED direct-drive outpu pin can cause a CPU			output. T CPU inte	his pin c rrupt. If e	an also serve a enabled, this pi	as a GPI in has a	O. If enabled, a weak internal p	change on this oull-up to VDD.

FIGURE 5-6: PORTC DATA REGISTER

Β4 RC4 LED direct-drive output. This pin can also serve as a GPIO. If enabled, a change on this pin can cause a CPU interrupt. If enabled, this pin has a weak internal pull-up to VDD. B3 RC3/T0CKI LED direct-drive output. This pin can also serve as a GPIO. If enabled, this pin has a weak internal pull-up to VDD. TOCKI is enabled as TMR0 clock via the OPTION register. B2 RC2 LED direct-drive output. This pin can also serve as a GPIO. If enabled, this pin has a weak internal pull-up to VDD. B1 RC1/CMPA LED direct-drive output. This pin can also serve as a GPIO, or comparator A output. If enabled, this pin has a weak internal pull-up to VDD. B0 RC0/REFA LED direct-drive output. This pin can also serve as a GPIO, or programmable reference

A output. If enabled, this pin has a weak internal pull-up to VDD.

U= unimplemented, X = unknown.

FIGURE 7-2: I²CSTAT: I²C PORT STATUS REGISTER

7.5.1 SLAVE MODE

In slave mode, the SCLx and SDAx pins must be configured as inputs (TRISC<7:6> or TRISD<1:0> are set). The I^2C module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer from an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the I²CBUF with the received value in the I²CSR.

There are two conditions that will cause the I^2C module not to give this \overline{ACK} pulse. These are if either (or both) occur:

- the Buffer Full (BF), I²CSTAT<0>, bit was set before the transfer was received, or
- the Overflow (I²COV), I²CCON<6> bit was set before the transfer was received.

In this case, the I²CSR value is not loaded into the I²CBUF, but the I²CIF bit is set. Table 7-2 shows what happens when a data transfer byte is received, given the status of the BF and I²COV bits. The shaded boxes show the conditions where user software did not properly clear the overflow condition. The BF flag is cleared by reading the I²CBUF register while the I²COV bit is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the I^2C module is shown in the AC timing specifications.

TABLE 7-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits a is Re BF	as Data Transfer eceived I ² COV	I ² CSR-> I ² CBUF	Generate ACK Pulse	Set I ² CIF bit (I ² C interrupt if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

7.5.1.1 ADDRESSING

Once the I²C module has been enabled, the I²C waits for a START to occur. Following the START, the 8-bits are shifted into the I²CSR. All incoming bits are sampled with the rising edge of the clock (SCL) line. The I²CSR<7:1> is compared to the I²CADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and I²COV bits are clear, the following things happen:

- I²CSR loaded into I²CBUF
- Buffer Full (BF) bit is set
- ACK pulse is generated
- I²C Interrupt Flag (I²CIF) is set (interrupt is generated if enabled (I²CIE set) on falling edge of ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 7-5). The five most significant bits (MSbs) of the first address byte specify if this is a 10-bit address. The R/W bit (bit 0) must specify a write, so the slave device will received the second address byte. For a 10-bit address the first byte would equal '1 1 1 1 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address are as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (I²CIF, BF and UA are set).
- Update I²CADD with second (low) byte of address (clears UA and releases SCL line).
- 3. Read I²CBUF (clears BF) and clear I²CIF.

- 4. Receive second (low) byte of address (I²CIF, BF and UA are set).
- Update I²CADD with first (high) byte of address (clears UA, if match releases SCL line).
- 6. Read I²CBUF (clears BF) and clear I²CIF
- 7. Receive Repeated START.
- 8. Receive first (high) byte of address (I²CIF and BF are set).
- 9. Read I²CBUF (clears BF) and clear I²CIF.

7.5.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the I²CSTAT register is cleared. The received address is loaded into the I²CBUF.

When the address byte overflow condition exists then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either the BF bit (I²CSTAT<0>) is set or the I²COV bit (I²CCON<6>) is set (Figure 7-14).

