

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k22-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number	Pin	Buffer	
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/PSP0/CTPLS RD0 PSP0 CTPLS	58	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. CTMU pulse generator output.
RD1/PSP1/T5CKI/T7G RD1 PSP1 T5CKI T7G	55	I/O I/O I	ST TTL ST ST	Digital I/O. Parallel Slave Port. Timer5 clock input. Timer7 external clock gate input.
RD2/PSP2 RD2 PSP2	54	I/O O	ST TTL	Digital I/O. Parallel Slave Port.
RD3/PSP3 RD3 PSP3	53	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port.
RD4/PSP4/SDO2 RD4 PSP4 SDO2	52	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port. SPI data out.
RD5/PSP5/SDI2/SDA2 RD5 PSP5 SDI2 SDA2	51	I/O I/O I I/O	ST TTL ST I ² C	Digital I/O. Parallel Slave Port. SPI data in. I ² C™ data I/O.
RD6/PSP6/SCK2/SCL2 RD6 PSP6 SCK2 SCL2 ⁽⁴⁾	50	I/O I/O I/O I/O	ST TTL ST I ² C	Digital I/O. Parallel Slave Port. Synchronous serial clock. Synchronous serial clock I/O for I ² C mode.
RD7/PSP7/ <mark>SS2</mark> RD7 <u>PSP</u> 7 SS2	49	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Slave Port. SPI slave select input.
Legend: TTL = TTL con ST = Schmitt I = Input P = Power 1^{2} CTM (SI	Trigger input w	vith CN	IOS levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

l²C = l²C™/SMBus

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

4.0 POWER-MANAGED MODES

The PIC18F87K22 family of devices offers a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (such as battery-powered devices).

There are three categories of power-managed mode:

- Run modes
- Idle modes
- · Sleep mode

There is an Ultra Low-Power Wake-up (ULPWU) for waking from the Sleep mode.

These categories define which portions of the device are clocked, and sometimes, at what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block). The Sleep mode does not use a clock source.

The ULPWU mode, on the RA0 pin, enables a slow falling voltage to generate a wake-up, even from Sleep, without excess current consumption. (See **Section 4.7 "Ultra Low-Power Wake-up"**.)

The power-managed modes include several powersaving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices. This feature allows the controller to use the SOSC oscillator instead of the primary one. Another power-saving feature is Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions:

- · Will the CPU be clocked or not
- · What will be the clock source

The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits select one of three clock sources for power-managed modes. Those sources are:

- The primary clock as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the SOSC oscillator)
- The internal oscillator block (for LF-INTOSC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These considerations are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entering the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current and impending mode, a change to a power-managed mode does not always require setting all of the previously discussed bits. Many transitions can be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured as desired, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Mada	Mode OSCCON Bits		Module	Clocking	Available Clock and Oscillator Source
Mode	IDLEN<7> ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source
Sleep	0	N/A	Off	Off	None – All clocks are disabled
PRI_RUN	N/A	00			Primary – XT, LP, HS, EC, RC and PLL modes. This is the normal, Full-Power Execution mode.
SEC_RUN	N/A	01	Clocked Clocked		Secondary – SOSC Oscillator
RC_RUN	N/A	1x	Clocked Clocked		Internal oscillator block ⁽²⁾
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, RC, EC
SEC_IDLE	1	01	Off Clocked		Secondary – SOSC oscillator
RC_IDLE	1	lx	Off	Clocked	Internal oscillator block ⁽²⁾

TABLE 4-1:POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

^{2:} Includes INTOSC (HF-INTOSC and MG-INTOSC) and INTOSC postscaler, as well as the LF-INTOSC source.

