

ALTERTICULAR STRATTSTRATTS

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                           |
| Core Size                  | 8-Bit                                                                         |
| Speed                      | 64MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                     |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                    |
| Number of I/O              | 53                                                                            |
| Program Memory Size        | 64KB (32K x 16)                                                               |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | 1K x 8                                                                        |
| RAM Size                   | 4K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                   |
| Data Converters            | A/D 16x12b                                                                    |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 64-VFQFN Exposed Pad                                                          |
| Supplier Device Package    | 64-VQFN (9x9)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f66k22-i-mrrsl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| TABLE 1-1: | <b>DEVICE FEATURES FOR THE PIC18F6XK22 (</b> | 64-PIN DEVICES) |  |
|------------|----------------------------------------------|-----------------|--|
|            |                                              |                 |  |

| Features                          | PIC18F65K22                                                                     | PIC18F66K22                  | PIC18F67K22     |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------|------------------------------|-----------------|--|--|--|
| Operating Frequency               |                                                                                 | DC – 64 MHz                  |                 |  |  |  |
| Program Memory (Bytes)            | 32K                                                                             | 64K                          | 128K            |  |  |  |
| Program Memory (Instructions)     | 16,384                                                                          | 32,768                       | 65,536          |  |  |  |
| Data Memory (Bytes)               | 2K                                                                              | 4K                           | 4K              |  |  |  |
| Interrupt Sources                 | 42                                                                              | 4                            | 8               |  |  |  |
| I/O Ports                         |                                                                                 | Ports A, B, C, D, E, F, G    |                 |  |  |  |
| Parallel Communications           |                                                                                 | Parallel Slave Port (PSP)    | )               |  |  |  |
| Timers                            | 8 11                                                                            |                              |                 |  |  |  |
| Comparators                       |                                                                                 | 3                            |                 |  |  |  |
| СТМИ                              |                                                                                 | Yes                          |                 |  |  |  |
| RTCC                              |                                                                                 | Yes                          |                 |  |  |  |
| Capture/Compare/PWM (CCP) Modules | 5                                                                               | 7                            | 7               |  |  |  |
| Enhanced CCP (ECCP) Modules       |                                                                                 | 3                            |                 |  |  |  |
| Serial Communications             | Two MSSPs                                                                       | and two Enhanced USAR        | Ts (EUSART)     |  |  |  |
| 12-Bit Analog-to-Digital Module   |                                                                                 | 16 Input Channels            |                 |  |  |  |
| Resets (and Delays)               | POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST) |                              |                 |  |  |  |
| Instruction Set                   | 75 Instructions                                                                 | , 83 with Extended Instructi | ion Set Enabled |  |  |  |
| Packages                          |                                                                                 | 64-Pin QFN, 64-Pin TQFP      | )               |  |  |  |

## TABLE 1-2: DEVICE FEATURES FOR THE PIC18F8XK22 (80-PIN DEVICES)

| Features                          | PIC18F85K22                                                                        | PIC18F86K22                   | PIC18F87K22    |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------|-------------------------------|----------------|--|--|--|
| Operating Frequency               | DC – 64 MHz                                                                        |                               |                |  |  |  |
| Brogram Momony (B) too)           | 32K                                                                                | 64K                           | 128K           |  |  |  |
| Program Memory (Bytes)            | (Up to                                                                             | 2 Mbytes with Extended M      | lemory)        |  |  |  |
| Program Memory (Instructions)     | 16,384                                                                             | 32,768                        | 65,536         |  |  |  |
| Data Memory (Bytes)               | 2K                                                                                 | 4K                            | 4K             |  |  |  |
| Interrupt Sources                 | 42                                                                                 | 4                             | 8              |  |  |  |
| I/O Ports                         | F                                                                                  | Ports A, B, C, D, E, F, G, H, | J              |  |  |  |
| Parallel Communications           | Parallel Slave Port (PSP)                                                          |                               |                |  |  |  |
| Timers                            | 8                                                                                  | 1                             | 1              |  |  |  |
| Comparators                       |                                                                                    | 3                             |                |  |  |  |
| CTMU                              |                                                                                    | Yes                           |                |  |  |  |
| RTCC                              |                                                                                    | Yes                           |                |  |  |  |
| Capture/Compare/PWM (CCP) Modules | 5 7                                                                                |                               | 7              |  |  |  |
| Enhanced CCP (ECCP) Modules       |                                                                                    | 3                             |                |  |  |  |
| Serial Communications             | Two MSSPs                                                                          | s and 2 Enhanced USARTs       | s (EUSART)     |  |  |  |
| 12-Bit Analog-to-Digital Module   |                                                                                    | 24 Input Channels             |                |  |  |  |
| Resets (and Delays)               | POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT<br>(PWRT, OST) |                               |                |  |  |  |
| Instruction Set                   | 75 Instructions,                                                                   | 83 with Extended Instructi    | on Set Enabled |  |  |  |
| Packages                          |                                                                                    | 80-Pin TQFP                   |                |  |  |  |



| Din Nama                                                                                    | Pin Number                        | Pin      | Buffer   | Description                                                                                                          |
|---------------------------------------------------------------------------------------------|-----------------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------|
| Fill Name                                                                                   | TQFP                              | Туре     | Туре     | Description                                                                                                          |
|                                                                                             |                                   |          |          | PORTJ is a bidirectional I/O port.                                                                                   |
| RJ0/ALE<br>RJ0<br>ALE                                                                       | 62                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External memory address latch enable.                                                                |
| RJ1/OE<br>RJ1<br>OE                                                                         | 61                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External memory output enable.                                                                       |
| RJ2/WRL<br>RJ2<br>WRL                                                                       | 60                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External memory write low control.                                                                   |
| RJ3/WRH<br>RJ3<br>WRH                                                                       | 59                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External memory high control.                                                                        |
| RJ4/BA0<br>RJ4<br>BA0                                                                       | 39                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External Memory Byte Address 0 control                                                               |
| RJ5/CE<br>RJ5<br>CE                                                                         | 40                                | I/O<br>O | ST<br>—  | Digital I/O<br>External memory chip enable control.                                                                  |
| RJ6/LB<br>RJ6<br>LB                                                                         | 41                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External memory low byte control.                                                                    |
| RJ7/ <del>UB</del><br>RJ7<br>UB                                                             | 42                                | I/O<br>O | ST<br>—  | Digital I/O.<br>External memory high byte control.                                                                   |
| Vss                                                                                         | 11, 31, 51, 70                    | Ρ        | _        | Ground reference for logic and I/O pins.                                                                             |
| Vdd                                                                                         | 32, 48, 71                        | Р        | —        | Positive supply for logic and I/O pins.                                                                              |
| AVss                                                                                        | 26                                | Ρ        | _        | Ground reference for analog modules.                                                                                 |
| AVDD                                                                                        | 25                                | Р        |          | Positive supply for analog modules.                                                                                  |
| ENVREG                                                                                      | 24                                | Ι        | ST       | Enable for on-chip voltage regulator.                                                                                |
|                                                                                             | 12                                |          |          | Core logic power or external filter capacitor connection.                                                            |
| VCAP                                                                                        |                                   | Ρ        | _        | External filter capacitor connection (regulator enabled/disabled).                                                   |
| Legend: TTL = TTL comp<br>ST = Schmitt T<br>I = Input<br>P = Power<br>$I^2C = I^2C^{TM}/SM$ | patible input<br>rigger input wit | h CMC    | S levels | CMOS = CMOS compatible input or output<br>Analog = Analog input<br>O = Output<br>OD = Open-Drain (no P diode to VDD) |

#### PIC18F8XK22 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-4:**

**Note 1:** Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: PSP is available only in Microcontroller mode.

5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

# 2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10  $\mu$ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex:  $\pm 15\%$  over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of  $\pm 22\%$ . Due to the extreme temperature tolerance, a 10  $\mu$ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type and Y5V type capacitors is shown in Figure 2-4.

#### FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS



When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

## 2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial Programming<sup>TM</sup> (ICSP<sup>TM</sup>) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 $\Omega$ .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

NOTES:

#### R/W-0 R/W-1 R/W-1 R/W-1 R-1 R-1 R/W-0 R/W-0 CM RI TO PD POR **IPEN** SBOREN BOR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode) bit 6 **SBOREN:** BOR Software Enable bit If BOREN<1:0> = 01: 1 = BOR is enabled 0 = BOR is disabled If BOREN<1:0> = 00. 10 or 11: Bit is disabled and read as '0'. CM: Configuration Mismatch Flag bit bit 5 1 = A Configuration Mismatch Reset has not occurred 0 = A Configuration Mismatch Reset has occurred (must be set in software after a Configuration Mismatch Reset occurs) bit 4 RI: RESET Instruction Flag bit 1 = The RESET instruction was not executed (set by firmware only) 0 = The RESET instruction was executed causing a device Reset (must be set in software after a Brown-out Reset occurs) bit 3 TO: Watchdog Time-out Flag bit 1 = Set by power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 2 PD: Power-Down Detection Flag bit 1 = Set by power-up or by the CLRWDT instruction 0 = Set by execution of the SLEEP instruction POR: Power-on Reset Status bit bit 1 1 = A Power-on Reset has not occurred (set by firmware only) 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit 1 = A Brown-out Reset has not occurred (set by firmware only) 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

#### REGISTER 5-1: RCON: RESET CONTROL REGISTER

**Note 1:** It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on Resets may be detected.

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after a Power-on Reset).

### TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F87K22 FAMILY (CONTINUED)

| Addr. | Name                  | Addr. | Name                  | Addr. | Name     | Addr. | Name |
|-------|-----------------------|-------|-----------------------|-------|----------|-------|------|
| F3Fh  | TMR7H <sup>(3)</sup>  | F32h  | TMR12 <sup>(3)</sup>  | F25h  | ANCON0   | F18h  | PMD1 |
| F3Eh  | TMR7L <sup>(3)</sup>  | F31h  | PR12 <sup>(3)</sup>   | F24h  | ANCON1   | F17h  | PMD2 |
| F3Dh  | T7CON <sup>(3)</sup>  | F30h  | T12CON <sup>(3)</sup> | F23h  | ANCON2   | F16h  | PMD3 |
| F3Ch  | T7GCON <sup>(3)</sup> | F2Fh  | CM2CON                | F22h  | RCSTA2   |       |      |
| F3Bh  | TMR6                  | F2Eh  | CM3CON                | F21h  | TXSTA2   |       |      |
| F3Ah  | PR6                   | F2Dh  | CCPTMRS0              | F20h  | BAUDCON2 |       |      |
| F39H  | T6CON                 | F2Ch  | CCPTMRS1              | F1Fh  | SPBRGH2  |       |      |
| F38h  | TMR8                  | F2Bh  | CCPTMRS2              | F1Eh  | SPBRG2   |       |      |
| F37h  | PR8                   | F2Ah  | REFOCON               | F1Dh  | RCREG2   |       |      |
| F36h  | T8CON                 | F29H  | ODCON1                | F1Ch  | TXREG2   |       |      |
| F35h  | TMR10 <sup>(3)</sup>  | F28h  | ODCON2                | F1Bh  | PSTR2CON |       |      |
| F34h  | PR10 <sup>(3)</sup>   | F27h  | ODCON3                | F1Ah  | PSTR3CON |       |      |
| F33h  | T10CON <sup>(3)</sup> | F26h  | MEMCON <sup>(3)</sup> | F19h  | PMD0     |       |      |

**Note 1:** This is not a physical register.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

- 3: This register is not available on devices with a program memory of 32 Kbytes (PIC18FX5K22).
- 4: Addresses, F16h through F5Fh, are also used by SFRs, but are not part of the Access RAM. To access these registers, users must always load the proper BSR value.

| Address | File Name | Bit 7                           | Bit 6                  | Bit 5           | Bit 4                                  | Bit 3           | Bit 2           | Bit 1             | Bit 0            | Value on<br>POR, BOR |  |  |
|---------|-----------|---------------------------------|------------------------|-----------------|----------------------------------------|-----------------|-----------------|-------------------|------------------|----------------------|--|--|
| FFFh    | TOSU      | _                               | —                      | -               | — Top-of-Stack Upper Byte (TOS<20:16>) |                 |                 |                   |                  |                      |  |  |
| FFEh    | TOSH      | Top-of-Stack H                  | ligh Byte (TOS         | 6<15:8>)        |                                        |                 |                 |                   |                  | 0000 0000            |  |  |
| FFDh    | TOSL      | Top-of-Stack L                  | ow Byte (TOS           | <7:0>)          |                                        |                 |                 |                   |                  | 0000 0000            |  |  |
| FFCh    | STKPTR    | STKFUL                          | STKUNF                 | _               | Return Stack P                         | ointer          |                 |                   |                  | uu-0 0000            |  |  |
| FFBh    | PCLATU    | —                               | —                      |                 | Holding Regist                         | er for PC<20:1  | 6>              |                   |                  | 0 0000               |  |  |
| FFAh    | PCLATH    | Holding Regis                   | ter for PC<15:         | 8>              |                                        |                 |                 |                   |                  | 0000 0000            |  |  |
| FF9h    | PCL       | PC Low Byte                     | (PC<7:0>)              |                 |                                        |                 |                 |                   |                  | 0000 0000            |  |  |
| FF8h    | TBLPTRU   | _                               | _                      | bit 21          | Program Memo                           | ory Table Point | ter Upper Byte  | (TBLPTR<20:"      | 16>)             | 00 0000              |  |  |
| FF7h    | TBLPTRH   | Program Merr                    | nory Table Poir        | ter High Byte   | (TBLPTR<15:8>                          | >)              |                 |                   |                  | 0000 0000            |  |  |
| FF6h    | TBLPTRL   | Program Merr                    | nory Table Poir        | iter Low Byte ( | TBLPTR<7:0>)                           |                 |                 |                   |                  | 0000 0000            |  |  |
| FF5h    | TABLAT    | Program Merr                    | nory Table Lato        | h               |                                        |                 |                 |                   |                  | 0000 0000            |  |  |
| FF4h    | PRODH     | Product Regis                   | ter High Byte          |                 |                                        |                 |                 |                   |                  | XXXX XXXX            |  |  |
| FF3h    | PRODL     | Product Regis                   | ter Low Byte           |                 |                                        |                 |                 |                   |                  | XXXX XXXX            |  |  |
| FF2h    | INTCON    | GIE/GIEH                        | PEIE/GIEL              | TMR0IE          | <b>INTOIE</b>                          | RBIE            | TMR0IF          | INTOIF            | RBIF             | 0000 000x            |  |  |
| FF1h    | INTCON2   | RBPU                            | INTEDG0                | INTEDG1         | INTEDG2                                | INTEDG3         | TMR0IP          | INT3IP            | RBIP             | 1111 1111            |  |  |
| FF0h    | INTCON3   | INT2IP                          | INT1IP                 | INT3IE          | INT2IE                                 | INT1IE          | INT3IF          | INT2IF            | INT1IF           | 1100 0000            |  |  |
| FEFh    | INDF0     | Uses contents                   | of FSR0 to ac          | ldress data me  | emory – value o                        | f FSR0 not cha  | anged (not a pl | nysical register) | )                |                      |  |  |
| FEEh    | POSTINC0  | Uses contents                   | of FSR0 to ac          | ldress data me  | emory – value o                        | f FSR0 post-in  | cremented (no   | t a physical reg  | jister)          |                      |  |  |
| FEDh    | POSTDEC0  | Uses contents                   | of FSR0 to ac          | ldress data me  | emory – value o                        | f FSR0 post-de  | ecremented (no  | ot a physical re  | gister)          |                      |  |  |
| FECh    | PREINC0   | Uses contents                   | of FSR0 to ac          | ldress data me  | emory – value o                        | f FSR0 pre-inc  | remented (not   | a physical regi   | ster)            |                      |  |  |
| FEBh    | PLUSW0    | Uses contents<br>FSR0 offset by | s of FSR0 to ac<br>y W | dress data me   | mory – value of                        | FSR0 pre-incr   | remented (not a | a physical regis  | ster) – value of |                      |  |  |
| FEAh    | FSR0H     | _                               | _                      | _               | _                                      | Indirect Data   | Memory Addre    | ss Pointer 0 Hi   | igh              | 0000                 |  |  |
| FE9h    | FSR0L     | Indirect Data N                 | Memory Addre           | ss Pointer 0 Lo | ow Byte                                |                 |                 |                   |                  | XXXX XXXX            |  |  |
| FE8h    | WREG      | Working Regis                   | ster                   |                 |                                        |                 |                 |                   |                  | xxxx xxxx            |  |  |
| FE7h    | INDF1     | Uses contents                   | of FSR1 to ac          | ldress data me  | emory – value o                        | f FSR1 not cha  | anged (not a pl | nysical register  | )                |                      |  |  |

#### TABLE 6-2: PIC18F87K22 FAMILY REGISTER FILE SUMMARY

Note 1: This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

3: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

NOTES:

| R/W-0                  | R/W-0                      | R/W-0                           | R/W-0            | R/W-0                      | R/W-0            | R/W-0           | R/W-0  |
|------------------------|----------------------------|---------------------------------|------------------|----------------------------|------------------|-----------------|--------|
| TMR7GIF <sup>(1)</sup> | TMR12IF <sup>(1)</sup>     | TMR10IF <sup>(1)</sup>          | TMR8IF           | TMR7IF <sup>(1)</sup>      | TMR6IF           | TMR5IF          | TMR4IF |
| bit 7                  |                            |                                 |                  |                            |                  |                 | bit 0  |
| r                      |                            |                                 |                  |                            |                  |                 |        |
| Legend:                |                            |                                 |                  |                            |                  |                 |        |
| R = Readable           | bit                        | W = Writable I                  | oit              | U = Unimplen               | nented bit, read | d as '0'        |        |
| -n = Value at P        | OR                         | '1' = Bit is set                |                  | '0' = Bit is cle           | ared             | x = Bit is unkr | nown   |
| bit 7                  | TMR7GIE: TA                | /R7 Gate Inter                  | unt Flag bits(   | 1)                         |                  |                 |        |
| bit /                  | 1 = TMR gate               | e interrupt occu                | rred (bit must   | t be cleared in :          | software)        |                 |        |
|                        | 0 = No TMR                 | gate interrupt o                | ccurred          |                            | contra cy        |                 |        |
| bit 6                  | TMR12IF: TM                | IR12 to PR12 M                  | Aatch Interrup   | ot Flag bit <sup>(1)</sup> |                  |                 |        |
|                        | 1 = TMR12 to               | PR12 match of                   | occurred (mu     | st be cleared in           | i software)      |                 |        |
|                        | 0 = No TMR1                | 12 to PR12 mat                  | ch occurred      | (4)                        |                  |                 |        |
| bit 5                  | TMR10IF: TM                | IR10 to PR10 N                  | latch Interrup   | ot Flag bit <sup>(1)</sup> |                  |                 |        |
|                        | 1 = TMR10 to               | DPR10 match (                   | occurred (mu     | st be cleared in           | i software)      |                 |        |
| bit 4                  | TMR8IF: TMF                | R8 to PR8 Mate                  | h Interrupt Fl   | ag bit                     |                  |                 |        |
|                        | 1 = TMR8 to                | PR8 match occ                   | curred (must l   | be cleared in so           | oftware)         |                 |        |
|                        | 0 = No TMR8                | 3 to PR8 match                  | occurred         |                            | ,                |                 |        |
| bit 3                  | TMR7IF: TMF                | R7 Overflow Int                 | errupt Flag bi   | t <sup>(1)</sup>           |                  |                 |        |
|                        | 1 = TMR7 reg               | gister overflowe                | ed (must be c    | leared in softwa           | are)             |                 |        |
|                        | 0 = TMR7 reg               | gister did not ov               | verflow          |                            |                  |                 |        |
| bit 2                  | TMR6IF: TMF                | R6 to PR6 Matc                  | h Interrupt Fl   | ag bit                     | <i>a</i> )       |                 |        |
|                        | 1 = IMR6 to<br>0 = No TMR6 | PR6 match oco<br>6 to PR6 match | occurred (must l | be cleared in so           | oftware)         |                 |        |
| bit 1                  | TMR5IF: TMF                | R5 Overflow Int                 | errupt Flag bi   | t                          |                  |                 |        |
|                        | 1 = TMR5 reg               | gister overflowe                | ed (must be c    | leared in softwa           | are)             |                 |        |
|                        | 0 = TMR5 reg               | gister did not ov               | verflow          |                            |                  |                 |        |
| bit 0                  | TMR4IF: TMF                | R4 to PR4 Matc                  | h Interrupt Fl   | ag bit                     |                  |                 |        |
|                        | 1 = TMR4 to                | PR4 match occ                   | curred (must l   | be cleared in so           | oftware)         |                 |        |
|                        | 0 = NO IMR4                | to PR4 match                    | occurrea         |                            |                  |                 |        |
|                        |                            |                                 |                  |                            |                  |                 |        |

### REGISTER 11-8: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

**Note 1:** Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

## TABLE 12-15: PORTH FUNCTIONS (CONTINUED)

| Pin Name  | Function | TRIS<br>Setting | I/O | l/O<br>Type | Description                                                                                 |  |  |  |
|-----------|----------|-----------------|-----|-------------|---------------------------------------------------------------------------------------------|--|--|--|
| RH4/CCP9/ | RH4      | 0               | 0   | DIG         | LATH<4> data output.                                                                        |  |  |  |
| P3C/AN12/ |          | 1               | Ι   | ST          | PORTH<4> data input.                                                                        |  |  |  |
| CZINC     | CCP9     | 0               | 0   | DIG         | CCP9 compare/PWM output; takes priority over port data.                                     |  |  |  |
|           |          | 1               | Ι   | ST          | CCP9 capture input.                                                                         |  |  |  |
|           | P3C      | 0               | 0   |             | ECCP3 PWM Output C.<br>May be configured for tri-state during Enhanced PWM.                 |  |  |  |
|           | AN12     | 1               | I   | ANA         | A/D Input Channel 12.<br>Default input configuration on POR; does not affect digital input. |  |  |  |
|           | C2INC    | x               | Ι   | ANA         | Comparator 2 Input C.                                                                       |  |  |  |
| RH5/CCP8/ | RH5      | 0               | 0   | DIG         | LATH<5> data output.                                                                        |  |  |  |
| P3B/AN13/ |          | 1               | Ι   | ST          | PORTH<5> data input.                                                                        |  |  |  |
| CZIND     | CCP8     | 0               | 0   | DIG         | CCP8 compare/PWM output; takes priority over port data.                                     |  |  |  |
|           |          | 1               | I   | ST          | CCP8 capture input.                                                                         |  |  |  |
|           | P3B      | 0               | 0   |             | ECCP3 PWM Output B.<br>May be configured for tri-state during Enhanced PWM.                 |  |  |  |
|           | AN13     | 1               | I   | ANA         | A/D Input Channel 13.<br>Default input configuration on POR; does not affect digital input. |  |  |  |
|           | C2IND    | x               | I   | ANA         | Comparator 2 Input D.                                                                       |  |  |  |
| RH6/CCP7/ | RH6      | 0               | 0   | DIG         | LATH<6> data output.                                                                        |  |  |  |
| P1C/AN14/ |          | 1               | I   | ST          | PORTH<6> data input.                                                                        |  |  |  |
| CHINC     | CCP7     | 0               | 0   | DIG         | CCP7 compare/PWM output; takes priority over port data.                                     |  |  |  |
|           |          | 1               | I   | ST          | CCP7 capture input.                                                                         |  |  |  |
|           | P1C      | 0               | 0   |             | ECCP1 PWM Output C.<br>May be configured for tri-state during Enhanced PWM.                 |  |  |  |
|           | AN14     | 1               | I   | ANA         | A/D Input Channel 14.<br>Default input configuration on POR; does not affect digital input. |  |  |  |
|           | C1INC    | x               | Ι   | ANA         | Comparator 1 Input C.                                                                       |  |  |  |
| RH7/CCP6/ | RH7      | 0               | 0   | DIG         | LATH<7> data output.                                                                        |  |  |  |
| P1B/AN15  |          | 1               | Ι   | ST          | PORTH<7> data input.                                                                        |  |  |  |
|           | CCP6     | 0               | 0   | DIG         | CCP6 compare/PWM output; takes priority over port data.                                     |  |  |  |
|           |          | 1               | Ι   | ST          | CCP6 capture input.                                                                         |  |  |  |
|           | P1B      | 0               | 0   | _           | ECCP1 PWM Output B.<br>May be configured for tri-state during Enhanced PWM.                 |  |  |  |
|           | AN15     | 1               | I   | ANA         | A/D Input Channel 15.<br>Default input configuration on POR; does not affect digital input. |  |  |  |

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

# 16.0 TIMER3/5/7 MODULES

The Timer3/5/7 timer/counter modules incorporate these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable eight-bit registers (TMRxH and TMRxL)
- Selectable clock source (internal or external) with device clock or SOSC oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCP Special Event Trigger

Timer7 is unimplemented for devices with a program memory of 32 Kbytes (PIC18FX5K22).

**Note:** Throughout this section, generic references are used for register and bit names that are the same – except for an 'x' variable that indicates the item's association with the Timer3, Timer5 or Timer7 module. For example, the control register is named TxCON and refers to T3CON, T5CON and T7CON.

A simplified block diagram of the Timer3/5/7 module is shown in Figure 16-1.

The Timer3/5/7 module is controlled through the TxCON register (Register 16-1). It also selects the clock source options for the ECCP modules. (For more information, see **Section 20.1.1 "ECCP Module and Timer Resources"**.)

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

# FIGURE 18-6: TIMER PULSE GENERATION

| RTCEN bit        |  |
|------------------|--|
| ALRMEN bit       |  |
| RTCC Alarm Event |  |
| RTCC Pin         |  |

### 18.4 Sleep Mode

The timer and alarm continue to operate while in Sleep mode. The operation of the alarm is not affected by Sleep, as an alarm event can always wake up the CPU.

The Idle mode does not affect the operation of the timer or alarm.

### 18.5 Reset

#### 18.5.1 DEVICE RESET

When a device Reset occurs, the ALRMRPT register is forced to its Reset state, causing the alarm to be disabled (if enabled prior to the Reset). If the RTCC was enabled, it will continue to operate when a basic device Reset occurs.

### 18.5.2 POWER-ON RESET (POR)

The RTCCFG and ALRMRPT registers are reset only on a POR. Once the device exits the POR state, the clock registers should be reloaded with the desired values.

The timer prescaler values can be reset only by writing to the SECONDS register. No device Reset can affect the prescalers.

# 20.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE

PIC18F87K22 family devices have three Enhanced Capture/Compare/PWM (ECCP) modules: ECCP1, ECCP2 and ECCP3. These modules contain a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. These ECCP modules are upward compatible with CCP.

**Note:** Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the ECCP1, ECCP2 or ECCP3 module. For example, the control register is named CCPxCON and refers to CCP1CON, CCP2CON and CCP3CON.

ECCP1, ECCP2 and ECCP3 are implemented as standard CCP modules with Enhanced PWM capabilities. These include:

- Provision for two or four output channels
- · Output Steering modes
- · Programmable polarity
- Programmable dead-band control
- · Automatic shutdown and restart

The enhanced features are discussed in detail in Section 20.4 "PWM (Enhanced Mode)".

The ECCP1, ECCP2 and ECCP3 modules use the control registers: CCP1CON, CCP2CON and CCP3CON. The control registers, CCP4CON through CCP10CON, are for the modules, CCP4 through CCP10.

# 20.4 PWM (Enhanced Mode)

The Enhanced PWM mode can generate a PWM signal on up to four different output pins with up to 10 bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the PxM bits of the CCPxCON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated: PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Table 20-1 provides the pin assignments for each Enhanced PWM mode.

Figure 20-3 provides an example of a simplified block diagram of the Enhanced PWM module.

**Note:** To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

# FIGURE 20-3: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE



Note 1: The TRIS register value for each PWM output must be configured appropriately.2: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.

FIGURE 24-4: COMPARATOR CONFIGURATIONS





### 26.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an Interrupt Service Routine (ISR), which would allow the application to perform "housekeeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.



| R/P-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) R/P-0                                                                                                                                                                      | U-0                | U-0                       | R/P-1                | R/P-0                | R/P-0                | R/P-0                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|
| IESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FCMEN                                                                                                                                                                        | _                  | PLLCFG <sup>(1)</sup>     | FOSC3 <sup>(2)</sup> | FOSC2 <sup>(2)</sup> | FOSC1 <sup>(2)</sup> | FOSC0 <sup>(2)</sup> |  |  |  |
| bit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                    |                           |                      |                      |                      | bit 0                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                    |                           |                      |                      |                      |                      |  |  |  |
| Legend:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | P = Program        | nable bit                 |                      |                      |                      |                      |  |  |  |
| R = Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | able bit                                                                                                                                                                     | W = Writable       | bit                       | U = Unimpler         | nented bit, read     | l as '0'             |                      |  |  |  |
| -n = Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e at POR                                                                                                                                                                     | '1' = Bit is set   |                           | '0' = Bit is cle     | ared                 | x = Bit is unkr      | IOWN                 |  |  |  |
| bit 7 IESO: Internal/External Oscillator Switchover bit<br>1 = Two-Speed Start-up is enabled<br>0 = Two Speed Start up is discribed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                    |                           |                      |                      |                      |                      |  |  |  |
| bit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>it 6</li> <li>FCMEN: Fail-Safe Clock Monitor Enable bit</li> <li>1 = Fail-Safe Clock Monitor is enabled</li> <li>0 = Fail-Safe Clock Monitor is disabled</li> </ul> |                    |                           |                      |                      |                      |                      |  |  |  |
| bit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unimplemer                                                                                                                                                                   | nted: Read as '    | 0'                        |                      |                      |                      |                      |  |  |  |
| bit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLLCFG: 4x                                                                                                                                                                   | PLL Enable bit     | (1)                       |                      |                      |                      |                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 = Oscillator<br>0 = Oscillator                                                                                                                                             | r is multiplied by | / 4<br>/                  |                      |                      |                      |                      |  |  |  |
| bit 3-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FOSC<3:0>:                                                                                                                                                                   | Oscillator Sele    | ction bits <sup>(2)</sup> |                      |                      |                      |                      |  |  |  |
| bit 3-0 <b>FOSC&lt;3:0&gt;:</b> Oscillator Selection bits <sup>(2)</sup><br>1101 = EC1, EC oscillator (low power, DC-160 kHz)<br>1100 = EC1IO, EC oscillator with CLKOUT function on RA6 (low power, DC-160 kHz)<br>1011 = EC2, EC oscillator (medium power, 160 kHz-16 MHz)<br>1010 = EC2IO, EC oscillator with CLKOUT function on RA6 (medium power, DC-160 kHz-16 MHz)<br>1001 = INTIO1, internal RC oscillator with CLKOUT function on RA6<br>1000 = INTIO2, internal RC oscillator<br>0111 = RC, external RC oscillator<br>0110 = RCIO, external RC oscillator with CKLOUT function on RA6<br>0101 = EC3, EC oscillator (high power, 4 MHz-64 MHz)<br>0100 = EC3IO, EC oscillator with CLKOUT function on RA6<br>0111 = HS1, HS oscillator (medium power, 4 MHz-16 MHz)<br>0110 = HS2, HS oscillator (high power, 16 MHz-25 MHz)<br>0010 = XT oscillator |                                                                                                                                                                              |                    |                           |                      |                      |                      |                      |  |  |  |
| Note 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not valid for the IN                                                                                                                                                         | NTIOx PLL mod      | e.                        |                      |                      |                      |                      |  |  |  |

## REGISTER 28-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

2: INTIO + PLL can be enabled only by the PLLEN bit (OSCTUNE<6>). Other PLL modes can be enabled by either the PLLEN bit or the PLLCFG (CONFIG1H<4>) bit.

### 31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

| PIC18F87K22 Family<br>(Industrial/Extended) |                           | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |      |       |                       |                           |                |  |
|---------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----------------------|---------------------------|----------------|--|
| Param<br>No.                                | Device                    | Тур                                                                                                                                                                                     | Max  | Units |                       | Condition                 | S              |  |
|                                             | Supply Current (IDD) Cont | (2,3)                                                                                                                                                                                   |      |       |                       |                           |                |  |
|                                             | All devices               | 130                                                                                                                                                                                     | 390  | μA    | -40°C                 |                           |                |  |
|                                             |                           | 130                                                                                                                                                                                     | 390  | μA    | +25°C                 | VDD = 1.8V <sup>(4)</sup> |                |  |
|                                             |                           | 130                                                                                                                                                                                     | 390  | μA    | +85°C                 | Regulator Disabled        |                |  |
|                                             |                           | 250                                                                                                                                                                                     | 500  | μA    | +125°C                |                           |                |  |
|                                             | All devices               | 270                                                                                                                                                                                     | 790  | μA    | -40°C                 |                           |                |  |
|                                             |                           | 270                                                                                                                                                                                     | 790  | μA    | +25°C                 | VDD = 3.3V <sup>(4)</sup> | (PRI RUN mode  |  |
|                                             |                           | 270                                                                                                                                                                                     | 790  | μA    | +85°C                 | Regulator Disabled        | EC oscillator) |  |
|                                             |                           | 400                                                                                                                                                                                     | 900  | μA    | +125°C                |                           | 20 000mator)   |  |
|                                             | All devices               | 430                                                                                                                                                                                     | 990  | μA    | -40°C                 |                           |                |  |
|                                             |                           | 450                                                                                                                                                                                     | 980  | μA    | +25°C                 | VDD = 5V <sup>(5)</sup>   |                |  |
|                                             |                           | 460                                                                                                                                                                                     | 980  | μA    | +85°C                 | Regulator Enabled         |                |  |
|                                             |                           | 600                                                                                                                                                                                     | 1300 | μA    | +125°C                |                           |                |  |
|                                             | All devices               | 430                                                                                                                                                                                     | 860  | μA    | -40°C                 |                           |                |  |
|                                             |                           | 530                                                                                                                                                                                     | 900  | μA    | +25°C                 | VDD = 1.8V <sup>(4)</sup> |                |  |
|                                             |                           | 490                                                                                                                                                                                     | 880  | μA    | +85°C                 | Regulator Disabled        |                |  |
|                                             |                           | 750                                                                                                                                                                                     | 1600 | μA    | +125°C                |                           |                |  |
|                                             | All devices               | 850                                                                                                                                                                                     | 1750 | μA    | -40°C                 |                           |                |  |
|                                             |                           | 850                                                                                                                                                                                     | 1700 | μA    | +25°C                 | VDD = 3.3V <sup>(4)</sup> | (PRI RUN mode  |  |
|                                             |                           | 850                                                                                                                                                                                     | 1800 | μA    | +85°C                 | Regulator Disabled        | EC oscillator) |  |
|                                             |                           | 1150                                                                                                                                                                                    | 2400 | μA    | +125°C                |                           | · · · · · ,    |  |
|                                             | All devices               | 1.1                                                                                                                                                                                     | 2.7  | mA    | -40°C                 |                           |                |  |
|                                             |                           | 1.1                                                                                                                                                                                     | 2.6  | mA    | +25°C                 | Vdd = 5V <sup>(5)</sup>   |                |  |
|                                             |                           | 1.1                                                                                                                                                                                     | 2.6  | mA    | +85°C                 | Regulator Enabled         |                |  |
|                                             |                           | 2.0                                                                                                                                                                                     | 4.0  | mA    | +125°C                |                           |                |  |
|                                             | All devices               | 12                                                                                                                                                                                      | 19   | mA    | -40°C                 |                           |                |  |
|                                             |                           | 12                                                                                                                                                                                      | 19   | mA    | +25°C                 | VDD = 3.3V <sup>(4)</sup> |                |  |
|                                             |                           | 12                                                                                                                                                                                      | 19   | mA    | +85°C                 | Regulator Disabled        |                |  |
|                                             |                           | 13                                                                                                                                                                                      | 22   | mA    | +125°C <sup>(6)</sup> |                           | (PRI RUN mode  |  |
|                                             | All devices               | 13                                                                                                                                                                                      | 20   | mA    | -40°C                 |                           | EC oscillator) |  |
|                                             |                           | 13                                                                                                                                                                                      | 20   | mA    | +25°C                 | VDD = 5V <sup>(4)</sup>   | ,              |  |
|                                             |                           | 13                                                                                                                                                                                      | 20   | mA    | +85°C                 | Regulator Enabled         |                |  |
|                                             |                           | 14                                                                                                                                                                                      | 23   | mA    | +125°C <b>(6)</b>     |                           |                |  |

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: 48 MHz, maximum frequency at +125°C.



### FIGURE 31-8: PROGRAM MEMORY WRITE TIMING DIAGRAM

| TABLE 31-12: | PROGRAM MEMORY WRITE TIMING REQUIREMENTS |
|--------------|------------------------------------------|
|              |                                          |

| Param.<br>No | Symbol   | Characteristics                                                                   | Min                                                   | Тур     | Max | Units |
|--------------|----------|-----------------------------------------------------------------------------------|-------------------------------------------------------|---------|-----|-------|
| 150          | TadV2alL | Address Out Valid to ALE $\downarrow$ (address setup time)                        | ALE $\downarrow$ (address setup time) 0.25 Tcy – 10 — |         |     |       |
| 151          | TalL2adl | ALE $\downarrow$ to Address Out Invalid (address hold time)                       | 5                                                     |         | ns  |       |
| 153          | TwrH2adl | WRn 1 to Data Out Invalid (data hold time) 5 –                                    |                                                       | —       | —   | ns    |
| 154          | TwrL     | WRn Pulse Width   0.5 Tcy – 5                                                     |                                                       | 0.5 TCY | _   | ns    |
| 156          | TadV2wrH | Data Valid before WRn ↑ (data setup time) 0.5 Tcy – 10                            |                                                       | _       | —   | ns    |
| 157          | TbsV2wrL | Byte Select Valid before $\overline{WRn}\downarrow$<br>(byte select setup time)   | 0.25 TCY                                              | —       |     | ns    |
| 157A         | TwrH2bsI | $\overline{\text{WRn}}$ $\uparrow$ to Byte Select Invalid (byte select hold time) | 0.125 Tcy – 5                                         | _       | _   | ns    |
| 166          | TalH2alH | ALE $\uparrow$ to ALE $\uparrow$ (cycle time)                                     | —                                                     | Тсү     | _   | ns    |
| 171          | TalH2csL | Chip Enable Active to ALE $\downarrow$                                            | 0.25 Tcy – 20                                         | _       | _   | ns    |
| 171A         | TubL2oeH | AD Valid to Chip Enable Active                                                    |                                                       | _       | 10  | ns    |

### FIGURE 31-13: CAPTURE/COMPARE/PWM TIMINGS (ECCP1, ECCP2 MODULES)



### TABLE 31-16: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP1, ECCP2 MODULES)

| Param<br>No. | Symbol | Characteristic          |                | Min               | Max | Units | Conditions   |
|--------------|--------|-------------------------|----------------|-------------------|-----|-------|--------------|
| 50           | TccL   | CCPx Input Low          | No prescaler   | 0.5 TCY + 20      |     | ns    |              |
|              |        | Time                    | With prescaler | 10                | _   | ns    |              |
| 51           | Тссн   | CCPx Input<br>High Time | No prescaler   | 0.5 TCY + 20      | _   | ns    |              |
|              |        |                         | With prescaler | 10                | _   | ns    |              |
| 52           | TCCP   | CCPx Input Period       |                | <u>3 Tcy + 40</u> | _   | ns    | N = prescale |
|              |        |                         |                | IN                |     |       |              |
| 53           | TCCR   | CCPx Output Fall Time   |                | —                 | 25  | ns    |              |
| 54           | TccF   | CCPx Output Fall Time   |                | _                 | 25  | ns    |              |