An I^2CIF interrupt is generated for each data transfer byte. The I^2CIF bit must be cleared in software, and the I^2CSTAT register is used to determine the status of the byte. In master mode with slave enabled, three interrupt sources are possible. Reading BF, P and S will indicate the source of the interrupt.

Caution: BF is set after receipt of eight bits and automatically cleared after the I²CBUF is read. However, the flag is not actually cleared until receipt of the acknowledge pulse. Otherwise extra reads appear to be valid.

FIGURE 7-14: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

7.5.1.3 TRANSMISSION

When the R/\overline{W} bit of the address byte is set and an address match occurs, the R/\overline{W} bit of the I^2CSTAT register is set. The received address is loaded into the I^2CBUF The \overline{ACK} pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the I^2CBUF register, which also loads the I^2CSR register. Then the SCL pin should be enabled by setting the CKP bit ($I^2CCON<4>$). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 7-15).

A l²CIF interrupt is generated for each data transfer byte. The l²CIF bit must be cleared in software, and the l²CSTAT register is used to determine the status of the byte. The l²CIF bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. The slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the I²CBUF register, which also loads the I²CSR register. Then the SCL pin should be enabled by setting the CKP bit (I²CCON<4>).

FIGURE 7-15: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

7.5.2 MASTER MODE

Master mode operation is supported by interrupt generation on the detection of the START and STOP. The STOP(P) and START(S) bits are cleared from a reset or when the l^2C module is disabled. Control of the l^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are cleared.

In master mode, the SCL and SDA lines are manipulated by changing the corresponding TRISC<7:6> or TRISD<1:0> bits to an output (cleared). The output level is always low, regardless of the value(s) in PORTC<7:6> or PORTD<1:0>. So when transmitting data, a "1" data bit must have the TRISC<7> or TRISD<1> bit set (input) and a "0" data bit must have the TRISC<7> or TRISD<1> bit set (input) and a "0" data bit must have the TRISC<7> or TRISD<1> bit set (input) and a "0" data bit must have the TRISC<7> or TRISD<1> bit cleared (output). The same scenario is true for the SCL line with the TRISC<6> or TRISD<0> bit.

The following events will cause the I^2C interrupt Flag (I^2CIF) to be set (I^2C interrupt if enabled):

- START
- STOP
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle ($l^2CM3...l^2CM0 = 1011b$) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

7.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the I^2C module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are cleared. When the bus is busy, enabling the I^2C interrupt will generate the interrupt when the STOP occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and low level is present, the device needs to release the SDA and SCL lines (set TRISC<7:6>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, the device may being addressed. If addressed an \overrightarrow{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

TABLE 7-3:REGISTERS ASSOCIATED WITH I²C OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0B/8Bh	INTCON	GIE	PEIE	T0IE	r	r	T0IF	r	r
0Ch	PIR1	CMIF	—	—	PBIF	I ² CIF	RCIF	ADCIF	OVFIF
8Ch	PIE1	CMIE	—	—	PBIE	I ² CIE	RCIE	ADCIE	OVFIE
13h	I ² CBUF	I ² C Serial I	Port Receive	Buffer/Transr	nit Registe	r	•	•	
93h	I ² CADD	I ² C mode S	Synchronous	Serial Port (I	² C mode) A	ddress Re	gister		
14h	I ² CCON	WCOL	I ² CON	I ² CEN	CKP	I ² CM3	I ² CM2	I ² CM1	I ² CM0
94h	I ² CSTAT	—	—	D/Ā	Р	S	R/W	UA	BF
9Eh	MISC	SMHOG	SPGNDB	SPGNDA	I ² CSEL	SMBUS	INCLKEN	OSC2	OSC1
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0

Legend: — = Unimplemented location, read as '0'

r = reserved locations, default is POR value and should not be overwritten with any value

Note: Shaded boxes are not used by the I²C module.