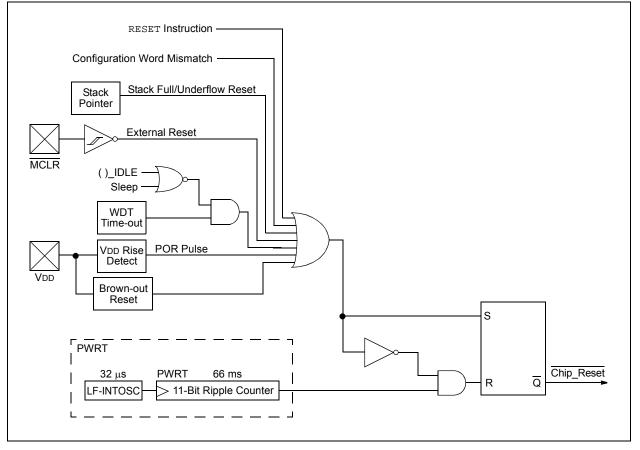
5.0 RESET

The PIC18F87K22 family of devices differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM) Reset
- f) Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.3.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 28.2 "Watchdog Timer (WDT)".

A simplified block diagram of the on-chip Reset circuit is shown in Figure 5-1.


5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event.

The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7** "**Reset State of Registers**".

The RCON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 11.0 "Interrupts"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register (\overline{CM} , \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR}) are set or cleared differently in

different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets, and WDT wake-ups.

TABLE 5-1:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program			RCON	Register			STKPTR	Register
Condition	Counter ⁽¹⁾	CM	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET instruction	0000h	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	1	u	0	u	u
Configuration Mismatch Reset	0000h	0	u	u	u	u	u	u	u
MCLR Reset during power-managed Run modes	0000h	u	u	1	u	u	u	u	u
MCLR Reset during power- managed Idle modes and Sleep mode	0000h	u	u	1	0	u	u	u	u
MCLR Reset during full-power execution	0000h	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	u	1
WDT time-out during full-power or power-managed Run modes	0000h	u	u	0	u	u	u	u	u
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter that is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The entire PIC18F87K22 family offers a range of on-chip Flash program memory sizes, from 32 Kbytes (up to 16,384 single-word instructions) to 128 Kbytes (65,536 single-word instructions).

- PIC18F65K22 and PIC18F85K22 32 Kbytes of Flash memory, storing up to 16,384 single-word instructions
- PIC18F66K22 and PIC18F86K22 64 Kbytes of Flash memory, storing up to 32,768 single-word instructions
- PIC18F67K22 and PIC18F87K22 128 Kbytes of Flash memory, storing up to 65,536 single-word instructions

The program memory maps for individual family members are shown in Figure 6-1.

6.1.1 HARD MEMORY VECTORS

All PIC18 devices have a total of three hard-coded return vectors in their program memory space. The Reset vector address is the default value to which the Program Counter returns on all device Resets; it is located at 0000h.

PIC18 devices also have two interrupt vector addresses for handling high-priority and low-priority interrupts. The high-priority interrupt vector is located at 0008h and the low-priority interrupt vector is at 0018h. The locations of these vectors are shown, in relation to the program memory map, in Figure 6-2.

FIGURE 6-2: HARD VECTOR FOR PIC18F87K22 FAMILY DEVICES

	Reset Vector	0000h
	High-Priority Interrupt Vector	0008h
	Low-Priority Interrupt Vector	0018h
	On-Chip Program Memory	
	Read '0'	
Le	gend: (Top of Memory) repr of on-chip program n Figure 6-1 for device Shaded area represe memory. Areas are n	-specific values). ents unimplemented

6.3.5 STATUS REGISTER

The STATUS register, shown in Register 6-2, contains the arithmetic status of the ALU. The STATUS register can be the operand for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the write to these five bits is disabled.

These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will set the Z bit but leave the other bits unchanged. The STATUS register then reads back as '000u uluu'.

