

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode provides controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. To maintain software compatibility with future devices, it is recommended that SCS0 also be cleared, though its value is ignored. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC/MFIOSEL bit is set, the INTOSC output is enabled. The HFIOFS/MFIOFS bits become set, after the INTOSC output becomes stable, after an interval of TIOBST (Parameter 38, Table 31-13). (For information on the HFIOFS/MFIOFS bits, see Table 4-3.)

Clocks to the peripherals continue while the INTOSC source stabilizes. The HFIOFS/MFIOFS bits will remain set if the IRCF bits were previously at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the HFIOFS/MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD (Parameter 38, Table 31-13) following the wake event, the CPU begins executing code clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what this mode does not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals.

PIC18F87K22 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- Peripheral Enable bit, generically named XXXEN Located in the respective module's main control register
- Peripheral Module Disable (PMD) bit, generically named, XXXMD – Located in one of the PMDx Control registers (PMD0, PMD1, PMD2 or PMD3)

Disabling a module by clearing its XXXEN bit disables the module's functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as the second approach.

Most peripheral modules have an enable bit.

In contrast, setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral are also disabled, so writes to those registers have no effect and read values are invalid. Many peripheral modules have a corresponding PMD bit.

There are four PMD registers in the PIC18F87K22 family devices: PMD0, PMD1, PMD2 and PMD3. These registers have bits associated with each module for disabling or enabling a particular peripheral.

6.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy all of Bank 15 (F00h to FFFh) and the top part of Bank 14 (EF4h to EFFh).

A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name ⁽⁴⁾
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	ECCP1AS	F9Fh	IPR1	F7Fh	EECON1	F5Fh	RTCCFG
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1DEL	F9Eh	PIR1	F7Eh	EECON2	F5Eh	RTCCAL
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCPR1H	F9Dh	PIE1	F7Dh	TMR5H	F5Dh	RTCVALH
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1L	F9Ch	PSTR1CON	F7Ch	TMR5L	F5Ch	RTCVALL
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCP1CON	F9Bh	OSCTUNE	F7Bh	T5CON	F5Bh	ALRMCFG
FFAh	PCLATH	FDAh	FSR2H	FBAh	PIR5	F9Ah	TRISJ ⁽²⁾	F7Ah	T5GCON	F5Ah	ALRMRPT
FF9h	PCL	FD9h	FSR2L	FB9h	PIE5	F99h	TRISH ⁽²⁾	F79h	CCPR4H	F59h	ALRMVALH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	IPR4	F98h	TRISG	F78h	CCPR4L	F58h	ALRMVALL
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PIR4	F97h	TRISF	F77h	CCP4CON	F57h	CTMUCONH
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	PIE4	F96h	TRISE	F76h	CCPR5H	F56h	CTMUCONL
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON	F95h	TRISD	F75h	CCPR5L	F55h	CTMUICONH
FF4h	PRODH	FD4h	SPBRGH1	FB4h	CMSTAT	F94h	TRISC	F74h	CCP5CON	F54h	CM1CON
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	F73h	CCPR6H	F53h	PADCFG1
FF2h	INTCON	FD2h	IPR5	FB2h	TMR3L	F92h	TRISA	F72h	CCPR6L	F52h	ECCP2AS
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ ⁽²⁾	F71h	CCP6CON	F51h	ECCP2DEL
FF0h	INTCON3	FD0h	RCON	FB0h	T3GCON	F90h	LATH ⁽²⁾	F70h	CCPR7H	F50h	CCPR2H
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG	F6Fh	CCPR7L	F4Fh	CCPR2L
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF	F6Eh	CCP7CON	F4Eh	CCP2CON
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE	F6Dh	TMR4	F4Dh	ECCP3AS
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD	F6Ch	PR4	F4Ch	ECCP3DEL
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC	F6Bh	T4CON	F4Bh	CCPR3H
FEAh	FSR0H	FCAh	T2CON	FAAh	T1GCON	F8Ah	LATB	F6Ah	SSP2BUF	F4Ah	CCPR3L
FE9h	FSR0L	FC9h	SSP1BUF	FA9h	IPR6	F89h	LATA	F69h	SSP2ADD	F49h	CCP3CON
FE8h	WREG	FC8h	SSP1ADD	FA8h	HLVDCON	F88h	PORTJ ⁽²⁾	F68h	SSP2STAT	F48h	CCPR8H
FE7h	INDF1 ⁽¹⁾	FC7h	SSP1STAT	FA7h	PSPCON	F87h	PORTH ⁽²⁾	F67h	SSP2CON1	F47h	CCPR8L
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	PIR6	F86h	PORTG	F66h	SSP2CON2	F46h	CCP8CON
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	PORTF	F65h	BAUDCON1	F45h	CCPR9H ⁽³⁾
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	OSCCON2	F44h	CCPR9L ⁽³⁾
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD	F63h	EEADRH	F43h	CCP9CON ⁽³⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	EEADR	F42h	CCPR10H ⁽³⁾
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	EEDATA	F41h	CCPR10L ⁽³⁾
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	PIE6	F40h	CCP10CON ⁽³⁾