FIGURE 7-16: MISC REGISTER

9Eh	Bit 7		,	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MISC		SMHC	G	SPGNDB	SPGNDA	I ² CSEL	SMBUS	INCLKEN	OSC2	OSC1	
Read/Write)	R/W		R/W	R/W	R/W	R/W	R/W	R/W	R	
POR value	00h	0		0	0	0	0	0	0	Х	
Bit	N	ame					Function				
B7	SMHC)G	SMHOG enable 1 = Stretch I^2C CLK signal (hold low) when receive data buffer is full (refer to Section 7.5.4). For pausing I^2C transfers while preventing interruptions of A/D conversions. 0 = Disable I^2C CLK stretch.						io /D		
B6 SPGNDB 1 =			Ser 1 =	Serial Port Ground Select 1 = PORTD<1:0> ground reference is the RD5/AN5 pin.							

B6	SPGNDB	1 = PORTD<1:0> ground reference is the RD5/AN5 pin. 0 = PORTD<1:0> ground reference is Vss.
В5	SPGNDA	Serial Port Ground Select 1 = PORTC<7:6> ground reference is the RA1/AN1 pin. 0 = PORTC<7:6> ground reference is VSS.
В4	I ² CSEL	I^2C Port select Bit. 1 = PORTD<1:0> are used as the I^2C clock and data lines. 0 = PORTC<7:6> are used as the I^2C clock and data lines.
В3	SMBus	SMBus-Compatibility Select 1 = SMBus compatibility mode is enabled. PORTC<7:6> and PORTD<1:0> have SMBus-compatible input thresholds. 0 = SMBus-compatibility is disabled. PORTC<7:6> and PORTD<1:0> have Schmitt Trig- ger input thresholds.
B2	INCLKEN	Oscillator Output Select (available in IN mode only). 1 = Output IN oscillator signal divided by four on OSC2 pin. 0 = Disconnect IN oscillator signal from OSC2 pin.
В1	OSC2	OSC2 output port bit (available in IN mode only). Writes to this location affect the OSC2 pin in IN mode. Reads return the value of the output latch.
В0	OSC1	OSC1 input port bit (available in IN mode only). Reads from this location return the status of the OSC1 pin in IN mode. Writes have no effect.

© 1996 Microchip Technology Inc.

TABLE 8-4: A/D CONTROL AND STATUS REGISTER 1

9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCON1	ADDAC3	ADDAC2	ADDAC1	ADDAC0	PCFG3	PCFG2	PCFG1	PCFG0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR value 00h	0	0	0	0	0	0	0	0

Bit	Name	Function
B7-B4	ADDAC3 ADDAC2 ADDAC1 ADDAC0	A/D Current Source Selects. Refer to Table 8-2.
B3-B2	PCFG3 PCFG2	PORTD Configuration Selects (See Table 8-5)
B1-B0	PCFG1 PCFG0	PORTA Configuration Selects (See Table 8-5)

TABLE 8-5:PORTA AND PORTD CONFIGURATION

ADCON1<1:0>	RA0/AN0	RA1/AN1	RA2/AN2	RA3/AN3
ADCON1<3:2>	RD4/AN4	RD5/AN5	RD6/AN6	RD7/AN7
00	A	A	A	А
0 1	A	A	A	D
10	А	A	D	D
11	D	D	D	D

Legend: A = Analog input, D = Digital I/O

9.6 Voltage Regulator Output

For systems with a main supply voltage above 6V, an inexpensive, low quiescent current voltage regulator can be formed by connecting the VREG pin to an external resistor and FET as shown in Figure 9-8. This circuit will provide a VDD of about 5V, after the voltage drop across the FET.

Figure 10-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 10-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

10.3 <u>Reset</u>

The PIC14000 differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, and on $\overline{\text{MCLR}}$ Reset during SLEEP. They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 10-3. These bits are used in software to determine the nature of the reset. See Table 10-5 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-7.