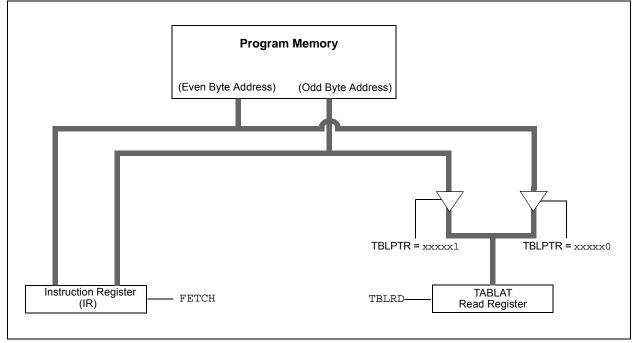
It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions not affecting any Status bits, see the instruction set summaries in Table 29-2 and Table 29-3.

Note: The C and DC bits operate, in subtraction, as borrow and digit borrow bits, respectively.

REGISTER 6-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	—	—	N	OV	Z	DC ⁽¹⁾	C ⁽²⁾			
bit 7							bit 0			
l egend:										
Legend: W = Writable bit U = Unimplemented bit, read as '0'										
-n = Valu	e at POR	'1' = Bit is set	t	'0' = Bit is cle		x = Bit is unkr	nown			
bit 7-5	Unimplom	ented: Read as '	0'							
bit 4	-		0							
DIL 4	N: Negative This bit is u (ALU MSB	sed for signed a	rithmetic (2's c	omplement). It	indicates whet	her the result wa	as negative			
	1 = Result v	was negative was positive								
bit 3	OV: Overflo	ow bit								
		sed for signed an which causes the				verflow of the se	even-bit			
		w occurred for si flow occurred	gned arithmeti	c (in this arithm	etic operation)				
bit 2	Z: Zero bit									
		ult of an arithme ult of an arithme	• •		ro					
bit 1		arry/Borrow bit ⁽¹								
		, ADDLW, SUBI								
		 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result 								
bit 0	C: Carry/Bo	C: Carry/Borrow bit ⁽²⁾								
	For ADDWF	For ADDWF, ADDLW, SUBLW and SUBWF instructions:								
		1 = A carry-out from the Most Significant bit of the result occurred								
	0 = No carr	0 = No carry-out from the Most Significant bit of the result occurred								
Note 1:	For borrow, the operand.	For borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second								
2:	·	For borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second								


7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed, one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, the TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	BCF	EECON1, CFGS	; point to Flash program memory
	BSF	EECON1, EEPGD	; access Flash program memory
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the word
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_WORD			
	TBLRD*-	÷	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD_EVEN	
	TBLRD*-	÷	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVF	WORD_ODD	

EXAMPLE 9-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDRH	;
MOVWF	EEADRH	; Upper bits of Data Memory Address to read
MOVLW	DATA_EE_ADDR	i
MOVWF	EEADR	; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
NOP		
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 9-2: DATA EEPROM WRITE

	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	DATA_EE_ADDRH EEADRH DATA_EE_ADDR EEADR DATA_EE_DATA EEDATA	; ; Upper bits of Data Memory Address to write ; ; Lower bits of Data Memory Address to write ; ; Data Memory Value to write
	BCF	EECON1, EEPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	0x55	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0xAA	i
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete GOTO \$-2
	BSF	INTCON, GIE	; Enable Interrupts
			· Harr godo ovogution
	DOD		; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

REGISTER 11-11: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	—	SSP2IE	BCL2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc 1 = Enabled 0 = Disabled	sillator Fail Inter	rupt Enable bi	t			
bit 6	Unimplemen	ted: Read as 'o	,				
bit 5	SSP2IE: Mas	ter Synchronou	s Serial Port 2	Interrupt Enab	le bit		
		the MSSP inter the MSSP inter					
bit 4	1 = Enables	Collision Interru the bus collision the bus collisio	interrupt				
bit 3	BCL1IE: Bus Collision Interrupt Enable bit 1 = Enabled 0 = Disabled						
bit 2	HLVDIE: High/Low-Voltage Detect Interrupt Enable bit 1 = Enabled 0 = Disabled						
bit 1	TMR3IE: TMR3 Overflow Interrupt Enable bit						
	1 = Enabled 0 = Disabled						
bit 0	TMR3GIE: Timer3 Gate Interrupt Enable bit 1 = Enabled 0 = Disabled						

12.6 PORTE, TRISE and LATE Registers

PORTE is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISE and LATE.

