

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k22-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

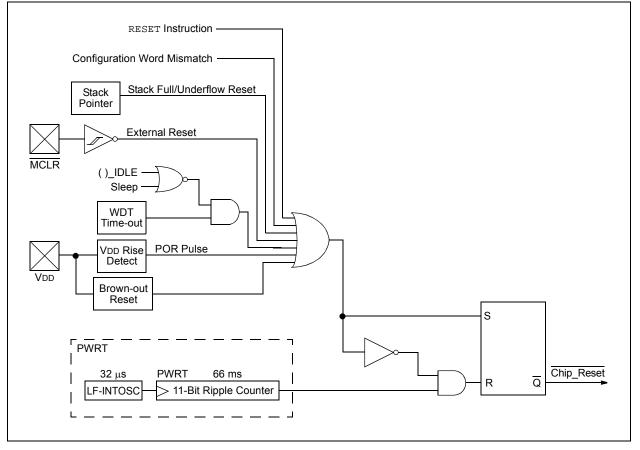
5.0 RESET

The PIC18F87K22 family of devices differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM) Reset
- f) Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.3.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 28.2 "Watchdog Timer (WDT)".

A simplified block diagram of the on-chip Reset circuit is shown in Figure 5-1.


5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event.

The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7** "**Reset State of Registers**".

The RCON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 11.0 "Interrupts"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register (\overline{CM} , \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR}) are set or cleared differently in

different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets, and WDT wake-ups.

TABLE 5-1:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program			RCON	Register			STKPTR	Register
Condition	Counter ⁽¹⁾	CM	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET instruction	0000h	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	1	u	0	u	u
Configuration Mismatch Reset	0000h	0	u	u	u	u	u	u	u
MCLR Reset during power-managed Run modes	0000h	u	u	1	u	u	u	u	u
MCLR Reset during power- managed Idle modes and Sleep mode	0000h	u	u	1	0	u	u	u	u
MCLR Reset during full-power execution	0000h	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	u	1
WDT time-out during full-power or power-managed Run modes	0000h	u	u	0	u	u	u	u	u
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	1 = Erase the program memory row addressed by TBLPTR on the next WR command
	(cleared by completion of erase operation)
	0 = Perform write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
	operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle
	(The operation is self-timed and the bit is cleared by hardware once the write is complete.
	The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only
	be set (not cleared) in software. The RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	RBPU: PORT	B Pull-up Enat	ole bit				
		B pull-ups are					
	0 = PORTB p	oull-ups are ena	abled by individ	dual TRIS regis	ter values		
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Select	t bit			
		on rising edge					
		on falling edge					
bit 5		ternal Interrupt	1 Edge Select	t bit			
		on rising edge on falling edge					
bit 4	•	ternal Interrupt	2 Edge Select	t bit			
		on rising edge					
		on falling edge					
bit 3	INTEDG3: Ex	ternal Interrupt	3 Edge Select	t bit			
		on rising edge					
		on falling edge					
bit 2		R0 Overflow Int	errupt Priority	bit			
	1 = High prio 0 = Low prior	•					
bit 1	•	External Intern	int Priority bit				
	1 = High prio		upt i nonty bit				
	0 = Low prior	•					
bit 0	RBIP: RB Por	rt Change Inter	rupt Priority bit	1			
	1 = High prio		2				
	0 = Low prior	ity					