The devices all have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 10-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 10-12: SLPCON REGISTER

8Fh		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SLPCON		HIBEN		REFOFF	LSOFF	OSCOFF	CMOFF	TEMPOFF	ADOFF		
Read/Write		R/W	U	R/W	R/W	R/W	R/W	R/W	R/W		
POR value 3	Fh	0	0	1	1	1	1	1	1		
Bit		Name				Function	า				
В7	HIBI	EN	Hibernate Mode Select 1 = Hibernate mode enable 0 = Normal operating mode			Select ode enable ating mode					
B6	-		Unim	plemented. R	ead as '0'						
B5	REFOFF		Refer bias g 1 = Th 0 = Th	References Power Control (bandgap reference, low voltage detector, bias generator) 1 = The references are off 0 = The references are on							
B4	LSC)FF	Level 1 = Th fu 0 = Th le	 Level Shift Network Power Control 1 = The level shift network is off. The RA1/AN1, RD5/AN5 inputs can continue to function as either analog or digital. 0 = The level shift network is on. The signals at the RA1/AN1, RD5/AN5 inputs are level shifted by approximately 0.5V. 					ntinue to nputs are		
В3	oso	COFF	Main 1 = Th 0 = Th co	Main Oscillator Power Control 1 = The main oscillator is disabled during SLEEP mode 0 = The main oscillator is running during SLEEP mode for A/D conversions to continue							
B2	СМО	OFF	Progr 1 = Th 0 = Th	Programmable Reference and Comparator Power Control 1 = The programmable reference and comparator circuits are off 0 = The programmable reference and comparator circuits are on							
B1	TEN	IPOFF	On-chip Temperature Sensor Power Control 1 = The temperature sensor is off 0 = The temperature sensor is on								
во	ADC	DFF	A/D M slope 1 = Th 0 = Th	lodule Power reference vo ne A/D modu ne A/D modu	r Control (cor Itage divider) le power is o le power is o	mparator, prog) ff n	rammable cu	irrent source,			

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0		
Syntax:	[<i>label</i>] GOTO k	Syntax:	[label] INCFSZ f,d		
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$		
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]		
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0		
Status Affected:	None	Status Affected:	None		
Encoding:	10 lkkk kkkk kkkk	Encoding:	00 1111 dfff ffff		
Description: Words:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a		
Cycles:	2				
Example	GOTO THERE	vvoras:	1		
-	After Instruction	Cycles:	1(2)		
	PC = Address THERE	Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		
			Before Instruction PC = address HERE		

INCF	Incremer	nt f			
Syntax:	[label]	INCF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7			
Operation:	(f) + 1 \rightarrow	(dest)			
Status Affected:	Z				
Encoding:	00	1010	dff	f	ffff
Description:	The contermented. If in the W replaced bac	nts of req 'd' is 0 th egister. If ck in regi	gister ' ne res 'd' is ster 'f'	f' are ult is 1 the	incre- placed result is
Words:	1				
Cycles:	1				
Example	INCF	CNT,	1		
	Before In After Inst	structio CNT Z ruction CNT	n = =	0xFF 0 0x00	.)

IORLW	Inclusive	OR Lite	eral with	w
Syntax:	[label]	IORLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) .OR.	$k \rightarrow (W)$	1	
Status Affected:	Z			
Encoding:	11	1000	kkkk	kkkk
Description:	The conter OR'ed with result is pla	nts of the n the eigh aced in th	W register t bit literal e W regist	ˈis ˈk'. The er.
Words:	1			
Cycles:	1			
Example	IORLW	0x35		
	Before In After Inst	struction W = ruction W = Z =	0x9A 0xBF 1	

After Instruction CNT = CN

if CNT=

PC =

if CNT≠

PC =

CNT + 1

address CONTINUE

address HERE +1

0,

0,

PIC14000

SWAPF	Swap Ni	bbles in	f		XORLW	Exclusi	ve OR Li	iteral wi	th W
Syntax:	[<i>label</i>] SWAPF f,d				Syntax:	[label] XORLW k			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$			Operands:	$0 \le k \le 255$				
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$			Status Affected:	$\frac{Z}{2}$				
Status Affected:	None				Encoding:	11	1010	kkkk	kkkk
Encoding:	00	1110	dfff	ffff	Description:	The contents of the W register are			er are
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0 the ter.			d in the W	regis-				
	the result	is placed	in register.	ii u is i 'f'.	Words:	1			
Words:	1		-		Cycles:	1			
Cycles:	1				Example:	XORLW	0xAF		
Example	SWAPF	REG,	0			Before I	nstructio	n	
	Before Ir	struction	n				W =	0xB5	
		REG1	= 0x	A5		After Ins	struction		
	After Inst	truction					W =	0x1A	
		REG1 W	= 0x = 0x	A5 5A					