All pins on PORTE are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. The RE7 pin is also configurable for open-drain output when ECCP2 is active on this pin. Open-drain configuration is selected by setting the CCP2OD control bit (ODCON1<6>)

Note:	These pins are configured as digital inputs
	on any device Reset.

Each of the PORTE pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by setting bit, REPU (PADCFG1<6>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

PORTE is also multiplexed with Enhanced PWM Outputs, B and C for ECCP1 and ECCP3, for Outputs, B, C and D for ECCP2. For all devices, their default assignments are on PORTE<6:0>.

On 80-pin devices, the multiplexing for the outputs of ECCP1 and ECCP3 is controlled by the ECCPMX Configuration bit. Clearing this bit re-assigns the P1B/P1C and P3B/P3C outputs to PORTH.

For devices operating in Microcontroller mode, the RE7 pin can be configured as the alternate peripheral pin for the ECCP2 module and Enhanced PWM Output 2A. This is done by clearing the CCP2MX Configuration bit. PORTE is also multiplexed with the Parallel Slave Port address lines. RE1 and RE0 are multiplexed with the control signals, WR and RD.

RE3 can also be configured as the Reference Clock Output (REFO) from the system clock. For further details, see **Section 3.7 "Reference Clock Output"**.

CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<1:0> as inputs
		; RE<7:2> as outputs
1		

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description			
RE0/RD/P2D	RE0	0	0	DIG	LATE<0> data output.			
AD8	AD8			ST	PORTE<0> data input.			
	RD x O DIG Parallel Slave Port read strobe pin.				Parallel Slave Port read strobe pin.			
		x	Ι	TTL	Parallel Slave Port read pin.			
	P2D	0	0	—	 ECCP2 PWM Output D. May be configured for tri-state during Enhanced PWM shutdown even 			
	AD8 ⁽²⁾	x	0	DIG	G External memory interface, Data Bit 8 output.			
		x	Ι	TTL	External memory interface, Data Bit 8 input.			
RE1/P2C/WR/	RE1	0	0	DIG	LATE<1> data output.			
AD9		1	Ι	ST	PORTE<1> data input.			
	P2C	0	0	—	ECCP2 PWM Output C. May be configured for tri-state during Enhanced PWM shutdown events.			
	WR	x	0	DIG	Parallel Slave Port write strobe pin.			
		x	I	TTL	Parallel Slave Port write pin.			
	AD9 ⁽²⁾	x	0	DIG	External memory interface, Data Bit 9 output.			
		x	Ι	TTL	External memory interface, Data Bit 9 input.			

TABLE 12-9: PORTE FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Microcontroller mode.

2: This feature is only available on PIC18F8XKXX devices.

19.3 Compare Mode

In Compare mode, the 16-bit CCPR4 register value is constantly compared against the Timer register pair value selected in the CCPTMR1 register. When a match occurs, the CCP4 pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Unchanged (that is, reflecting the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCP4M<3:0>). At the same time, the interrupt flag bit, CCP4IF, is set.

Figure 19-2 gives the Compare mode block diagram

19.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Note:	Clearing the CCP4CON register will force
	the RC1 or RE7 compare output latch
	(depending on device configuration) to the
	default low level. This is not the PORTC or
	PORTE I/O data latch.

19.3.2 TIMER1/3/5/7 MODE SELECTION

If the CCP module is using the compare feature in conjunction with any of the Timer1/3/5/7 timers, the timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the compare operation may not work.

Note:	Details of the timer assignments for the
	CCP modules are given in Table 19-2 and
	Table 19-3.

19.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCP4M<3:0> = 1010), the CCP4 pin is not affected. Only a CCP interrupt is generated, if enabled, and the CCP4IE bit is set.

19.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCP4M<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

The Special Event Trigger for CCP4 cannot start an A/D conversion.

Note: The Special Event Trigger of ECCP2 can start an A/D conversion, but the A/D Converter must be enabled. For more information, see Section 19.0 "Capture/Compare/PWM (CCP) Modules".

REGISTER 20-2: CCPTMRS0: CCP TIMER SELECT 0 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	01 = ECCP3 10 = ECCP3	is based off of is based off of is based off of is based off of	TMR3/TMR4 TMR3/TMR6				
bit 5-3	000 = ECCP 001 = ECCP 010 = ECCP 011 = ECCP	>: ECCP2 Time 2 is based off of 2 is based off of	of TMR1/TMR of TMR3/TMR of TMR3/TMR of TMR3/TMR	2 4 6 8	ed on the 32-Kb	yte device varia	ant; do not use

- 101 = Reserved; do not use
- 110 = Reserved; do not use
- 111 = Reserved; do not use
- bit 2-0 C1TSEL<2:0>: ECCP1 Timer Selection bits
 - 000 = ECCP1 is based off of TMR1/TMR2
 - 001 = ECCP1 is based off of TMR3/TMR4
 - 010 = ECCP1 is based off of TMR3/TMR6
 - 011 = ECCP1 is based off of TMR3/TMR8
 - 100 = ECCP1 is based off of TMR3/TMR10: option reserved on the 32-Kbyte device variant; do not use
 - 101 = ECCP1 is based off of TMR3/TMR12: option reserved on the 32-Kbyte device variant; do not use
 - 110 = Reserved; do not use
 - 111 = Reserved; do not use

NOTES:

REGISTER 28-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

U-0	R/P-1	U-0	R/P-1	R/P-1	R/P-1	U-0	R/P-1
—	XINST	_	SOSCSEL1	SOSCSEL0	INTOSCSEL	_	RETEN
bit 7							bit 0

Legend:	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	XINST: Extended Instruction Set Enable bit
	 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled (Legacy mode)
bit 5	Unimplemented: Read as '0'
bit 4-3	SOSCSEL<1:0>: SOSC Power Selection and Mode Configuration bits
	 11 = High-power SOSC circuit is selected 10 = Digital (SCLKI) mode; I/O port functionality of RC0 and RC1 is enabled 01 = Low-power SOSC circuit is selected 00 = Reserved
bit 2	INTOSCSEL: LF-INTOSC Low-power Enable bit
	 1 = LF-INTOSC is in High-Power mode during Sleep 0 = LF-INTOSC is in Low-Power mode during Sleep
bit 1	Unimplemented: Read as '0'
bit 0	RETEN: VREG Sleep Enable bit
	1 = Regulator power while in Sleep mode is controlled by VREGSLP (WDTCON<7>) 0 = Regulator power while in Sleep mode is controlled by SRETEN (WDTCON<4>). Ultra low-pow

= Regulator power while in Sleep mode is controlled by SRETEN (WDTCON<4>). Ultra low-power regulator is enabled.

NOTES:

BCF	Bit Clear f			BN		Branch if N	legative		
Syntax:	BCF f, b	{,a}		Synt	ax:	BN n			
Operands:	$0 \leq f \leq 255$			Oper	rands:	-128 ≤ n ≤ 1	127		
	0 ≤ b ≤ 7 a ∈ [0,1]			Oper	Operation:		if Negative bit is '1', (PC) + 2 + 2n \rightarrow PC		
Operation:	$0 \rightarrow f \le b >$			Statu	Status Affected:				
Status Affected:	None	None			oding:	1110	0110 nn	nn nnnn	
Encoding:	1001	bbba ff	ff ffff		cription:	If the Negat	tive bit is '1', th	nen the	
Description:	Bit 'b' in reg	gister 'f' is clea	ared.			program wi			
	,		ank is selected. ed to select the			added to the incremente	d to fetch the	e PC will have next	
	set is enabl	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing				instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.			
	mode whenever f \leq 95 (5Fh). See		Word	ds:	1				
		.2.3 "Byte-O	riented and	Cycl	es:	1(2)			
	Literal Offs	set Mode" for			ycle Activity: ump:				
Words:	1				Q1	Q2	Q3	Q4	
Cycles:	1				Decode	Read literal	Process	Write to	
Q Cycle Activity:						ʻn'	Data	PC	
Q1	Q2	Q3	Q4	l	No operation	No operation	No operation	No operation	
Decode	Read register 'f'	Process Data	Write register 'f'	If N	o Jump:	operation	operation	operation	
	- 5		- 3		Q1	Q2	Q3	Q4	
Example:	BCF F	LAG_REG,	7, 0		Decode	Read literal	Process	No	
Before Instruc	ction					'n'	Data	operation	
FLAG_R After Instructio	EG = C7h			Exar	nnle:	HERE	BN Jump		
	FLAG_REG = 47h				Before Instruc PC	ction = ad	dress (HERE)		
					After Instructi If Negati PC If Negati PC	ve = 1; = ad ve = 0;	dress (Jump) dress (HERE		

ΜΟν	'LW	Move L	Move Literal to W						
Synta	ax:	MOVLV	MOVLW k						
Oper	ands:	$0 \le k \le 2$	255	5					
Oper	ation:	$k\toW$							
Status Affected:		None							
Encoding:		0000		1110	kkk	ck	kkkk		
Description:		The eig	The eight-bit literal 'k' is loaded into W.						
Words:		1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2		Q3	Q3		Q4		
Decode		Read literal 'k	,		Process Data		/rite to W		
Example:		MOVLW		5Ah					
	After Instructic W	n = 5Ah							

MOVWF	Move W to	f		
Syntax:	MOVWF	f {,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$			
Operation:	$(W) \to f$			
Status Affected:	None			
Encoding:	0110	111a	ffff	ffff
Description:	Move data Location 'f' 256-byte ba	can be a	0	
	If 'a' is '0', t If 'a' is '1', t GPR bank.			
	If 'a' is '0' a set is enabl in Indexed mode wher Section 29 Bit-Oriente Literal Offs	ed, this in Literal Of never f ≤ 9 .2.3 "Byt ed Instrue	nstruction fset Addr 95 (5Fh). te-Orient ctions in	operates essing See ed and Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Proces Data		Write
	register 'f'	Data	i le	gister 'f'
Example:	MOVWF	REG, 0		
Before Instruc W REG After Instructio	= 4Fh = FFh			
W REG	= 4Fh = 4Fh			

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Тнідн	Clock High	100 kHz mode	2(Tosc)(BRG + 1)		_	
		Time	400 kHz mode	2(Tosc)(BRG + 1)		_	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		_	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	—		
			400 kHz mode	2(Tosc)(BRG + 1)		_	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		_	
102	TR	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽¹⁾		300	ns	
103	TF	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽¹⁾	_	100	ns	
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	—	Only relevant for Repeated Start condition
			400 kHz mode	2(Tosc)(BRG + 1)	_	—	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	—	
91	Thd:sta	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	—	After this period, the first clock pulse is generated
			400 kHz mode	2(Tosc)(BRG + 1)	_	—	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	—	
106	Thd:dat	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	_	_	ns	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	(Note 2)
			400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	_	_	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)		—	
			400 kHz mode	2(Tosc)(BRG + 1)	_	—	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	—	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	
			400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾			ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
			1 MHz mode ⁽¹⁾	_		μS	
D102	Св	Bus Capacitive L	oading	—	400	pF	

