

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	QFN/TQFP	Туре Туре		Description			
				PORTF is a bidirectional I/O port.			
RF1/AN6/C2OUT/CTDIN RF1 AN6 C2OUT CTDIN	17	I/O 0 	ST Analog — ST	Digital I/O. Analog Input 6. Comparator 2 output. CTMU pulse delay input.			
RF2/AN7/C1OUT RF2 AN7 C1OUT	16	I/O I O	ST Analog —	Digital I/O. Analog Input 7. Comparator 1 output.			
RF3/AN8/C2INB/CTMUI RF3 AN8 C2INB CTMUI	15	I/O 0	ST Analog Analog —	Digital I/O. Analog Input 8. Comparator 2 Input B. CTMU pulse generator charger for the C2INB comparator input.			
RF4/AN9/C2INA RF4 AN9 C2INA	14	I/O 	ST Analog Analog	Digital I/O. Analog Input 9. Comparator 2 Input A.			
RF5/AN10/CVREF/C1INB RF5 AN10 CVREF C1INB	13	I/O 0 	ST Analog Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output. Comparator 1 Input B.			
RF6/AN11/C1INA RF6 AN11 C1INA	12	I/O 	ST Analog Analog	Digital I/O. Analog Input 11. Comparator 1 Input A.			
RF7/AN5/SS1 RF7 <u>AN5</u> SS1	11	I/O O I	ST Analog TTL	Digital I/O. Analog Input 5. SPI1 slave select input.			
I = Input P = Power $I^2C = I^2C^{TM}/SI$	Trigger input w MBus			CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)			

TABLE 1-3:	PIC18F6XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)	١
			,

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

Pin Name	Pin Number	Pin Bu	Buffer	Description			
	TQFP	Туре Туре		Description			
				PORTJ is a bidirectional I/O port.			
RJ0/ALE RJ0 ALE	62	I/O O	ST —	Digital I/O. External memory address latch enable.			
RJ1/OE RJ1 OE	61	I/O O	ST	Digital I/O. External memory output enable.			
RJ2/WRL RJ2 WRL	60	I/O O	ST —	Digital I/O. External memory write low control.			
RJ3/WRH RJ3 WRH	59	I/O O	ST —	Digital I/O. External memory high control.			
RJ4/BA0 RJ4 BA0	39	I/O O	ST —	Digital I/O. External Memory Byte Address 0 control			
RJ5/CE RJ5 CE	40	I/O O	ST —	Digital I/O External memory chip enable control.			
RJ6/LB RJ6 LB	41	I/O O	ST —	Digital I/O. External memory low byte control.			
RJ7/UB RJ7 UB	42	I/O O	ST —	Digital I/O. External memory high byte control.			
Vss	11, 31, 51, 70	Р	—	Ground reference for logic and I/O pins.			
VDD	32, 48, 71	Р	—	Positive supply for logic and I/O pins.			
AVss	26	Р		Ground reference for analog modules.			
AVDD	25	P		Positive supply for analog modules.			
ENVREG Vddcore/Vcap	24 12	I	ST	Enable for on-chip voltage regulator. Core logic power or external filter capacitor connection.			
Vddcore Vcap		Ρ	_	External filter capacitor connection (regulator enabled/disabled).			
I = Input P = Power I ² C = I ² C™/SM	rigger input wit Bus			CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)			

PIC18F8XK22 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-4:**

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: PSP is available only in Microcontroller mode.

5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

6.1.3.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit (CONFIG4L<0>). When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.4 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the Stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
•	;SAVED IN FAST REGISTER
SUB1 •	;STACK
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.5 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.5.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value, 'nn', to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh

6.1.5.2 Table Reads

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored, two bytes per program word, while programming. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from the program memory. Data is transferred from program memory, one byte at a time.

The table read operation is discussed further in **Section 7.1 "Table Reads and Table Writes**".

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. For more information, see
	Section 6.6 "Data Memory and the
	Extended Instruction Set"

While the program memory can be addressed in only one way, through the Program Counter, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). For details on this mode's operation, see **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all. They either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples of this mode include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This method is known as the Literal Addressing mode because the instructions require some literal value as an argument. Examples of this include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies the instruction's data source as either a register address in one of the banks of data RAM (see Section 6.3.3 "General Purpose Register File") or a location in the Access Bank (see Section 6.3.2 "Access Bank").

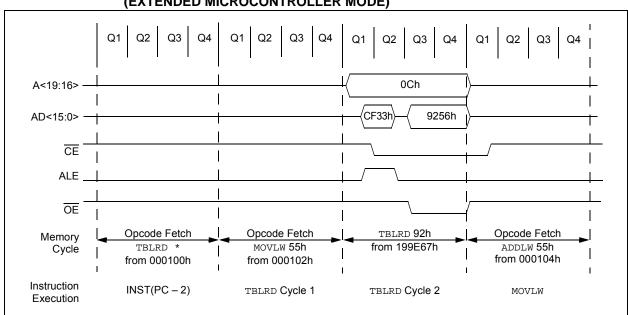
The Access RAM bit, 'a', determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction, either the target register being operated on or the W register.

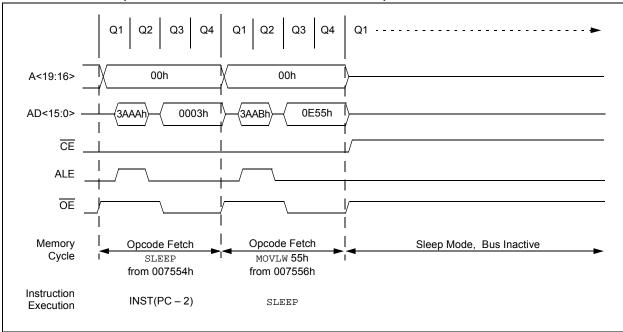
6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.


The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINU	JE		;	YES, continue


8.6.4 16-BIT MODE TIMING

The presentation of control signals on the External Memory Bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 8-4 and Figure 8-5.

FIGURE 8-4: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED MICROCONTROLLER MODE)

FIGURE 8-5: EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED MICROCONTROLLER MODE)

R/W-0	U-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	TMR5GIF: Tir	ner5 Gate Inter	rupt Enable bit	·			
	1 = Enabled						
	0 = Disabled						
bit 6	Unimplement	ted: Read as '	כי				
bit 5	RC2IE: EUSA	RT Receive In	terrupt Enable	bit			
	1 = Enabled						
	0 = Disabled						
bit 4		RT Transmit Ir	iterrupt Enable	e bit			
	1 = Enabled 0 = Disabled						
bit 3	CTMUIE: CTMU Interrupt Enable bit						
	1 = Enabled						
	0 = Disabled						
bit 2	CCP2IE: ECC	P2 Interrupt E	nable bit				
1 = Enabled							
	0 = Disabled						
bit 1	bit 1 CCP1IE: ECCP1 Interrupt Enable bit						
	1 = Enabled 0 = Disabled						
bit 0 RTCCIE: RTCC Interrupt Enable bit 1 = Enabled							
	0 = Disabled						

REGISTER 11-12: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

REGISTER 11-13: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
bit 7	•	•		•		•	bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 7-0 CCP<10:3>IE: CCP<10:3> Interrupt Enable bits⁽¹⁾

- 1 = Enabled
- 0 = Disabled

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

12.3 PORTB, TRISB and LATB Registers

PORTB is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISB and LATB. All pins on PORTB are digital only.

CLRF PORTB	; Initialize PORTB by ; clearing output ; data latches
CLRF LATB	; Alternate method
-	; to clear output
	; data latches
MOVLW 0CFh	; Value used to
	; initialize data
	; direction
MOVWF TRISB	; Set RB<3:0> as inputs
	; RB<5:4> as outputs
	; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur. Any RB<7:4> pin configured as an output will be excluded from the interrupt-on-change comparison.

Comparisons with the input pins (of RB<7:4>) are made with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. To clear the interrupt in the Interrupt Service Routine:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Wait one instruction cycle (such as executing a NOP instruction).
- c) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared after one Tcy delay.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

The RB<3:2> pins are multiplexed as CTMU edge inputs. RB5 has an additional function for Timer3 and Timer1. It can be configured for Timer3 clock input or Timer1 external clock gate input.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description		
RB0/INT0/FLT0	RB0	0	0	DIG	LATB<0> data output.		
		1	I TTL PORTB<0> data input; weak pull-up when RBPL		PORTB<0> data input; weak pull-up when RBPU bit is cleared.		
INTO		1	I	ST	External Interrupt 0 input.		
	FLT0	x	Ι	ST Enhanced PWM Fault input for ECCPx.			
RB1/INT1	RB1 0 O DIG LATB		DIG	LATB<1> data output.			
		1	Ι	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.		
	INT1	1	Ι	ST	External Interrupt 1 input.		
RB2/INT2/CTED1	RB2	0	0	DIG	LATB<2> data output.		
		1	Ι	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared.		
	INT2	1	Ι	ST	External Interrupt 2 input.		
	CTED1	x	Ι	ST	CTMU Edge 1 input.		

TABLE 12-3: PORTB FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Extended Microcontroller mode.

12.4 PORTC, TRISC and LATC Registers

PORTC is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISC and LATC. Only PORTC pins, RC2 through RC7, are digital only pins.

PORTC is multiplexed with ECCP, MSSP and EUSART peripheral functions (Table 12-5). The pins have Schmitt Trigger input buffers. The pins for ECCP, SPI and EUSART are also configurable for open-drain output whenever these functions are active. Open-drain configuration is selected by setting the SPIOD, CCPxOD and U1OD control bits in the registers, ODCON1 and ODCON3.

RC1 is normally configured as the default peripheral pin for the ECCP2 module. The assignment of ECCP2 is controlled by Configuration bit, CCP2MX (default state, CCP2MX = 1). When enabling peripheral functions, use care in defining TRIS bits for each PORTC pin. Some peripherals can override the TRIS bit to make a pin an output or input. Consult the corresponding peripheral section for the correct TRIS bit settings.

Note:	These pins are configured as digital inputs
	on any device Reset.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 12-3:	INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
		; data latches
CLRF	LATC	; Alternate method
CLRF	LAIC	, Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description			
RC0/SOSCO/	RC0	0	0	DIG	LATC<0> data output.			
SCLKI/		1	Ι	ST	PORTC<0> data input.			
	SOSCO	1	Ι	ST	SOSC oscillator output.			
SCLKI 1			Ι	ST	Digital clock input; enabled when SOSC oscillator is disabled.			
				DIG	LATC<1> data output.			
ECCP2/P2A 1			Ι	ST	PORTC<1> data input.			
	x	Ι	ANA	SOSC oscillator input.				
	0	0	DIG	ECCP2 compare output and ECCP2 PWM output; takes priority over port data				
		1	Ι	ST	ECCP2 capture input.			
	P2A	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.			
RC2/ECCP1/	RC2	0	0	DIG	LATC<2> data output.			
P1A		1	Ι	ST	PORTC<2> data input.			
	ECCP1	0	0	DIG	ECCP1 compare output and ECCP1 PWM output; takes priority over port data.			
		1	Ι	ST	ECCP1 capture input.			
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.			

TABLE 12-5: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, $I^2C = I^2C^{TM}$ /SMBus Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

16.1 Timer3/5/7 Gate Control Register

The Timer3/5/7 Gate Control register (TxGCON), provided in Register 14-2, is used to control the Timerx gate.

REGISTER 16-2: TxGCON: TIMERx GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/TxDONE	TxGVAL	TxGSS1	TxGSS0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note 1:	Programming the TxGCON prior to TxCON is recommended.
	 11 = Comparator 2 output 10 = Comparator 1 output 01 = TMR(x+1) to match PR(x+1) output⁽²⁾ 00 = Timer1 gate pin The Watchdog Timer oscillator is turned on if TMRxGE = 1, regardless of the state of TMRxON.
bit 1-0	TxGSS<1:0>: Timerx Gate Source Select bits
bit 2	TxGVAL: Timerx Gate Current State bit Indicates the current state of the Timerx gate that could be provided to TMRxH:TMRxL. Unaffected by the Timerx Gate Enable (TMRxGE) bit.
	 1 = Timerx gate single pulse acquisition is ready, waiting for an edge 0 = Timerx gate single pulse acquisition has completed or has not been started This bit is automatically cleared when TxGSPM is cleared.
bit 3	TxGGO/TxDONE: Timerx Gate Single Pulse Acquisition Status bit
	 1 = Timerx Gate Single Pulse mode is enabled and is controlling Timerx gate 0 = Timerx Gate Single Pulse mode is disabled
bit 4	TxGSPM: Timerx Gate Single Pulse Mode bit
	 1 = Timerx Gate Toggle mode is enabled. 0 = Timerx Gate Toggle mode is disabled and toggle flip-flop is cleared Timerx gate flip-flop toggles on every rising edge.
bit 5	TxGTM: Timerx Gate Toggle Mode bit
	 1 = Timerx gate is active-high (Timerx counts when gate is high) 0 = Timerx gate is active-low (Timerx counts when gate is low)
bit 6	TxGPOL: Timerx Gate Polarity bit
	This bit is ignored. <u>If TMRxON = 1:</u> 1 = Timerx counting is controlled by the Timerx gate function 0 = Timerx counts regardless of Timerx gate function
DIT /	If TMRxON = 0:
bit 7	TMRxGE: Timerx Gate Enable bit

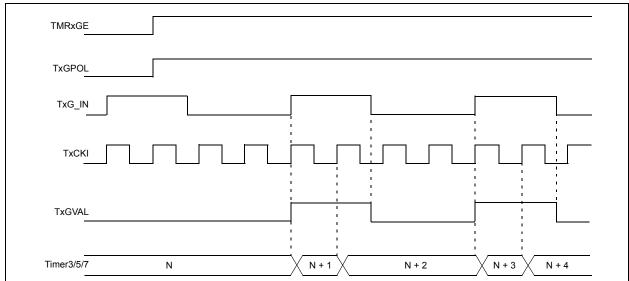
2: Timer(x+1) will be Timer4/6/8 for Timerx (Timer3/5/7), respectively.

16.5 Timer3/5/7 Gates

Timer3/5/7 can be configured to count freely or the count can be enabled and disabled using the Timer3/5/7 gate circuitry. This is also referred to as the Timer3/5/7 gate count enable.

The Timer3/5/7 gate can also be driven by multiple selectable sources.

16.5.1 TIMER3/5/7 GATE COUNT ENABLE


The Timerx Gate Enable mode is enabled by setting the TMRxGE bit (TxGCON<7>). The polarity of the Timerx Gate Enable mode is configured using the TxGPOL bit (TxGCON<6>).

When Timerx Gate Enable mode is enabled, Timer3/5/7 will increment on the rising edge of the Timer3/5/7 clock source. When Timerx Gate Enable mode is disabled, no incrementing will occur and Timer3/5/7 will hold the current count. See Figure 16-2 for timing details.

TABLE 16-1: TIMER3/5/7 GATE ENABLE SELECTIONS

TxCLK ^(†)	TxGPOL (TxGCON<6>)	TxG Pin	Timerx Operation	
1	0	0	Counts	
\uparrow	0	1	Holds Count	
\uparrow	1	0	Holds Count	
\uparrow	1	1	Counts	

† The clock on which TMR3/5/7 is running. For more information, see TxCLK in Figure 16-1.

FIGURE 16-2: TIMER3/5/7 GATE COUNT ENABLE MODE

TABLE 20-4: REGISTERS ASSOCIATED WITH ECCP1/2/3 MODULE AND TIMER1/2/3/4/6/8/10/12 (CONTINUED)

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	SOSCEN	T1SYNC	RD16	TMR10N			
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0			
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON			
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0			
T6CON	_	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0			
T8CON	—	T8OUTPS3	T8OUTPS2	T8OUTPS1	T8OUTPS0	TMR8ON	T8CKPS1	T8CKPS0			
T10CON ⁽¹⁾	—	T10OUTPS3	T10OUTPS2	T10OUTPS1	T10OUTPS0	TMR100N	T10CKPS1	T10CKPS0			
T12CON ⁽¹⁾		- T120UTPS3 T120UTPS2 T120UTPS1 T120UTPS0 TMR120N T12CKPS1 T12CKPS0									
CCPR1H	Capture/Compa	re/PWM Regis	ter 1 High Byt	e							
CCPR1L	Capture/Compa	re/PWM Regis	ter 1 Low Byte	е							
CCPR2H	Capture/Compa	re/PWM Regis	ter 2 High Byt	e							
CCPR2L	Capture/Compa	re/PWM Regis	ter 2 Low Byte	е							
CCPR3H	Capture/Compa	re/PWM Regis	ter 3 High Byt	e							
CCPR3L	Capture/Compa	re/PWM Regis	ter 3 Low Byte	е							
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0			
CCP2CON	P2M1	P2M0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0			
CCP3CON	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD			
PMD0	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD			

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18F65K22 and PIC18F85K22).

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

21.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPxSR and SSPxBUF together create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

REGISTER 21-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

				\ -	,		
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF
bit 7							bit (
Legend:							
R = Reada		W = Writable			mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	0 = Input dat <u>SPI Slave m</u>	<u>node:</u> a is sampled at a is sampled at	the middle of	data output tim	e		
bit 6		ock Select bit ⁽¹⁾					
bit 5	1 = Transmit	occurs on the t occurs on the t ddress bit	ransition from				
bit 4	P: Stop bit		bit is cleared	when the MSSI	^o x module is d	isabled; SSPEN	l is cleared.
bit 3	S: Start bit Used in I ² C r						
bit 2	R/W: Read/V Used in I ² C r	Vrite Information mode only.	n bit				
bit 1	UA: Update Used in I ² C r						
bit 0	BF: Buffer Fi	ull Status bit (Re is complete, SS is not complete	PxBUF is full	• •			
Note di							

Note 1: Polarity of clock state is set by the CKP bit (SSPxCON1<4>).

21.4.10 I²C[™] MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address, is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted (see data hold time specification Parameter 106). SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high (see data setup time specification Parameter 107). When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 21-23).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPxCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPxIF flag is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

21.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPxSTAT<0>) is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

21.4.10.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TCY after the SSPxBUF write. If SSPxBUF is rewritten within 2 TCY, the WCOL bit is set and SSPxBUF is updated. This may result in a corrupted transfer.

The user should verify that the WCOL bit is clear after each write to SSPxBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

21.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPxCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

21.4.11 I²C[™] MASTER MODE RECEPTION

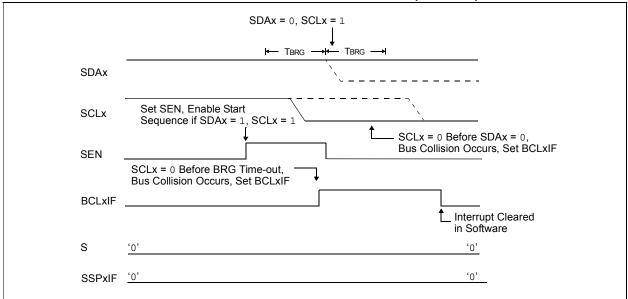
Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPxCON2<3>).

Note: The MSSP module must be in an inactive state before the RCEN bit is set or the RCEN bit will be disregarded.

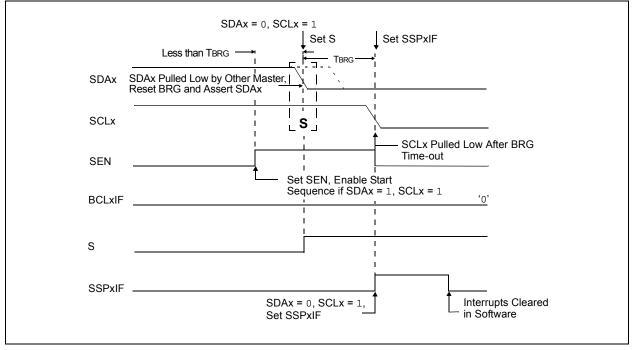
The Baud Rate Generator begins counting, and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPxCON2<4>).

21.4.11.1 BF Status Flag

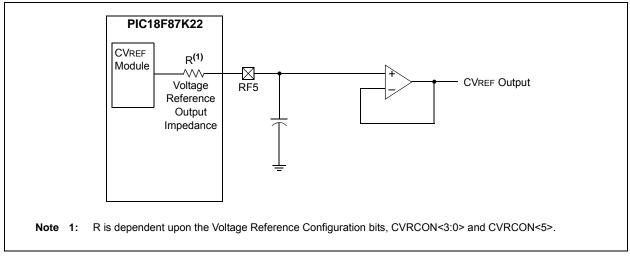
In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.


21.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.


21.4.11.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).



PIC18F87K22 FAMILY

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'				
-n = Value at POR		'1' = Bit is set		ʻ0' = Bit is clea	red	x = Bit is unki	nown			
bit 7		to-Baud Acquis		Status bit uto-Baud Rate I	Detect mode (I	must be cleare	d in software)			
	0 = No BRG	rollover has oc	curred							
bit 6		ive Operation I								
		peration is Idle								
bit 5	RXDTP: Data	/Receive Polar	ity Select bit							
		<u>s mode:</u> lata (RXx) is in lata (RXx) is no								
		mode: <) is inverted (a <) is not inverte								
bit 4	TXCKP: Synchronous Clock Polarity Select bit									
	Asynchronous 1 = Idle state		(x) is a low lev	el						
		<u>mode:</u> for clock (CKx) for clock (CKx)								
bit 3	BRG16: 16-B	it Baud Rate R	egister Enable	bit						
				Hx and SPBRGA		RGHx value ig	nored			
bit 2	Unimplemen	ted: Read as ')'							
bit 1	WUE: Wake-u	up Enable bit								
	hardware		sing edge	RXx pin – interru letected	ipt generated	on falling edge	; bit cleared i			
	Synchronous Unused in this									
bit 0		-Baud Detect I	- nable bit							
	Asynchronous 1 = Enable b cleared ir	<u>s mode:</u> aud rate meas ı hardware upo	urement on the	e next character has completed	r. Requires re	ception of a Sy	ync field (55h			
	Synchronous Unused in this									

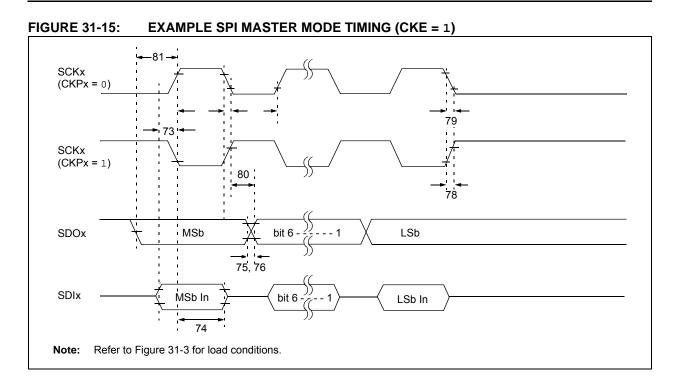
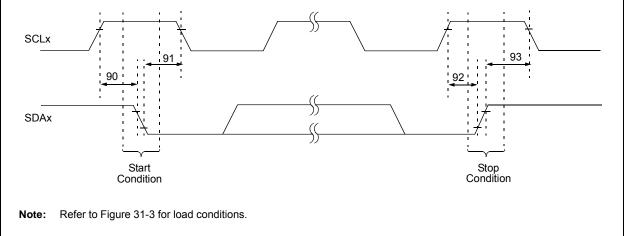

FIGURE 25-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 25-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CVRCON	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM3CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	—
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
ANCON1	ANSEL15	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8

Legend: — = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.



Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	_	ns	

TABLE 31-18: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

PIC18F87K22 FAMILY

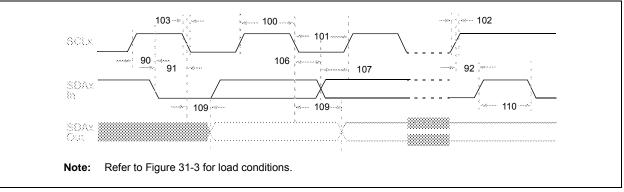


TABLE 31-23: MSSP I ² C [™] BUS START/STOP BITS REQUIREM	ENTS
--	------

Param. No.	Symbol	Characte	eristic Min		Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for Repeated Start
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91 THD:STA Start Condition Hold Time		Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	1	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		1	

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	—	12	bit	$\Delta VREF \ge 5.0V$
A03	EIL	Integral Linearity Error	—	±1	±6.0	LSB	ΔVREF = 5.0V
A04	Edl	Differential Linearity Error	—	±1	+3.0/-1.0	LSB	ΔVREF = 5.0V
A06	EOFF	Offset Error	—	±1	±9.0	LSB	ΔVREF = 5.0V
A07	Egn	Gain Error	—	±1	±8.0	LSB	∆VREF = 5.0V
A10	_	Monotonicity ⁽¹⁾	_	_		_	$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	—	Vdd - Vss	V	
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	VDD - 3.0V	V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	_	_	5 150	μΑ μΑ	During VAIN acquisition During A/D conversion cycle

TABLE 31-27: A/D CONVERTER CHARACTERISTICS: PIC18F87K22 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result doesn't decrease with an increase in the input voltage.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF- pin or VSs, whichever is selected as the VREFL source.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11