TRIS	Load TRIS Register
Syntax:	[label] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register f;
Status Affected:	None
Encoding:	00 0000 0110 0fff
Description: Words: Cycles:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them. 1
Example	
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

XORWF	Exclusiv	e OR W	with f	F
Syntax:	[label]	XORWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7		
Operation:	(W) .XOF	$R.(f) \to (o)$	dest)	
Status Affected:	Z			
Encoding:	00	0110	dfff	ffff
Description:	Exclusive register wi result is st is 1 the res 'f'.	OR the co th register ored in the sult is store	ntents 'f'. If ' e W re ed bac	s of the W d' is 0 the gister. If 'd' k in register
Words:	1			
Cycles:	1			
Example	XORWF	REG	1	
	Before In	struction		
		REG W	= =	0xAF 0xB5
	After Inst	ruction		
		REG W	= =	0x1A 0xB5

FIGURE 13-12: TYPICAL OPERATING SUPPLY CURRENT vs FREQ (EXT CLOCK, 25°C)

© 1996 Microchip Technology Inc.

A.8 PIC17CXX Family of Devices

PIC14000

Figure 7-15:	I ^{2C} Waveforms For Transmission
0	(7-bit Address) 51
Figure 7-16	MISC Register 53
Figure 7-10.	Operation Of The I ² C in Idle Mede
Figure /-1/.	DOV Made as Visit Made
	RCV_Mode or Xmit_Wode
Figure 7-18:	SMHOG State Machine55
Figure 8-1:	A/D Block Diagram58
Figure 8-2:	Example A/d Conversion Cycle59
Figure 8-3:	A/D Capture Timer (Low Byte)
Figure 8-4:	A/D Capture Timer (High Byte)
Figure 8-5:	A/D Capture Register (Low Byte)
Figure 8-6	A/D Capture Register (High Byte) 59
Figure 0-0.	Ave capture register (high byte)
Figure 9-1.	Clears Defenses Divider
Figure 9-2:	Slope Reference Divider
Figure 9-3:	Comparator and Programmable
	Reference Block Diagram68
Figure 9-4:	Programmable Reference Transfer
	Function
Figure 9-5:	Comparator CONTROL Register
Figure 9-6	PREFA Register 72
Figure 0.7:	DEEB Dogistor 72
Figure 0.9:	Voltage Regulator Circuit 72
Figure 10-1:	Configuration Word
Figure 10-2:	MISC Register76
Figure 10-3:	Crystal/Ceramic Resonator Operation
	(HS OSC Configuration)77
Figure 10-4:	External Clock Input Operation
0.	(HS OSC Configuration) 77
Figure 10-5	External Parallel Resonant Crystal
riguie 10-0.	
E '	Estamol Oprical Descent Operatel
Figure 10-6:	External Series Resonant Crystal
	Oscillator Circuit
Figure 10-7:	Simplified Block Diagram of On-chip
	Reset Circuit78
Figure 10-8:	External Power-on Reset Circuit
0	(For Slow VDD Power-up) 80
Figure 10-9	Interrupt Logic Schematic 82
Figure 10-10	External (OSC1/PBTN) Interrupt Timing 83
Figure 10 11:	Wetchdag Timer Block Diagram
Figure 10-11.	
-	(With Timeru)
Figure 10-12:	SLPCON Register
Figure 10-13:	Wake-up From Sleep and Hibernate
	Through Interrupt88
Figure 10-14:	Typical In-system Serial Programming
•	Connection
Figure 11-1:	General Format for Instructions
Figure 13-1	External Clock Timing 111
Figure 12 2:	Load Conditions
Figure 12-2.	CLKOUT and I/O Timing
Figure 13-3.	CLROUT and I/O Timing
Figure 13-4:	Reset, Watchdog Timer, Oscillator Start-up
	Timer (HS Mode) And Power-up Timer
	Timing 114
Figure 13-5:	TIMER0 Clock Timings 115
Figure 13-6:	I ² C Bus Start/Stop Bits Timing 116
Figure 13-7:	I ² C Bus Data Timing
Figure 13-9	Typical IPD4 vs VDD 118
Figure 13-10	Typical IPD3 vs VDD 118
Figure 12 14	VTL (Input Throshold Valtage)
ingure 13-11:	of OPO1 logue (in LIO Made)
F 10.1	or USCT input (in HS Widde) VS VDD 118
⊢igure 13-12:	I ypical IDD vs Freq (Ext clock, 25°C) 119
Figure 13-13:	Maxımum, IDD vs Freq (Ext clock,
	-40° to +85°C)
Figure 13-14:	Maximum IPD1 vs Freq (Ext clock,
	-40° to +85°C)
Figure 13-15:	PIC14000 Watchdog Timer Time-Out
0 0	Period (TWDT) vs. Temperature (Typical) 120