TABLE 31-24: M	ISSP I ² C™ BUS DATA	REQUIREMENTS
----------------	---------------------------------	--------------

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter #102 + Parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

and EUSART Operation
and PWM Operation279
and SPI Operation
Clock Transitions and Status Indicators
Entering57
Exiting Idle and Sleep Modes
by Interrupt69
by Reset
by WDT Time-out69
Without an Oscillator Start-up Delay69
Idle Modes
PRI IDLE63
RC_IDLE64
SEC_IDLE63
Multiple Sleep Commands
Run Modes
PRI RUN
RC RUN60
SEC RUN
Selecting
Sleep Mode
OSC1 and OSC2 Pin States
Summary (table)
Power-on Reset (POR)
Power-up Delays
Power-up Timer (PWRT)
Time-out Sequence
Prescaler, Timer0
Prescaler, Timer2
PRI IDLE Mode
—
PRI_RUN Mode
Drearen Counter 00
Program Counter
PCL, PCH and PCU Registers
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 89
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 276 Pulse-Width Modulation. See PWM (CCP Module). 276
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH and POP Instructions 90
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256 Duty Cycle 256
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Werification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 431 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 460 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256 Duty Cycle 256 Example Frequencies/Resolutions 256 Period 255
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 460 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 PWM (CCP Module) 456 Duty Cycle 256 Example Frequencies/Resolutions 256 Period 255 Setup for PWM Operation 256
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 460 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256 Duty Cycle 256 Example Frequencies/Resolutions 256 Period 255

279
279
279
276
278

Q

R						
RAM. See Data Memory.						
RC IDLE Mode						
RC RUN Mode						
RCALL						
RCON Register						
Bit Status During Initialization	78					
Reader Response						
Real-Time Clock and Calendar (RTCC)						
Registers						
Reference Clock Output						
Register File						
Register File Summary						
Registers						
ADCON0 (A/D Control 0)	352					
ADCON1 (A/D Control 1)						
ADCON2 (A/D Control 2)						
ADRESH (A/D Result High Byte Left Justified,						
ADFM = 0)	356					
ADRESH (A/D Result High Byte Right Justified,						
ADFM = 1)	357					
ADRESL (A/D Result High Byte Left Justified,						
ADFM = 0)	356					
ADRESL (A/D Result Low Byte Right Justified,						
ADFM = 1)	357					
ALRMCFG (Alarm Configuration)						
ALRMDAY (Alarm Day Value)						
ALRMHR (Alarm Hours Value)						
ALRMMIN (Alarm Minutes Value)						
ALRMMNTH (Alarm Month Value)						
ALRMRPT (Alarm Repeat)						
ALRMSEC (Alarm Seconds Value)						
ALRMWD (Alarm Weekday Value)						
ANCON0 (A/D Port Configuration 0)						
ANCON1 (A/D Port Configuration 1)						
ANCON2 (A/D Port Configuration 2)						
BAUDCONX (Baud Rate Control)						
CCPRxH (CCPx Period High Byte)						
CCPRxL (CCPx Period Low Byte)						
CCPTMRS0 (CCP Timer Select 0)						
CCPTMRS1 (CCP Timer Select 1)						
CCPTMRS2 (CCP Timer Select 2)						
CCPxCON (CCP4-CCP10 Control)						
CCPxCON (Enhanced Capture/Compare/	240					
PWMx Control)	260					
CMSTAT (Comparator Status)						
CMSTAT (Comparator Status) CMxCON (Comparator Control x)						
CONFIG1H (Configuration 1 High)						
CONFIG1L (Configuration 1 Low)						
CONFIG1E (Configuration 1 Edw) CONFIG2H (Configuration 2 High)						
CONFIG2L (Configuration 2 Low)						
00111 102L (00111901all011 2 L0W)	407					

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11