TABLE 6-1:SPECIAL FUNCTION REGISTER MAP FOR PIC18F87K22 FAMILY

Note 1: This is not a physical register.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

3: This register is not available on devices with a program memory of 32 Kbytes (PIC18FX5K22).

4: Addresses, F16h through F5Fh, are also used by SFRs, but are not part of the Access RAM. To access these registers, users must always load the proper BSR value.

REGISTER 11-11: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	—	SSP2IE	BCL2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc	cillator Fail Inter	rupt Enable bi	t			
	1 = Enabled						
	0 = Disabled						
bit 6	Unimplemen	ted: Read as ')'				
bit 5	SSP2IE: Mas	ter Synchronou	is Serial Port 2	2 Interrupt Enab	le bit		
	1 = Enables	the MSSP inter	rupt				
	0 = Disables	the MSSP inte	rrupt				
bit 4	BCL2IE: Bus	Collision Interr	upt Enable bit				
	1 = Enables 0 = Disables	the bus collision the bus collision	n interrupt in interrupt				
bit 3	BCI 1IE: Bus	Collision Interr	unt Enable bit				
Sit 0	1 = Enabled						
	0 = Disabled						
bit 2	HLVDIE: High	n/Low-Voltage [Detect Interrup	t Enable bit			
	1 = Enabled						
	0 = Disabled						
bit 1	TMR3IE: TMI	R3 Overflow Int	errupt Enable	bit			
	1 = Enabled						
	0 = Disabled						
bit 0	TMR3GIE: Ti	mer3 Gate Inte	rrupt Enable b	it			
	1 = Enabled						

REGISTER 11-21: IPR6: PERIPHERAL INTERRUPT PRIORITY REGISTER 6

U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1		
_	—	—	EEIP	—	CMP3IP	CMP2IP	CMP1IP		
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7-5	Unimplemen	ted: Read as '	כ'						
bit 4	EEIP: EE Inte	errupt Priority bi	it						
	1 = High prio	rity							
	0 = Low prior	ity							
bit 3	Unimplemen	ted: Read as '	o'						
bit 2	CMP3IP: CM	P3 Interrupt Pri	ority bit						
	1 = High prio	rity							
	0 = Low prior	rity							
bit 1	CMP2IP: CM	P2 Interrupt Pri	ority bit						
	1 = High priority								
	0 = Low priority								
bit 0	CMP1IP: CMP1 Interrupt Priority bit								
	1 = High prio	rity							
	0 = Low prior	rity							

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RB3/INT3/CTED2/	RB3	0	0	DIG	LATB<3> data output.
ECCP2/P2A		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.
	INT3	1	I	ST	External Interrupt 3 input.
	CTED2	x	Ι	ST	CTMU Edge 2 input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RB4/KBI0	RB4	0	0	DIG	LATB<4> data output.
		1	I	TTL	PORTB<4> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI0	1	I	TTL	Interrupt-on-pin change.
RB5/KBI1/T3CKI/	RB5	0	0	DIG	LATB<5> data output.
T1G		1	I	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	KBI1	1	Ι	TTL	Interrupt-on-pin change.
	T3CKI	x	Ι	ST	Timer3 clock input.
	T1G	x	Ι	ST	Timer1 external clock gate input.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	I	TTL	PORTB<6> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-pin change.
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operations.
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	I	TTL	PORTB<7> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI3	1	Ι	TTL	Interrupt-on-pin change.
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operations.
		x	I	ST	Serial execution data input for ICSP and ICD operations.