Figure 13-16:	WDT Timer Time-out Period vs VDD
Figure 13-17:	vs Vpp 121
Figure 13-18:	Ю vbb
Figure 13-19:	Юн vs Vон, VDD = 5V*121
Figure 13-20:	IOL vs VOL, VDD = 3V*
Figure 13-21:	IOL vs VOL, VDD = 5V*122
Figure 14-1:	Bandgap Reference Output
	Voltage vs. Temperature
	(Typical Devices Shown)128
Figure 14-2:	Programmable Current Source
	vs. Temperature
	(Typical Devices Shown)128
Figure 14-3:	Temperature Sensor
	Output Voltage vs. Temperature
	(Typical Devices Shown)129
Figure 14-4:	Slope Reference Ratio
	(KREF) vs. Supply Voltage
	(Typical Devices Shown)129
Figure 14-5:	Slope Reference Ratio
	(KREF) vs. lemperature
F : 44.0	(Typical Devices Shown)130
Figure 14-6:	Programmable Reference
	Output vs. Temperature (Typical)
Figure 14-7:	Internal RC Oscillator Frequency
	vs. Supply voltage
	(Typical Devices Snown)
Figure 14-6.	Internal RC Oscillator Frequency
	vs. remperature (Typical Davices Shown) 121

LIST OF TABLES

Table 3-1:	Pin Descriptions 9
Table 4-1:	Calibration Data Overview
Table 4-2:	Calibration Constant Addresses 14
Table 4-3:	Special Function Registers for the
	PIC14000 15
Table 5-1:	Port RC0 Pin Configuration Summary 28
Table 6-1:	Summary of TIMER0 Registers 40
Table 6-2:	Registers Associated with Timer0 40
Table 7-1:	I ² C Bus Terminology 44
Table 7-2:	Data Transfer Received Byte Actions 49
Table 7-3:	Registers Associated With I ² C Operation 52
Table 8-1:	A/D Channel Assignment 60
Table 8-2:	Programmable Current Source Selection 61
Table 8-3:	A/D Control and Status Register 0 62
Table 8-4:	A/D Control and Status Register 1 63
Table 8-5:	PORTA and PORTD Configuration 63
Table 8-6:	CDAC Capacitor Selection (Examples
	for Full Scale of 3.5V and 1.5V) 64
Table 9-1:	Programmable Reference Coarse
	Range Selection 69
Table 9-2:	Programmable Reference Fine
	Range Selection 70
Table 10-1:	Ceramic Resonators77
Table 10-2:	Capacitor Selection For Crystal
	Oscillator
Table 10-3:	Status Bits And Their Significance
Table 10-4:	Reset Condition For Special Registers 80
Table 10-5:	Reset Conditions For Registers 81
Table 10-6:	Summary of Power Management
	Options 86
Table 11-1:	Opcode Field Descriptions 91
Table 11-2:	PIC14000 Instruction Set 92
Table 12-1:	Development Tools From Microchip 106
Table 13-1:	External Clock Timing Requirements 111

NOTES: