

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k22t-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18FXXKXX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F87K22 family family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG (if implemented) and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic R1: 10 k Ω

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)" for explanation of ENVREG pin connections.
 - 2: The example shown is for a PIC18F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 3.0 "Oscillator Configurations"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-4. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE J-Z.	INITIALIZATION CONDI		IONS FOR ALL RE		
Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt
INDF2	PIC18F6XK22	PIC18F8XK22	N/A	N/A	N/A
POSTINC2	PIC18F6XK22	PIC18F8XK22	N/A	N/A	N/A
POSTDEC2	PIC18F6XK22	PIC18F8XK22	N/A	N/A	N/A
PREINC2	PIC18F6XK22	PIC18F8XK22	N/A	N/A	N/A
PLUSW2	PIC18F6XK22	PIC18F8XK22	N/A	N/A	N/A
FSR2H	PIC18F6XK22	PIC18F8XK22	xxxx	uuuu	uuuu
FSR2L	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	սսսս սսսս	uuuu uuuu
STATUS	PIC18F6XK22	PIC18F8XK22	x xxxx	u uuuu	u uuuu
TMR0H	PIC18F6XK22	PIC18F8XK22	0000 0000	սսսս սսսս	uuuu uuuu
TMR0L	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	uuuu uuuu	uuuu uuuu
T0CON	PIC18F6XK22	PIC18F8XK22	1111 1111	1111 1111	uuuu uuuu
SPBRGH1	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
OSCCON	PIC18F6XK22	PIC18F8XK22	0110 q000	0110 q000	uuuu quuu
IPR5	PIC18F65K22	PIC18F85K22	1 -111	1 -111	u -uuu
IPR5	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	1000 0000	1000 0000	uuuu uuuu
WDTCON	PIC18F6XK22	PIC18F8XK22	0-x0 -000	0-x0 -000	u-uu -uuu
RCON	PIC18F6XK22	PIC18F8XK22	0111 11qq	0uqq qquu	uuuu qquu
TMR1H	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1L	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	PIC18F6XK22	PIC18F8XK22	0000 0000	uuuu uuuu	uuuu uuuu
TMR2	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
PR2	PIC18F6XK22	PIC18F8XK22	1111 1111	1111 1111	uuuu uuuu
T2CON	PIC18F6XK22	PIC18F8XK22	-000 0000	-000 0000	-uuu uuuu
SSP1BUF	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSP1ADD	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
SSP1STAT	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
SSP1CON1	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
SSP1CON2	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
ADRESH	PIC18F6XK22	PIC18F8XK22	XXXX XXXX	սսսս սսսս	սսսս սսսս
ADRESL	PIC18F6XK22	PIC18F8XK22	XXXX XXXX	սսսս սսսս	սսսս սսսս
ADCON0	PIC18F6XK22	PIC18F8XK22	-000 0000	-000 0000	-uuu uuuu
ADCON1	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	սսսս սսսս
ADCON2	PIC18F6XK22	PIC18F8XK22	0-00 0000	0-00 0000	u-uu uuuu

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt, and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for Reset value for specific condition.

TADLE J-Z.	INITALIZA		IONS I OK ALL KL		
Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt
ODCON2	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 0000	սսսս սսսս	սսսս սսսս
ODCON2	PIC18F65K22	PIC18F85K22	00 0000	uu uuuu	uu uuuu
ODCON3	PIC18F6XK22	PIC18F8XK22	000	uuu	uuu
MEMCON	PIC18F6XK22	PIC18F8XK22	0-0000	0-0000	u-uuuu
ANCON0	PIC18F6XK22	PIC18F8XK22	1111 1111	սսսս սսսս	սսսս սսսս
ANCON1	PIC18F6XK22	PIC18F8XK22	1111 1111	սսսս սսսս	սսսս սսսս
ANCON2	PIC18F6XK22	PIC18F8XK22	1111 1111	սսսս սսսս	սսսս սսսս
RCSTA2	PIC18F6XK22	PIC18F8XK22	0000 000x	0000 000x	uuuu uuuu
TXSTA2	PIC18F6XK22	PIC18F8XK22	0000 0010	0000 0010	սսսս սսսս
BAUDCON2	PIC18F6XK22	PIC18F8XK22	0100 0-00	0100 0-00	uuuu u-uu
SPBRGH2	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
SPBRG2	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
RCREG2	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
TXREG2	PIC18F6XK22	PIC18F8XK22	XXXX XXXX	xxxx xxxx	uuuu uuuu
PSTR2CON	PIC18F6XK22	PIC18F8XK22	00-0 0001	00-0 0001	uu-u uuuu
PSTR3CON	PIC18F6XK22	PIC18F8XK22	00-0 0001	00-0 0001	uu-u uuuu
PMD0	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	սսսս սսսս
PMD1	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu
PMD2	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 0000	0000 0000	<u>uuuu</u> uuuu
PMD2	PIC18F65K22	PIC18F85K22	-0-0 0000	-0-0 0000	-u-u uuuu
PMD3	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 0000	0000 0000	uuuu uuuu
PMD3	PIC18F65K22	PIC18F85K22	00 000-	00 000-	uu uuu-

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt, and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for Reset value for specific condition.

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as two or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSB will always read '0' (see **Section 6.1.2 "Program Counter"**).

Figure 6-5 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1> which accesses the desired byte address in program memory. Instruction #2 in Figure 6-5 shows how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. For more details on the instruction set, see **Section 29.0 "Instruction Set Summary"**.

				00.0		•	
					LSB = 1	LSB = 0	Word Address \downarrow
		Program N	1emory				000000h
		Byte Locat	ions \rightarrow				000002h
							000004h
							000006h
In	struction 1:	MOVLW	055h		0Fh	55h	000008h
In	struction 2:	GOTO	0006h		EFh	03h	00000Ah
					F0h	00h	00000Ch
In	struction 3:	MOVFF	123h,	456h	C1h	23h	00000Eh
					F4h	56h	000010h
							000012h
							000014h

FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four, two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits. The other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence, immediately after the first word, the data in the second word is accessed and

used by the instruction sequence. If the first word is skipped, for some reason, and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note: For information on two-word instructions in the extended instruction set, see Section 6.5 "Program Memory and the Extended Instruction Set".

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2	; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

© 2009-2011 Microchip Technology Inc.

		1						/		
Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
FB6h	PIE4	CCP10IE ⁽³⁾	CCP9IE ⁽³⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE	0000 0000
FB5h	CVRCON	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000 0000
FB4h	CMSTAT	CMP3OUT	CMP2OUT	CMP1OUT	—	—	_	—	—	xxx
FB3h	TMR3H	Timer3 Regist	er High Byte							xxxx xxxx
FB2h	TMR3L	Timer3 Regist	er Low Byte							XXXX XXXX
FB1h	T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON	0000 0000
FB0h	T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000 0x00
FAFh	SPBRG1	USART1 Bau	d Rate Genera	tor		•			•	0000 0000
FAEh	RCREG1	USART1 Rec	eive Register							0000 0000
FADh	TXREG1	USART1 Tran	smit Register							XXXX XXXX
FACh	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
FABh	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
FAAh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00
FA9h	IPR6	_	_	_	EEIP	_	CMP3IP	CMP2IP	CMP1IP	1 -111
FA8h	HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000 0000
FA7h	PSPCON	IBF	OBF	IBOV	PSPMODE	_	_	_	_	0000
FA6h	PIR6	_	_	_	EEIF	_	CMP3IF	CMP2IF	CMP1IF	0 -000
FA5h	IPR3	TMR5GIP	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	1-11 1111
FA4h	PIR3	TMR5GiF		RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	0-00 0000
FA3h	PIE3	TMR5GIE		RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	0-00 0000
FA2h	IPR2	OSCFIP		SSP2IP	BCL2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP	1-11 1111
FA1h	PIR2	OSCEIE		SSP2IF	BCI 2IF	BCI 1IF	HIVDIE	TMR3IF	TMR3GIF	0-00 0000
FA0h	PIF2	OSCEIE		SSP2IF	BCI 2IF	BCI 1IF	HIVDIE	TMR3IF	TMR3GIF	0-00 0000
F9Fh	IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	1111 1111
F9Fh	PIR1	PSPIE	ADIE	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	0000 0000
F9Dh	PIF1	PSPIE	ADIE	RC1IF	TX1IE	SSP1IF	TMR1GIE	TMR2IF	TMR1IF	
F9Ch	PSTR1CON	CMPL1	CMPL 0	_	STRSYNC	STRD	STRC	STRB	STRA	00-0 0001
F9Bh	OSCTUNE	INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUNO	
F9Ah	TRIS.I(2)	TRIS.I7	TRIS.I6	TRIS.I5	TRIS.I4	TRIS.I3	TRIS.I2	TRIS.I1	TRIS.I0	1111 1111
F99h	TRISH(2)	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISHO	1111 1111
F98h	TRISG	_	_		TRISG4	TRISG3	TRISG2	TRISG1	TRISGO	1 1111
F97h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1		1111 111_
F96h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1		1111 111_
F95h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISDO	1111 1111
F94h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISCO	1111 1111
F93h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISBO	1111 1111
F02h	TRISA	TRISA7	TRISAG	TRISAS	TRISAA	TRISA3	TRISA2	TRISA1	TRISAO	1111 1111
F01h							1 AT 12			1111 1111 VVVV VVVV
FQOb	LATH(2)									~~~~
EQEN		LAITI	LATTIC	LAINS						
FREP						LATES			LAIGU	
FRCh										
F8Bh										XXXX XXXX
F8Ab										AAAA XXXX
F80h										AAAA XXXX
F88h			D IG	D IS						AAAA XXXX
E976										XXXX XXXX
1 0/11			KU0	RHO	KD4	кпо	REZ		RHU	XXXX XXXX

This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented. Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'. Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22). Note 1: 2: 3:

11.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are six Peripheral Interrupt Priority registers (IPR1 through IPR6). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit (RCON<7>) be set.

REGISTER 11-16: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP
bit 7							bit 0
l egend.							

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 6	ADIP: A/D Converter Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 5	RC1IP: EUSART Receive Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TX1IP: EUSART Transmit Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	SSP1IP: Master Synchronous Serial Port Interrupt Priority bit
bit 3	SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority
bit 3	SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority
bit 3 bit 2	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit</pre>
bit 3 bit 2	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority</pre>
bit 3 bit 2	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority 0 = Low priority</pre>
bit 3 bit 2 bit 1	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit</pre>
bit 3 bit 2 bit 1	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority</pre>
bit 3 bit 2 bit 1	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority</pre>
bit 3 bit 2 bit 1 bit 0	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit</pre>
bit 3 bit 2 bit 1 bit 0	<pre>SSP1IP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority TMR1GIP: Timer1 Gate Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority</pre>

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RB3/INT3/CTED2/	RB3	0	0	DIG	LATB<3> data output.
ECCP2/P2A		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.
INT3		1	I	ST	External Interrupt 3 input.
	CTED2	x	Ι	ST	CTMU Edge 2 input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RB4/KBI0	RB4	0	0	DIG	LATB<4> data output.
		1	I	TTL	PORTB<4> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI0	1	I	TTL	Interrupt-on-pin change.
RB5/KBI1/T3CKI/	RB5	0	0	DIG	LATB<5> data output.
T1G		1	I	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	KBI1	1	Ι	TTL	Interrupt-on-pin change.
	T3CKI	x	Ι	ST	Timer3 clock input.
	T1G	x	Ι	ST	Timer1 external clock gate input.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	I	TTL	PORTB<6> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-pin change.
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operations.
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	I	TTL	PORTB<7> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI3	1	Ι	TTL	Interrupt-on-pin change.
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operations.
		x	I	ST	Serial execution data input for ICSP and ICD operations.

TABLE 12-3: PORTB FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Extended Microcontroller mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON1	SSP10D	CCP2OD	CCP10D	_				SSP2OD

Legend: Shaded cells are not used by PORTB.

12.9 PORTH, LATH and TRISH Registers

Note:	PORTH is	available	only	on	the	80-pin
	devices.					

PORTH is an 8-bit wide, bidirectional I/O port. The corresponding Data Direction and Output Latch registers are TRISH and LATH.

All pins on PORTH are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

EXAMPLE 12-8: INITIALIZING PORTH

CLRF	PORTH	; ;	Initialize PORTH by clearing output
		;	data latches
CLRF	LATH	;	Alternate method
		;	to clear output
		;	data latches
BANKSEL	ANCON2	;	Select bank with ANCON2 register
MOVLW	0Fh	;	Configure PORTH as
MOVWF	ANCON2	;	digital I/O
MOVLW	0Fh	;	Configure PORTH as
MOVWF	ANCON1	;	digital I/O
BANKSEL	TRISH	;	Select bank with TRISH register
MOVLW	0CFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISH	;	Set RH3:RH0 as inputs
		;	RH5:RH4 as outputs
		;	RH7:RH6 as inputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description					
RH0/AN23/A16	RH0	0	0	DIG	LATH<0> data output.					
		1	Ι	ST	PORTH<0> data input.					
	AN23	1	I	ANA	A/D Input Channel 23. Default input configuration on POR; does not affect digital input.					
	A16	x	0	DIG	External memory interface, Address Line 16; takes priority over port data.					
RH1/AN22/A17	RH1	0	0	DIG	LATH<1> data output.					
		1	Ι	ST	PORTH<1> data input.					
	AN22	1	I	ANA	A/D Input Channel 22. Default input configuration on POR; does not affect digital input.					
	A17	x	0	DIG	External memory interface, Address Line 17; takes priority over port data.					
RH2/AN21/A18	RH2	0	0	DIG	LATH<2> data output.					
		1	Ι	ST	PORTH<2> data input.					
	AN21	1	I	ANA	A/D Input Channel 21. Default input configuration on POR; does not affect digital input.					
	A18	x	0	DIG	External memory interface, Address Line 18; takes priority over port data.					
RH3/AN20/A19	RH3	0	0	DIG	LATH<3> data output.					
		1	Ι	ST	PORTH<3> data input.					
	AN20	1	I	ANA	A/D Input Channel 20. Default input configuration on POR; does not affect digital input.					
	A19	x	0	DIG	External memory interface, Address Line 19; takes priority over port data.					

TABLE 12-15: PORTH FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

19.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the CCPxOD bits (ODCON2<7:0>). Setting the appropriate bit configures the pin for the corresponding module for open-drain operation.

19.1.3 PIN ASSIGNMENT FOR CCP6, CCP7, CCP8 AND CCP9

The pin assignment for CCP6/7/8/9 (Capture input, Compare and PWM output) can change, based on the device configuration.

The ECCPMX Configuration bit (CONFIG3H<1>) determines the pin to which CCP6/7/8/9 is multiplexed. The pin assignments for these CCP modules are given in Table 19-4.

TABLE 19-4: CCP PIN ASSIGNMENT

ЕССРМХ	Pin Mapped to								
Value	CCP6	CCP7	CCP8	CC9					
1 (Default)	RE6	RE5	RE4	RE3					
0	RH7	RH6	RH5	RH4					

19.2 Capture Mode

In Capture mode, the CCPR4H:CCPR4L register pair captures the 16-bit value of the Timer register selected in the CCPTMRS1 when an event occurs on the CCP4 pin. An event is defined as one of the following:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge

The event is selected by the mode select bits, CCP4M<3:0> (CCP4CON<3:0>). When a capture is made, the interrupt request flag bit, CCP4IF (PIR4<1>), is set. (It must be cleared in software.) If another capture occurs before the value in CCPR4 is read, the old captured value is overwritten by the new captured value.

Figure 19-1 shows the Capture mode block diagram.

19.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RC1 or RE7 is configured as a CCP4										
	output, a write to the port causes a										
	capture condition.										

19.2.2 TIMER1/3/5/7 MODE SELECTION

For the available timers (1/3/5/7) to be used for the capture feature, the used timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work.

The timer to be used with each CCP module is selected in the CCPTMRSx registers. (See Section 19.1.1 "CCP Modules and Timer Resources".)

Details of the timer assignments for the CCP modules are given in Table 19-2 and Table 19-3.

	SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665		
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415		
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207		
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_		

TABLE 22-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

			S	YNC = 0, E	BRGH = 0), BRG16 =	1			
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_	
19.2	19.231	0.16	12	_	_	_	_	_	_	
57.6	62.500	8.51	3	_	_	_	_	_	_	
115.2	125.000	8.51	1	—	_	—	—	_	_	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1														
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665				
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665				
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832				
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207				
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103				
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34				
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16				

	SYNC = 0 , BRGH = 1 , BRG16 = 1 or SYNC = 1 , BRG16 = 1												
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832				
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207				
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103				
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25				
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12				
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_				
115.2	111.111	-3.55	8	—	_	_	—	_	—				

22.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

22.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.

e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF				
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF				
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE				
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP				
PIR3	TMR5GIF	_	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF				
PIE3	TMR5GIE	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE				
IPR3	TMR5GIP	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP				
RCSTA1	SPEN	PEN RX9 SREN CREN ADDEN FERR OERR RX9										
TXREG1	EUSART1 T	EUSART1 Transmit Register										
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D				
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN				
SPBRGH1	EUSART1 B	aud Rate Ge	nerator Regi	ster High Byt	е							
SPBRG1	EUSART1 B	aud Rate Ge	nerator Regi	ster								
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
TXREG2	EUSART2 T	ransmit Regis	ster									
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D				
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN				
SPBRGH2	EUSART2 B	aud Rate Ge	nerator Regi	ster High Byt	е							
SPBRG2	EUSART2 B	aud Rate Ge	nerator Regi	ster								
ODCON3	U2OD	U10D	—	—	—	—	—	CTMUDS				
PMD0	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD				

TABLE 22-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

R/P-0) R/P-0	U-0	U-0	R/P-1	R/P-0	R/P-0	R/P-0	
IESC	FCMEN	_	PLLCFG ⁽¹⁾	FOSC3 ⁽²⁾	FOSC2 ⁽²⁾	FOSC1 ⁽²⁾	FOSC0 ⁽²⁾	
bit 7							bit 0	
Legend:		P = Program	nable bit					
R = Read	lable bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Inknown	
bit 7	IESO: Interna 1 = Two-Spe 0 = Two-Spe	al/External Osc ed Start-up is e ed Start-up is d	illator Switchov nabled isabled	ver bit				
bit 6	FCMEN: Fail 1 = Fail-Safe 0 = Fail-Safe	-Safe Clock Mo Clock Monitor Clock Monitor	onitor Enable b is enabled is disabled	bit				
bit 5	Unimplemer	nted: Read as '	0'					
bit 4	PLLCFG: 4x	PLL Enable bit	(1)					
	1 = Oscillato 0 = Oscillato	r is multiplied by	y 4 y					
bit 3-0	FOSC<3:0>:	Oscillator Sele	ction bits ⁽²⁾					
 1101 = EC1, EC oscillator (low power, DC-160 kHz) 1100 = EC1IO, EC oscillator with CLKOUT function on RA6 (low power, DC-160 kHz) 1011 = EC2, EC oscillator (medium power, 160 kHz-16 MHz) 1010 = EC2IO, EC oscillator with CLKOUT function on RA6 (medium power, DC-160 kHz-16 MHz) 1001 = INTIO1, internal RC oscillator with CLKOUT function on RA6 1000 = INTIO2, internal RC oscillator 0111 = RC, external RC oscillator 0110 = EC3, EC oscillator (high power, 4 MHz-64 MHz) 0101 = EC3, EC oscillator (high power, 4 MHz-64 MHz) 0101 = HS1, HS oscillator (medium power, 4 MHz-16 MHz) 0010 = HS2, HS oscillator (high power, 16 MHz-25 MHz) 0001 = LP oscillator 								
Note 1:	Not valid for the IN	NTIOx PLL mod	e.					

REGISTER 28-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

2: INTIO + PLL can be enabled only by the PLLEN bit (OSCTUNE<6>). Other PLL modes can be enabled by either the PLLEN bit or the PLLCFG (CONFIG1H<4>) bit.

BNO	v	Branch if N	Branch if Not Overflow					
Synta	ax:	BNOV n						
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Oper	ation:	if Overflow (PC) + 2 + 2	if Overflow bit is '0', (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None	None					
Enco	oding:	1110	0101 nnr	n	nnnn			
Desc	cription:	If the Overfl program wil	If the Overflow bit is '0', then the program will branch.					
		The 2's con added to the incremented instruction, PC + 2 + 2r two-cycle in	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)						
Q Cycle Activity: If Jump:					~ /			
	Q1	Q2	Q3		Q4			
	Decode	Read literal	Process Data	VVI	PC			
	No	No	No		No			
	operation	operation	operation	ope	eration			
If NO	o Jump:	00	01		04			
	Q1	Q2 Read literal	Q3 Drococo		Q4			
	Decode	'n'	Data	ope	eration			
Example: HERE BNOV Jump								
Before Instruction								
PC = address (HERE)								
If Overflow = 0								
	PC = address (Jump)							
	If Overflow = 1; PC = address (HERE + 2)							

Syntax:BNZnOperands:-128 \leq n \leq 127Operation:if Zero bit is '0', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding:11100001nnnnDescription:If the Zero bit is '0', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNoNoNoNoNoNoIf No Jump:Q1Q2Q1Q2Q3Q4DecodeRead literalProcessNooperationoperationoperationIf No Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNo operationStructureNo operationIf No Jump:DataQ1Q2Q3Q3Q4DecodeRead literal No operationProcessNo operationStructureNo operationStructureNo DataDecodeRead literal No No OperationStructureNo DataDecodeRead literal No No No OperationDecodeRead lit	BNZ		Branch if N	Branch if Not Zero					
Operands: $-128 \le n \le 127$ Operation:if Zero bit is '0', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding: 1110 0001nnnnDescription:If the Zero bit is '0', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4DecodeNoNoNoNoNoNooperationoperationIf No Jump:Q1Q2Q1Q2Q3Q1Q2Q3Q4DecodeRead literalProcessNooperationoperationoperationIf No Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNoinDataoperationoperation	Synta	ax:	BNZ n						
Operation:if Zero bit is '0', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding:11100001nnnnDescription:If the Zero bit is '0', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4PCNoNoNooperationoperationIf No Jump:Q1Q2Q1Q2Q3Q1Q2Q3Q4DecodeRead literalProcessNoNoNoNoNoperationoperationoperationIf No Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNoin NoNoStateNoIf No Jump:ProcessQ1Q2Q3Q4DecodeRead literalProcessNoNoin'DataoperationStateNoNoNoNoNoNoNoDecodeRead literalProcessNoNoin'Dataoperation	Oper	ands:	-128 ≤ n ≤ ′	127					
Status Affected: None Encoding: 1110 0001 nnnn nnnn Description: If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No	Oper	ation:	if Zero bit is (PC) + 2 + 2	if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC					
Encoding: 1110 0001 nnnn nnnn Description: If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation operation If No No No No No Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No Y Data operation If No Jump: Data operation Q1 Q2 Q3 Q4 Decode Read literal Process	Statu	s Affected:	None						
Description: If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation Before Instruction BNZ Jump	Enco	ding:	1110	0001	nnnn	nnnn			
The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No State No No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Decode Read literal Process No No No Jump Decode Read literal Process No Before Instruction Decode Read literal Proce	Desc	ription:	If the Zero I will branch.	If the Zero bit is '0', then the program will branch.					
Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to in' Data PC No No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No in' Data operation Example: HERE BNZ Jump			The 2's con added to the incremente instruction, PC + 2 + 2r two-cycle ir	added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No Cycle Construction Example: HERE BNZ Jump Before Instruction	Word	ls:	1	1					
Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation Example: HERE BNZ Jump Before Instruction	Cycle	es:	1(2)	1(2)					
Q1 Q2 Q3 Q4 Decode Read literal Process Write to Data PC No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 0 0 Operation Operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation	Q C If Ju	ycle Activity:							
Decode Read literal 'n' Process Data Write to PC No No No No operation operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal 'n' Process No Operation in' Data operation		Q1	Q2	Q3		Q4			
No No No No operation operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal 'n' Process No Example: HERE BNZ Jump		Decode	Read literal 'n'	Process Data	v	Vrite to PC			
operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal 'n' Process No operation Example: HERE BNZ Jump		No	No	No		No			
If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation Example: HERE BNZ Jump Before Instruction		operation	operation	operation	n op	eration			
Q1 Q2 Q3 Q4 Decode Read literal 'n' Process Data No operation Example: HERE BNZ Jump	lf No	o Jump:							
Decode Read literal 'n' Process Data No operation Example: HERE BNZ Jump		Q1	Q2	Q3		Q4			
<u>'n'</u> Data operation		Decode	Read literal	Process		No			
Example: HERE BNZ Jump			'n'	Data	ор	eration			
	<u>Exan</u>	nple: Refore Instruc	HERE	BNZ Ju	mp				

PC	=	address (HERE)
After Instruction		
If Zero	=	0;
PC	=	address (Jump)
If Zero	=	1;
PC	=	address (HERE + 2)

DEC	FSZ	Decrement	f, Skip if 0		DCFS	SNZ	Decremen	t f, Skip if Not	0	
Syn	ax:	DECFSZ f	{,d {,a}}		Synta	IX:	DCFSNZ	f {,d {,a}}		
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			
Operation:		(f) – 1 \rightarrow de skip if resul	$(f) - 1 \rightarrow dest,$ skip if result = 0			ation:	(f) – $1 \rightarrow d$ skip if resu	(f) – 1 → dest, skip if result \neq 0		
Stat	us Affected:	None			Status	s Affected:	None			
Enc	oding:	0010	11da ff:	ff ffff	Enco	ding:	0100	11da fff	f ffff	
Description:		The conten decremente placed in W placed back	ts of register ' ed. If 'd' is '0', /. If 'd' is '1', th < in register 'f'	f' are the result is ne result is	Desci	ription:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.			
		If the result which is alr and a NOP i it a two-cyc	If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.				If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank			
		If 'a' is '1', th GPR bank.								
		set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente	and the extende led, this instruct Literal Offset A never f ≤ 95 (51 0.2.3 "Byte-Ori ed Instruction	ed instruction otion operates addressing =h). See iented and s in Indexed	
Wor	ds:	1					Literal Off	set Mode" for	details.	
Cycles:		1(2) Note: 3 cy by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.			s: s:	1 1(2) Note: 3 cycles if skip and followed			
QC	Cycle Activity:				0.0		by	a 2-word instri	uction.	
	Q1	Q2	Q3	Q4	ູ ບູບ _ູ		02	03	04	
	Decode	register 'f'	Data	destination	ſ	Decode	Read	Process	Write to	
lf sl	kip:	- 0					register 'f'	Data	destination	
	Q1	Q2	Q3	Q4	If ski	p:				
	No	No	No	No	Г	Q1	Q2	Q3	Q4	
lf o	operation	operation	operation	operation		N0 operation	N0 operation	NO	N0 operation	
11 51				04	L If ski	p and followe	d by 2-word in	struction:	oporation	
	No	No	No	No	1	Q1	, Q2	Q3	Q4	
	operation	operation	operation	operation		No	No	No	No	
	No	No	No	No		operation	operation	operation	operation	
	operation	operation	operation	operation		No operation	No operation	No operation	No operation	
<u>Exa</u>	<u>mple:</u>	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exam	iple:	HERE ZERO	DCFSNZ TEM	IP, 1, 0	
	Before Instruc	ction			-	- <i></i>	NZERO	:		
PC = Address (HERE) After Instruction		1	Before Instruc TEMP After Instructio	tion =	?					
	If CNT	= 0;	I		,	TEMP	=	TEMP – 1,		
		= Address	(CONTINUE])		IFTEMP		0; Address (r		
	PC	= Address	6 (HERE + 2	2)		If TEMP PC	_ ≠ =	0; Address (1	NZERO)	

XOR	WF	Exclusive	Exclusive OR W with f					
Synta	ax:	XORWF	f {,d {,a}}					
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Oper	ration:	(W) .XOR.	(f) \rightarrow des	t				
Statu	is Affected:	N, Z						
Enco	oding:	0001	10da	ffff	ffff			
Description: Exclusive OR the contents of W wit register 'f'. If 'd' is '0', the result is st in W. If 'd' is '1', the result is stored I in the register 'f'					W with t is stored ored back			
		If 'a' is '0', ' If 'a' is '1', ' GPR bank.	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe							
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce Data	ss V a des	Vrite to stination			
_								
<u>Exan</u>	nple:	XORWF	REG, 1,	0				
	Before Instruc	tion = AFb						
	W	= B5h						
	After Instruction REG W	on = 1Ah = B5h						

29.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-							
	sion may cause legacy applications to							
	behave erratically or fail entirely.							

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 6.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 29.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind, that when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

29.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument 'f' in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM[™] Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled), when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

29.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F87K22 family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

32.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	—	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0° 3.5° 7°		
Overall Width	Е		12.00 BSC	
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09 – 0.20		
Lead Width	b	0.17 0.22 0.27		0.27
Mold Draft Angle Top		11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

APPENDIX A: REVISION HISTORY

Revision A (November 2009)

Original data sheet for PIC18F87K22 family devices.

Revision B (May 2010)

Minor edits to text throughout document. Replaced all TBDs with the correct value.

Revision C (March 2011)

Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)" has been replaced with a new and more detailed description and the 80-pin TQFP diagrams have been updated. Minor text edits throughout document.

Revision D (June 2011)

Updated Section 31.2 "DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended)" and Table 31-8 with new electrical specification information. The extended temperature information has been included in this revision.

APPENDIX B: MIGRATION FROM PIC18F87J11 AND PIC18F8722 TO PIC18F87K22

Devices in the PIC18F87K22, PIC18F87J11 and PIC18F8722 families are similar in their functions and features. Code can be migrated from the other families to the PIC18F87K22 without many changes. The differences between the device families are listed in Table B-1.

TABLE B-1:NOTABLE DIFFERENCES BETWEEN PIC18F87K22, PIC18F87J11 AND PIC18F8722
FAMILIES

Characteristic	PIC18F87K22 Family	18F87J11 Family	PIC18F8722 Family
Max Operating Frequency	64 MHz	48 MHz	40 MHz
Max Program Memory	128 Kbytes	128 Kbytes	128 Kbytes
Data Memory	3,862 bytes	3,930 bytes	3,930 bytes
Program Memory Endurance	10,000 Write/Erase (minimum)	10,000 Write/Erase (minimum)	10,000 Write/Erase (minimum)
Single Word Write for Flash	No	Yes	No
Oscillator Options	PLL can be used with INTOSC	PLL can be used with INTOSC	PLL can be used with INTOSC
CTMU	Yes	No	No
RTCC	Yes	No	No
SOSC Oscillator Options TICKI Clock	Low-Power Oscillator Option for SOSC T1CKI can be used as a Clock without Enabling the SOSC Oscillator	No	No
INTOSC	Up to 16 MHz	Up to 8 MHz	Up to 8 MHz
SPI/I ² C™	2	2	2
Timers	11	5	5
ECCP	3	3	
CCP	7	2	2
Data EEPROM	Yes	No	Yes
Programmable BOR	Multiple Level BOR	One Level BOR	Multiple Level BOR
WDT Prescale Options	22	16	16
5V Operation	Yes	No (3.3V)	Yes
nanoWatt XLP	Yes	No	No
Regulator	Yes	Yes	No
Low-Power BOR	Yes	No	No
A/D Converter	12-Bit Resolution, 24 Input Channels, Differential	10-Bit Resolution, 15 Input Channels, Non-Differential	10-Bit Resolution, 16 Input Channels, Non-Differential
Internal Temperature Sensor	Yes	No	No
Programmable HLVD	Yes	No	Yes
EUSART	2 EUSARTs	2 EUSARTs	2 EUSARTs
Comparators	3	2	2
Oscillator options	14 Options by Fosc<3:0>	8 Options by Fosc<3:0>	12 Options by Fosc<3:0>
Ultra-Low-Power Wake-up (ULPW)	Yes	No	No
Power-up Timer	Yes	Yes	Yes
MCLR Pin as Input Port	Yes	No	Yes