TABLE 12-3: PORTB FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Extended Microcontroller mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON1	SSP10D	CCP2OD	CCP10D	_				SSP2OD

Legend: Shaded cells are not used by PORTB.

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RJ0/ALE	RJ0	0	0	DIG	LATJ<0> data output.
		1	Ι	ST	PORTJ<0> data input.
	ALE	x	0	DIG	External memory interface address latch enable control output; takes priority over digital I/O.
RJ1/OE	RJ1	0	0	DIG	LATJ<1> data output.
		1	I	ST	PORTJ<1> data input.
	ŌĒ	x	0	DIG	External memory interface output enable control output; takes priority over digital I/O.
RJ2/WRL	RJ2	0	0	DIG	LATJ<2> data output.
		1	Ι	ST	PORTJ<2> data input.
	WRL	x	0	DIG	External Memory Bus write low byte control; takes priority over digital I/O.
RJ3/WRH	RJ3	0	0	DIG	LATJ<3> data output.
		1	I	ST	PORTJ<3> data input.
WRH		x	0	DIG	External memory interface write high-byte control; takes priority over digital I/O.
RJ4/BA0	RJ4	0	0	DIG	LATJ<4> data output.
		1	Ι	ST	PORTJ<4> data input.
	BA0	x	0	DIG	External Memory Interface Byte Address 0 control output; takes priority over digital I/O.
RJ5/CE	RJ5	0	0	DIG	LATJ<5> data output.
		1	I	ST	PORTJ<5> data input.
	CE	x	0	DIG	External memory interface chip enable control output; takes priority over digital I/O.
RJ6/LB	RJ6	0	0	DIG	LATJ<6> data output.
		1	I	ST	PORTJ<6> data input.
	LB	x	0	DIG	External memory interface lower byte enable control output; takes priority over digital I/O.
RJ7/UB	RJ7	0	0	DIG	LATJ<7> data output.
		1	I	ST	PORTJ<7> data input.
	UB	x	0	DIG	External memory interface upper byte enable control output; takes priority over digital I/O.

TABLE 12-17: PORTJ FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

 \mathbf{x} = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 12-18:	SUMMARY	OF REGISTERS	ASSOCIATED	WITH PORTJ
--------------	---------	---------------------	------------	------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTJ ⁽¹⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0
LATJ ⁽¹⁾	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0
TRISJ ⁽¹⁾	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0
PADCFG1	RDPU	REPU	RJPU ⁽¹⁾		_	RTSECSEL1	RTSECSEL0	_

Legend: Shaded cells are not used by PORTJ.

Note 1: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

16.5 Timer3/5/7 Gates

Timer3/5/7 can be configured to count freely or the count can be enabled and disabled using the Timer3/5/7 gate circuitry. This is also referred to as the Timer3/5/7 gate count enable.

The Timer3/5/7 gate can also be driven by multiple selectable sources.

16.5.1 TIMER3/5/7 GATE COUNT ENABLE

The Timerx Gate Enable mode is enabled by setting the TMRxGE bit (TxGCON<7>). The polarity of the Timerx Gate Enable mode is configured using the TxGPOL bit (TxGCON<6>).

When Timerx Gate Enable mode is enabled, Timer3/5/7 will increment on the rising edge of the Timer3/5/7 clock source. When Timerx Gate Enable mode is disabled, no incrementing will occur and Timer3/5/7 will hold the current count. See Figure 16-2 for timing details.

TABLE 16-1: TIMER3/5/7 GATE ENABLE SELECTIONS

TxCLK ^(†)	TxGPOL (TxGCON<6>)	TxG Pin	Timerx Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

† The clock on which TMR3/5/7 is running. For more information, see TxCLK in Figure 16-1.

FIGURE 16-2: TIMER3/5/7 GATE COUNT ENABLE MODE

19.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

19.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers, 1 through 8, which vary with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in Table 19-1.

TABLE 19-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource					
Capture						
Compare	Timer1, Timer3, Timer 5 or Timer7					
PWM	Timer2, Timer4, Timer 6 or Timer8					

The assignment of a particular timer to a module is determined by the timer to CCP enable bits in the CCPTMRSx registers (see Register 19-2 and Register 19-3). All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time.

The CCPTMRS1 register selects the timers for CCP modules, 7, 6, 5 and 4, and the CCPTMRS2 register selects the timers for CCP modules, 10, 9 and 8. The possible configurations are shown in Table 19-2 and Table 19-3.

TABLE 19-2: TIMER ASSIGNMENTS FOR CCP MODULES 4, 5, 6 AND 7

	CCPTMRS1 Register										
CCP4 CCP5			CCP6			CCP7					
C4TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C5TSEL0	Capture/ Compare Mode	PWM Mode	C6TSEL0	Capture/ Compare Mode	PWM Mode	C7TSEL <1:0>	Capture/ Compare Mode	PWM Mode
0 0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2	0 0	TMR1	TMR2
0 1	TMR3	TMR4	1	TMR5	TMR4	1	TMR5	TMR2	0 1	TMR5	TMR4
1 0	TMR3	TMR6							1 0	TMR5	TMR6
1 1	Reserv	ed ⁽¹⁾							1 1	TMR5	TMR8

Note 1: Do not use the reserved bits.

TABLE 19-3: TIMER ASSIGNMENTS FOR CCP MODULES 8, 9 AND 10

	CCPTMRS2 Register										
CCP8 CCP8 CCP8 Devices with 32 Kbytes			CCP9 ⁽¹⁾			C	CCP10 ⁽¹⁾				
C8TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C8TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C9TSEL0	Capture/ Compare Mode	PWM Mode	C10TSEL0	Capture/ Compare Mode	PWM Mode
0 0	TMR1	TMR2	0 0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2
0 1	TMR7	TMR4	0 1	TMR1	TMR4	1	TMR7	TMR4	1	TMR7	TMR2
1 0	TMR7	TMR6	1 0	TMR1	TMR6						
1 1	Reserv	/ed ⁽²⁾	1 1	Reserv	ed ⁽²⁾						

Note 1: The module is not available for devices with 32 Kbytes of program memory (PIC18F65K22 and PIC18F85K22).

2: Do not use the reserved setting.

21.4.3.5 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and the SDAx line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPxSTAT<0>), is set or bit, SSPOV (SSPxCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. The interrupt flag bit, SSPxIF, must be cleared in software. The SSPxSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPxCON2<0> = 1), SCLx will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPxCON1<4>). See **Section 21.4.4** "**Clock Stretching**" for more details.

21.4.3.6 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register. The ACK pulse will be sent on the ninth bit and pin SCLx is held low regardless of SEN (see **Section 21.4.4 "Clock Stretching"** for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then, pin SCLx should be enabled by setting bit, CKP (SSPxCON1<4>). The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time (Figure 21-10).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. If the SDAx line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset and the slave monitors for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, pin SCLx must be enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared in software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

21.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCLx output is forced to '0'. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has

already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have deasserted SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 21-14).

21.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPxCON1, and by setting the SSPEN bit. In Master mode, the SCLx and SDAx lines are manipulated by the MSSP hardware if the TRIS bits are set.

The Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Assert a Repeated Start condition on SDAx and SCLx.
- 3. Write to the SSPxBUF register, initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDAx and SCLx.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPxIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmitted
- Repeated Start

© 2009-2011 Microchip Technology Inc.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F87K22 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/DT1) and PORTG (RG1/TX2/CK2/AN19/C3OUT and RG2/RX2/DT2/AN18/C3INA), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - Bit, SPEN (RCSTA1<7>), must be set (= 1)
 - Bit, TRISC<7>, must be set (= 1)
 - Bit, TRISC<6>, must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - Bit, TRISC<6>, must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - Bit, SPEN (RCSTA2<7>), must be set (= 1)
 - Bit, TRISG<2>, must be set (= 1)
 - Bit TRISG<1> must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - Bit, TRISC<6>, must be set (= 1) for Synchronous Slave mode

Note: The EUSART control will automatically reconfigure the pin from input to output as needed.

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are detailed on the following pages in Register 22-1, Register 22-2 and Register 22-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

REGISTER 23-6: ADRESH: A/D RESULT HIGH BYTE REGISTER, RIGHT JUSTIFIED (ADFM = 1)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADSGN	ADSGN	ADSGN	ADSGN	ADRES11	ADRES10	ADRES9	ADRES8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	ADSGN: A/D Result Sign bit
	1 = A/D result is negative
	0 = A/D result is positive
bit 3-0	ADRESH<11:8>: A/D Result High Byte bits

REGISTER 23-7: ADRESL: A/D RESULT LOW BYTE REGISTER, RIGHT JUSTIFIED (ADFM = 1)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<7:0>: A/D Result Low Byte bits

The ANCONx registers are used to configure the operation of the I/O pin associated with each analog channel. Clearing an ANSELx bit configures the corresponding pin (ANx) to operate as a digital only I/O. Setting a bit configures the pin to operate as an analog input for either the A/D Converter or the comparator module, with all digital peripherals disabled and digital inputs read as '0'.

As a rule, I/O pins that are multiplexed with analog inputs default to analog operation on any device Reset.

REGISTER 23-8: ANCON0: A/D PORT CONFIGURATION REGISTER 0

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ANSEL7 | ANSEL6 | ANSEL5 | ANSEL4 | ANSEL3 | ANSEL2 | ANSEL1 | ANSEL0 |
| bit 7 | | | | | | | bit 0 |

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 7-0

ANSEL<7:0>: Analog Port Configuration bits (AN7 and AN0)

1 = Pin is configured as an analog channel; digital input is disabled and any inputs read as '0'

0 = Pin is configured as a digital port

REGISTER 23-9: ANCON1: A/D PORT CONFIGURATION REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSEL15 ⁽¹⁾	ANSEL14 ⁽¹⁾	ANSEL13 ⁽¹⁾	ANSEL12 ⁽¹⁾	ANSEL11	ANSEL10	ANSEL9	ANSEL8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ANSEL<15:8>: Analog Port Configuration bits (AN15 through AN8)⁽¹⁾

1 = Pin is configured as an analog channel; digital input is disabled and any inputs read as '0'
 0 = Pin is configured as a digital port

Note 1: AN15 through AN12 and AN23 to AN20 are implemented only on 80-pin devices. For 64-pin devices, the corresponding ANSELx bits are still implemented for these channels, but have no effect.

27.7 Creating a Delay with the CTMU Module

A unique feature on board the CTMU module is its ability to generate system clock independent output pulses, based on either an external voltage or an external capacitor value. When using an external voltage, this is accomplished using the CTDIN input pin as a trigger for the pulse delay. When using an external capacitor value, this is accomplished using the internal comparator voltage reference module and Comparator 2 input pin.The pulse is output onto the CTPLS pin. To enable this mode, set the TGEN bit.

See Figure 27-4 for an example circuit. When CTMUDS (ODCON3<0>) is cleared, the pulse delay is determined by the output of Comparator 2, and when it is set, the pulse delay is determined by the input of CTDIN. CDELAY is chosen by the user to determine the output pulse width on CTPLS. The pulse width is calculated by T = (CDELAY/I) * V, where I is known from the current source measurement step (Section 27.4.1 "Current Source Calibration") and V is the Internal Reference Voltage (CVREF).

An example use of the external capacitor feature is interfacing with variable capacitive-based sensors, such as a humidity sensor. As the humidity varies, the pulse-width output on CTPLS will vary. An example use of the CTDIN feature is interfacing with a digital sensor. The CTPLS output pin can be connected to an input capture pin and the varying pulse width measured to determine the sensor's output in the application.

To use this feature:

- 1. If CTMUDS is cleared, initialize Comparator 2.
- 2. If CTMUDS is cleared, initialize the comparator voltage reference.
- 3. Initialize the CTMU and enable time delay generation by setting the TGEN bit.
- 4. Set EDG1STAT.

When CTMUDS is cleared, as soon as CDELAY charges to the value of the voltage reference trip point, an output pulse is generated on CTPLS. When CTMUDS is set, as soon as CTDIN is set, an output pulse is generated on CTPLS.

FIGURE 27-4: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

NOTES:

REGISTER 28-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	BORPWR1 ⁽¹⁾	BORPWR0 ⁽¹⁾	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾
bit 7							bit 0

Legend:	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-5	BORPWR<1:0>: BORMV Power-Level bits ⁽¹⁾
	 11 = ZPBORVMV instead of BORMV is selected 10 = BORMV is set to a high-power level 01 = BORMV is set to a medium power level 00 = BORMV is set to a low-power level
bit 4-3	BORV<1:0>: Brown-out Reset Voltage bits ⁽¹⁾
	11 = VBORMV is set to 1.8V 10 = VBORMV is set to 2.0V 01 = VBORMV is set to 2.7V 00 = VBORMV is set to 3.0V
bit 2-1	BOREN<1:0>: Brown-out Reset Enable bits ⁽²⁾
	 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
bit 0	PWRTEN: Power-up Timer Enable bit ⁽²⁾
	1 = PWRT is disabled0 = PWRT is enabled
Note 1:	For the specifications, see Section 31.1 "DC Characteristics: Supply Voltage PIC18F87K22 Family (Industrial/Extended)".

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

28.2.1 CONTROL REGISTER

Register 28-16 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT Enable Configuration bit, but only if the Configuration bit has disabled the WDT.

REGISTER 28-16: WDTCON: WATCHDOG TIMER CONTROL REGISTER

R/W-0	U-0	R-x	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
REGSLP	—	ULPLVL	SRETEN ⁽²⁾	—	ULPEN	ULPSINK	SWDTEN ⁽¹⁾	
bit 7							bit 0	
Lanand								
Legend:	h:+		L:4	II — I la incale a		(O'		
R = Readable	DIT		DIT	U = Unimplemented bit, read as 'U'				
-n = Value at P	OR	1^{\prime} = Bit is set		0° = Bit is cle	ared	x = Bit is unk	nown	
bit 7	REGSLP: Re	gulator Voltage	e Sleep Enable	e bit				
	1 = Regulator	goes into Low	-Power mode	when device's	Sleep mode is	enabled		
	0 = Regulator	stays in norma	al Operation m	node when dev	vice's Sleep mod	de is activated		
bit 6	Unimplemen	ted: Read as '	כ'					
bit 5	ULPLVL: Ultra	a Low-Power V	Vake-up Outp	ut bit				
	Not valid unle	ss ULPEN = 1						
	1 = Voltage o	n RA0 pin > ~	0.5V					
	0 = Voltage o	on RA0 pin < ~	0.5V.	(0)				
bit 4	SRETEN: Re	gulator Voltage	Sleep Disable	e bit ⁽²⁾				
	1 = If RETEN mode in \$	l (CONFIG1L<) Sleep	0>) = 0 and the	e regulator is er	nabled, the devi	ce goes into UI	tra Low-Power	
	0 = The regu	ilator is on wh	en the device	e's Sleep moo	le is enabled a	ind the Low-P	ower mode is	
	controlled	d by REGSLP						
bit 3	Unimplemen	ted: Read as '	D'					
bit 2	ULPEN: Ultra	Low-Power W	/ake-up Modul	e Enable bit				
	1 = Ultra Low 0 = Ultra Low	/-Power Wake- /-Power Wake-	up module is oup module is o	enabled; ULPL disabled	VL bit indicates	the comparate	or output	
bit 1	ULPSINK: UI	tra Low-Power	Wake-up Cur	rent Sink Enab	ole bit			
	Not valid unle	ss ULPEN = 1						
	1 = Ultra Low 0 = Ultra Low	/-Power Wake- /-Power Wake-	up current sin	k is enabled k is disabled				
bit 0	SWDTEN: So	oftware Control	led Watchdog	Timer Enable	bit(1)			
2	1 = Watchdoo	Timer is on	ies materialog					
	0 = Watchdog	Timer is off						
	-							

Note 1: This bit has no effect if the Configuration bits, WDTEN<1:0>, are enabled.

2: This bit is available only when ENVREG = 1 and $\overline{\text{RETEN}}$ = 0.

TABLE 28-2: SUMMARY OF WATCHDOG TIMER REGIS	rers
---	------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
WDTCON	REGSLP		ULPLVL	SRETEN		ULPEN	ULPSINK	SWDTEN

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

моу	'LW	Move Literal to W							
Synta	ax:	MOVLW	MOVLW k						
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$						
Oper	ation:	$k\toW$							
Statu	is Affected:	None	None						
Enco	oding:	0000	1110	kkk	k	kkkk			
Desc	ription:	The eight-	The eight-bit literal 'k' is loaded into W.						
Words:		1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	Q3		Q4			
	Decode	Read	Proce	Process		/rite to			
			Dala	a		VV			
<u>Exar</u>	nple:	MOVLW	5Ah						
	After Instructio W	on = 5Ah							

MOVWF	Move W to	f					
Syntax:	MOVWF	f {,a}					
Operands:	$0 \leq f \leq 255$						
	a ∈ [0,1]						
Operation:	$(W) \to f$						
Status Affected:	None						
Encoding:	0110	111a	ffff	ffff			
Description:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank.						
	If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select t GPR bank.						
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read	Process	5	Write			
	register 'f'	Data	re	gister 'f'			
Example:	MOVWF	REG, O					
Before Instruction							
W REG	= 4Fh = FFh						
After Instruction	on						
W REG	= 4Fh = 4Fh						

SUBULNK k

 $FSR2 - k \rightarrow FSR2$,

 $0 \leq k \leq 63$

Subtract Literal from FSR2 and Return

SUBFSR Subtract Literal from FSR									
Synta	ax:	SUBFSR	SUBFSR f, k						
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$						
		f ∈ [0, 1,	2]						
Oper	ation:	FSRf – k	\rightarrow FSRf						
Statu	s Affected:	None							
Enco	ding:	1110	1001	ffk	c	kkkk			
Desc	ription:	The 6-bit I the conter by 'f'.	iteral 'k' is nts of the	s subtr FSR ៖	acto spec	ed from cified			
Word	IS:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Process Data		V de	Vrite to stination			
<u>Exan</u>	nple:	SUBFSR	2, 23h						
	D () (

	•		$(TOS) \rightarrow F$	°C				
	Statu	s Affected:	None					
7	Enco	ding:	1110	1001	11kk	kkkk		
_	Desc	ription:	The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS.					
			The instru- execute; a second cy	ction takes NOP is per cle.	two cycle rformed d	es to Juring the		
		This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'): it operates only on FSR2.						
	Word	is:	1					
	Cycle	es:	2					
	QC	ycle Activity:						
		Q1	Q2	(23	Q4		
		Decode	Read register	f' D;	cess ata	Write to destination		
		No	No	Ν	10	No		
		Operation	Operatio	on Oper	ration	Operation		

Before Instruction 03FFh FSR2 = After Instruction 03DCh FSR2 =

Example:

SUBULNK

Operands:

Operation:

Syntax:

mple:	SU	JBULNK	23h
Before Instruction	on		
FSR2	=	03FFh	
PC	=	0100h	
After Instruction	า		
FSR2	=	03DCh	
PC	=	(TOS)	