REGISTER 11-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
PIR1	PSPIP	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF
PIR2	OSCFIF	—	SSP2IF	BCL2IF	BCL1IF	HLVDIF	TMR3IF	TMR3GIF
PIR3	TMR5GIF	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIR4	CCP10IF ⁽¹⁾	CCP9IF ⁽¹⁾	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF
PIR5	TMR7GIF ⁽¹⁾	TMR12IF ⁽¹⁾	TMR10IF ⁽¹⁾	TMR8IF	TMR7IF ⁽¹⁾	TMR6IF	TMR5IF	TMR4IF
PIR6	—	—	_	EEIF	—	CMP3IF	CMP2IF	CMP1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE
PIE2	OSCFIE	—	SSP2IE	BCL2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE
PIE3	TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
PIE4	CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
PIE5	TMR7GIE ⁽¹⁾	TMR12IE ⁽¹⁾	TMR10IE ⁽¹⁾	TMR8IE	TMR7IE ⁽¹⁾	TMR6IE	TMR5IE	TMR4IE
PIE6	—	—	_	EEIE	_	CMP3IE	CMP2IE	CMP1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP
IPR2	OSCFIP	—	SSP2IP	BCL2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP
IPR3	TMR5GIP	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
IPR4	CCP10IP ⁽¹⁾	CCP9IP ⁽¹⁾	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP
IPR5	TMR7GIP ⁽¹⁾	TMR12IP ⁽¹⁾	TMR10IP ⁽¹⁾	TMR8IP	TMR7IP ⁽¹⁾	TMR6IP	TMR5IP	TMR4IP
IPR6				EEIP		CMP3IP	CMP2IP	CMP1IP
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: Shaded cells are not used by the interrupts.

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

12.5 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISD and LATD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	These pins are configured as digital inputs
	on any device Reset.

Each of the PORTD pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by setting bit, RDPU (PADCFG1<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

On 80-pin devices, PORTD is multiplexed with the system bus as part of the external memory interface. The I/O port and other functions are only available when the interface is disabled by setting the EBDIS bit (MEMCON<7>). When the interface is enabled, PORTD is the low-order byte of the multiplexed address/data bus (AD<7:0>). The TRISD bits are also overridden.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. For additional information, see Section 12.11 "Parallel Slave Port".

The PORTD also has the I²C and SPI functionality on RD4, RD5 and RD6. The pins for SPI are also configurable for open-drain output. Open-drain configuration is selected by setting bit, SSP2OD (ODCON1<0>).

RD0 has a CTMU functionality. RD1 has the functionality for the Timer5 clock input and Timer7 external clock gate input.

EXAMP	LE 12-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RD0/PSP0/	RD0	0	0	DIG	LATD<0> data output.
AD0/CTPLS		1	Ι	ST	PORTD<0> data input.
	PSP0 ⁽¹⁾	x	I/O	TTL	Parallel Slave Port data.
	AD0 ⁽²⁾	х	I/O	TTL	External Memory Address/Data 0.
	CTPLS	х	0	DIG	CTMU pulse generator output.
RD1/PSP1/	RD1	0	0	DIG	LATD<1> data output.
AD1/T5CKI/	1/T5CKI/ 1 I ST PORTD<1> data input.	PORTD<1> data input.			
T7G	PSP1 ⁽¹⁾	х	I/O	TTL	Parallel Slave Port data.
	AD1 ⁽²⁾	х	I/O	TTL	External Memory Address/Data 1.
	T5CKI	х	Ι	ST	Timer5 clock input.
	T7G	х	Ι	ST	Timer7 external clock gate input.
RD2/PSP2/AD2	RD2	0	0	DIG	LATD<2> data output.
		1	Ι	ST	PORTD<2> data input.
	PSP2 ⁽¹⁾	х	I/O	TTL	Parallel Slave Port data.
	AD2 ⁽²⁾	x	I/O	TTL	External Memory Address/Data 2.

TABLE 12-7 PORTD FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, $I^2C = I^2C^{\text{TM}}/\text{SMBus Buffer Input}$, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: The Parallel Slave Port (PSP) is available only in Microcontroller mode.

2: This feature is available only on PIC18F8XK22 devices.

13.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software-selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- · Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 13-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

Figure 13-1 provides a simplified block diagram of the Timer0 module in 8-bit mode. Figure 13-2 provides a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 13-1: TOCON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:										
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	TMR0ON	: Timer0 On/Off Control bit								
	1 = Enabl	es Timer0								
	0 = Stops	Timer0								
bit 6	T08BIT : T	ïmer0 8-Bit/16-Bit Control b	it							
	1 = Timer	0 is configured as an 8-bit ti	mer/counter							
	0 = Timer	0 is configured as a 16-bit ti	mer/counter							
bit 5	TOCS: Tir	ner0 Clock Source Select bi	t							
	1 = Trans	ition on TOCKI pin input edg	le							
	0 = Intern	al clock (Fosc/4)								
bit 4	T0SE: Tin	ner0 Source Edge Select bit	t							
	1 = Increr	nent on high-to-low transitio	n on T0CKI pin							
	0 = Increr	ment on low-to-high transitio	n on T0CKI pin							
bit 3	PSA: Tim	er0 Prescaler Assignment b	it							
	1 = Timer	0 prescaler is not assigned;	Timer0 clock input bypasses	prescaler						
	0 = Timer	0 prescaler is assigned; Tim	ner0 clock input comes from pr	escaler output						
bit 2-0	T0PS<2:0	T0PS<2:0>: Timer0 Prescaler Select bits								
	111 = 1 :2	56 Prescale value								
	110 = 1 :1	28 Prescale value								
	101 = 1 :6	4 Prescale value								
		2 Prescale value								
		6 Prescale value								
		Prescale value								
	001 = 1:4	 Prescale value 								

14.1 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), displayed in Register 14-2, is used to control the Timer1 gate.

REGISTER 14-2: T1GCON: TIMER1 GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/T1DONE	T1GVAL	T1GSS1	T1GSS0
bit 7							bit 0
Legend:							
R = Readab		W = Writable		U = Unimplemented	d bit, read as		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown
bit 7	TMR1GE: Ti	mer1 Gate Ena	able bit				
	If TMR1ON =	<u> 0</u> :					
	This bit is igr	ored.					
	If TMR10N =						
		ounting is cont ounts regardle		Timer1 gate function gate function			
bit 6	T1GPOL: Tir	ner1 Gate Pola	arity bit	-			
				ounts when gate is high			
	0 = Timer1 g	ate is active-lo	w (Timer1 co	unts when gate is low	v)		
bit 5	T1GTM: Tim	er1 Gate Togg	e Mode bit				
		Gate Toggle m					
		Jate Toggle me flip-flop toggles		d and toggle flip-flop ing edge.	is cleared		
bit 4	-	mer1 Gate Sin	-				
	1 = Timer1 G	ate Single Pul	se mode is ei	nabled and is controll	ling Timer1 ga	ate	
	0 = Timer1 G	ate Single Pul	se mode is di	sabled			
bit 3	T1GGO/T1D	ONE: Timer1 (Gate Single P	ulse Acquisition State	us bit		
				is ready, waiting for a			
				has completed or ha GSPM is cleared.	is not been st	arted	
bit 2		ner1 Gate Cur		Gor Wild Cleared.			
				gate that could be p	provided to TI		unaffected by
		Enable (TMR1		gate that could be p		vii (11 1. 1 1vii (1 L,	unanceted by
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Sele	ct bits			
	11 = Compa	rator 2 output					
		rator 1 output					
		o match PR2 c	output				
	00 = Timer1	yate pill					
Note 1: P	rogramming th	e T1GCON pri	or to T1CON	is recommended			

Note 1: Programming the T1GCON prior to T1CON is recommended.

15.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- Eight-bit Timer and Period registers (TMR2 and PR2, respectively)
- Both registers are readable and writable
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules

This module is controlled through the T2CON register (Register 15-1) that enables or disables the timer, and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 15-1.

15.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A four-bit counter/prescaler on the clock input gives the prescale options of direct input, divide-by-4 or divide-by-16. These are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>).

The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler. (See **Section 15.2 "Timer2 Interrupt**".)

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR)

TMR2 is not cleared when T2CON is written.

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 20-2, Register 19-2 and Register 19-3.

REGISTER 15-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 bit 6-3	Unimplemented: Read as '0' T2OUTPS<3:0>: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale •
	• 1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
IPR5	TMR7GIP ⁽¹⁾	TMR12IP ⁽¹⁾	TMR10IP ⁽¹⁾	TMR8IP	TMR7IP ⁽¹⁾	TMR6IP	TMR5IP	TMR4IP
PIR5	TMR7GIF ⁽¹⁾	TMR12IF ⁽¹⁾	TMR10IF ⁽¹⁾	TMR8IF	TMR7IF ⁽¹⁾	TMR6IF	TMR5IF	TMR4IF
PIE5	TMR7GIE ⁽¹⁾	TMR12IE ⁽¹⁾	TMR10IE ⁽¹⁾	TMR8IE	TMR7IE ⁽¹⁾	TMR6IE	TMR5IE	TMR4IE
TMR4	Timer4 Regis	ter						
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
PR4	Timer4 Period	d Register						
TMR6	Timer6 Regis	ter						
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0
PR6	Timer6 Period	d Register						
TMR8	Timer8 Regis	ter						
T8CON	—	T8OUTPS3	T8OUTPS2	T8OUTPS1	T8OUTPS0	TMR8ON	T8CKPS1	T8CKPS0
PR8	Timer8 Period	d Register						
TMR10 ⁽¹⁾	Timer10 Regi	ster						
T10CON ⁽¹⁾	—	T10OUTPS3	T100UTPS2	T10OUTPS1	T10OUTPS0	TMR10ON	T10CKPS1	T10CKPS0
PR10 ⁽¹⁾	Timer10 Peric	od Register						
TMR12 ⁽¹⁾	Timer12 Regi	ster						
T12CON ⁽¹⁾	—	T12OUTPS3	T12OUTPS2	T12OUTPS1	T12OUTPS0	TMR12ON	T12CKPS1	T12CKPS0
PR12 ⁽¹⁾	Timer12 Perio	Timer12 Period Register						
PMD1	PSPMD	CTMUMD	RTCCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	EMBMD
PMD2	TMR10MD ⁽¹⁾		TMR7MD ⁽¹⁾	TMR6MD	TMR5MD	CMP3MD	CMP2MD	CMP2MD
PMD3	CCP10MD ⁽¹⁾	CCP9MD ⁽¹⁾	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	TMR12MD ⁽¹⁾
	we we have a stand and any (o). Obside discussion and we add her the Times of (0)(40)(40) we added							

TABLE 17-3:	REGISTERS ASSOCIATED WITH TIMER4/6/8/10/12 AS A TIMER/COUNTER
-------------	---

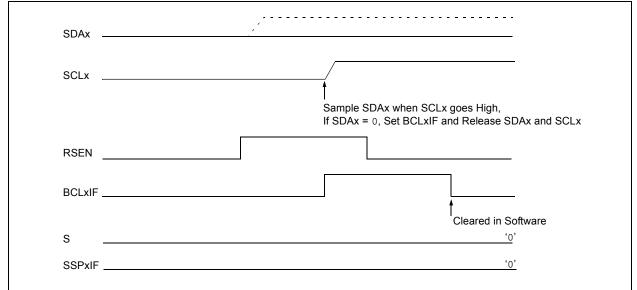
Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer4/6/8/10/12 module.

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

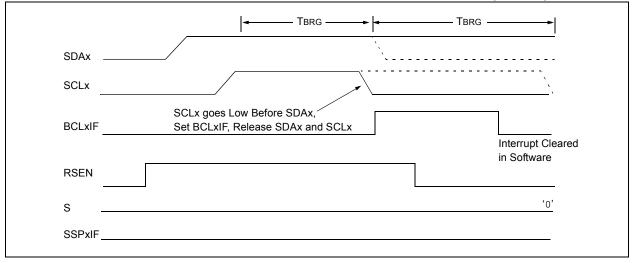
21.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from a low level to a high level.
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD<6:0> and counts down to 0. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled.

If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 21-31). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.


If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 21-32).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 21-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 21-32: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

22.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 22-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RXx signal, the RXx signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value, 55h (ASCII "U", which is also the LIN/J2602 bus Sync character), in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRGx begins counting up, using the preselected clock source on the first rising edge of RXx. After eight bits on the RXx pin or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGHx:SPBRGx register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCONx<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 22-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. The BRG clock will be configured by the BRG16 and BRGH bits. The BRG16 bit must be set to use both SPBRG1 and SPBRGH1 as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGHx register. Refer to Table 22-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCxIF interrupt is set once the fifth rising edge on RXx is detected. The value in the RCREGx needs to be read to clear the RCxIF interrupt. The contents of RCREGx should be discarded.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character.
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.
 - To maximize baud rate range, if that feature is used, it is recommended that the BRG16 bit (BAUDCONx<3>) be set.

TABLE 22-4:BRG COUNTER
CLOCK RATES

BRG16	BRGH	BRG Counter Clock				
0	0	Fosc/512				
0	1	Fosc/128				
1	0	Fosc/128				
1	1	Fosc/32				

22.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREGx cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

REGISTER 23-6: ADRESH: A/D RESULT HIGH BYTE REGISTER, RIGHT JUSTIFIED (ADFM = 1)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADSGN	ADSGN	ADSGN	ADSGN	ADRES11	ADRES10	ADRES9	ADRES8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	ADSGN: A/D Result Sign bit
	1 = A/D result is negative
	0 = A/D result is positive
bit 3-0	ADRESH<11:8>: A/D Result High Byte bits

REGISTER 23-7: ADRESL: A/D RESULT LOW BYTE REGISTER, RIGHT JUSTIFIED (ADFM = 1)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<7:0>: A/D Result Low Byte bits

28.2.1 CONTROL REGISTER

Register 28-16 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT Enable Configuration bit, but only if the Configuration bit has disabled the WDT.

REGISTER 28-16: WDTCON: WATCHDOG TIMER CONTROL REGISTER

R/W-0	U-0	R-x	R/W-0	U-0	R/W-0	R/W-0	R/W-0
REGSLP		ULPLVL	SRETEN ⁽²⁾	_	ULPEN	ULPSINK	SWDTEN ⁽¹⁾
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	ʻ0' = Bit is cl	eared	x = Bit is unk	nown
bit 7		Regulator Voltag tor goes into Lov	-		s Sloop modo i	anablad	
		tor stays in norm					
bit 6	Unimpleme	ented: Read as	'0'		-		
bit 5	ULPLVL: U	Itra Low-Power	Wake-up Outp	ut bit			
	Not valid ur	less ULPEN = 1	L.				
		e on RA0 pin > ~					
	•	e on RA0 pin < ~		(2)			
bit 4		Regulator Voltag	•				
		EN (CONFIG1L< n Sleep	(0>) = 0 and the	e regulator is e	enabled, the dev	rice goes into U	ltra Low-Powe
		gulator is on w	hen the device	e's Sleep mo	de is enabled	and the Low-F	ower mode is
		led by REGSLP					
bit 3	Unimpleme	ented: Read as	ʻ0'				
bit 2	ULPEN: UI	tra Low-Power V	Vake-up Modul	e Enable bit			
		ow-Power Wake ow-Power Wake			LVL bit indicate	s the comparat	or output
bit 1	ULPSINK:	Ultra Low-Powe	r Wake-up Cur	rent Sink Ena	ble bit		
	Not valid ur	less ULPEN = 1	L.				
		ow-Power Wake ow-Power Wake					
bit 0	SWDTEN: S	Software Contro	lled Watchdog	Timer Enable	e bit ⁽¹⁾		
		og Timer is on					
	0 = Watchd	og Timer is off					
Note 1. T	his hit has no o	ffect if the Confi	guration bits. M		are enabled		

Note 1: This bit has no effect if the Configuration bits, WDTEN<1:0>, are enabled.

2: This bit is available only when ENVREG = 1 and $\overline{\text{RETEN}}$ = 0.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
WDTCON	REGSLP		ULPLVL	SRETEN		ULPEN	ULPSINK	SWDTEN

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

RCA	LL	Relative C	all					
Synta	ax:	RCALL n	RCALL n					
Oper	ands:	-1024 ≤ n ≤	≤ 1023					
Oper	ation:	(PC) + 2 → (PC) + 2 +	,	;				
Statu	s Affected:	None						
Enco	ding:	1101	1nnn	nnnn	nnnn			
Description: Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complemen number '2n' to the PC. Since the PC' have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.					t, return into the plement the PC will e next will be			
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	5	Q4			
	Decode	Read literal 'n' PUSH PC	Proce Data		rite to PC			
		to stack						
	No	No	No		No			

RES	ET	Reset					
Synta	ax:	RESET					
Oper	ands:	None					
Oper	ation:		Reset all registers and flags that are affected by a MCLR Reset.				
Statu	s Affected:	All	All				
Enco	ding:	0000	0000	1111		1111	
Desc	ription:	-	This instruction provides a way to execute a MCLR Reset in software.				
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	8		Q4	
	Decode	Start	No			No	
		reset	operat	ion	ор	eration	

Example:

•	Instri	iction	

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

RESET

Example: HERE RCALL Jump

operation

operation

operation

Before Instruction

operation

PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2)

SUBWFB	Subtrac	t W from f	with Borr	ow			
Syntax:	SUBWF	3 f {,d {,a]	-}				
Operands:	$0 \le f \le 25$	55					
	d ∈ [0,1] a ∈ [0,1]						
Operation:		$-(\overline{C}) \rightarrow de$	et				
Operation:		. ,	รเ				
Status Affected:	N, OV, C	1		6666			
Encoding:	0101	Subtract W and the Carry flag (borrow)					
Description:	from regi method). in W. If 'c	from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					
	lf 'a' is '1	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.					
	set is en in Indexe mode wh Section Bit-Orie	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q		Q4			
Decode	Read register "	f' Dat		Vrite to stination			
Example 1:	SUBWF			Stination			
Before Instruc			2, 0				
REG W C	= 19h = 0Dh = 1		1 1001) 0 1101)				
After Instruction	on						
REG W C	= 0Ch = 0Dh = 1		0 1011) 0 1101)				
Ž	= 0 = 0	: resu	It is positiv	/e			
Example 2:	0	,1000 B REG, 0		-			
Before Instruc		., o	-				
REG W C	= 1Bh = 1Ah = 0		1 1011) 1 1010)				
After Instruction REG W	on = 1Bh = 00h	(000	1 1011)				
C Z N	= 1 = 1 = 0	; resu	lt is zero				
Example 3:	SUBWF	B REG, I	l, O				
Before Instruc							
REG W C	= 03h = 0Eh = 1		0 0011) 0 1101)				
After Instruction							
REG	= F5h		1 0100) comp]				
W	= 0Eh		0 1101)				
C Z N	= 0 = 0 = 1	; resu	lt is negat	ive			

SWAPF	Swap f				
Syntax:	SWAPF f	[,d {,a}}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	$(f<3:0>) \rightarrow$ $(f<7:4>) \rightarrow$				
Status Affected:	None				
Encoding:	0011	10da ff	ff ffff		
Description:	'f' are excha	anged. If 'd' is W. If 'd' is '1',	oles of register '0', the result the result is		
		If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
Example:		EG, 1, 0			
Before Instruction REG = 53h After Instruction					
REG	= 35h				

29.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Liter	Add Literal to FSR					
Synta	ax:	ADDFSR	ADDFSR f, k					
$Operands: \qquad 0 \le k \le 63$								
		f ∈ [0, 1,	2]					
Oper	ation:	FSR(f) + k	$s \rightarrow FSR($	f)				
Statu	s Affected:	None						
Enco	ding:	1110	1000	ffkk	kkkk			
Desc	ription:	The 6-bit	The 6-bit literal 'k' is added to the					
		contents of	contents of the FSR specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proces	ss \	Write to			
		literal 'k'	Data		FSR			

Example: ADDFSR 2, 23h

Before Instruction						
FSR2	=	03FFh				
After Instruct						
FSR2	=	0422h				

ADD	ULNK	Add Liter	Add Literal to FSR2 and Return				
Synta	ax:	ADDULN	ADDULNK k				
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$				
Oper	ation:	FSR2 + k	\rightarrow FSR2,				
		$(TOS) \rightarrow I$	PC				
Statu	s Affected:	None					
Enco	ding:	1110	1000	11kk	kkkk		
Description: The 6-bit literal 'k' is a contents of FSR2. A secured by loading to TOS.					JRN is then		
		execute; a	The instruction takes two cycles to execute; a NOP is performed during the second cycle.				
		case of the where f =	This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.				
Word	ls:	1					
Cycle	es:	2					
QC	vcle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Proces Data		Write to FSR		
	No	No	No		No		
	Operation	Operation	Operati	on	Operation		
<u>Exan</u>	nple:	ADDULNK 2	23h				

imple:	AI	DULNK	2				
Before Instrue	ction						
FSR2	=	03FFh					
PC	=	0100h					
After Instruction							
FSR2	=	0422h					
PC	=	(TOS)					

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

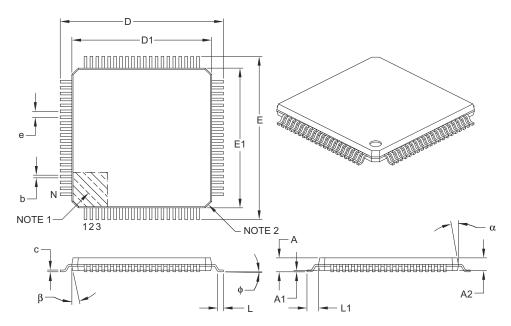
31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

	7K22 Family strial/Extended)	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Device	Тур	Тур Мах	Units	Conditions		
	Supply Current (IDD) Cont.	(2,3)					
	All devices	42	73	μA	-40°C		
		42	73	μA	+25°C	VDD = 1.8V ⁽⁴⁾	
		43	74	μA	+85°C	Regulator Disabled	
		53	100	μA	+125°C		Fosc = 1 MHz (PRI_IDLE mode, EC oscillator)
	All devices	110	190	μA	-40°C	VDD = 3.3V ⁽⁴⁾	
		110	195	μA	+25°C		
		110	195	μA	+85°C	Regulator Disabled	
		130	250	μA	+125°C		
	All devices	280	450	μA	-40°C		
		290	440	μA	+25°C	VDD = 5V ⁽⁵⁾	
		300	460	μA	+85°C	Regulator Enabled	
		330	500	μA	+125°C		
	All devices	160	360	μA	-40°C		Fosc = 4 MHz (PRI_IDLE mode, EC oscillator)
		160	360	μA	+25°C	VDD = 1.8V ⁽⁴⁾	
		170	370	μA	+85°C	Regulator Disabled	
		200	400	μA	+125°C		
	All devices	330	650	μA	-40°C		
		340	660	μA	+25°C	VDD = 3.3V ⁽⁴⁾	
		340	660	μA	+85°C	Regulator Disabled	
		370	700	μA	+125°C		,
	All devices	510	900	μA	-40°C		
		520	950	μA	+25°C	VDD = 5V ⁽⁵⁾	
		540	990	μA	+85°C	Regulator Enabled	
		600	1200	μA	+125°C		
	All devices	4.7	9	mA	-40°C		Fosc = 64 MHz (PRI_IDLE mode, EC oscillator)
		4.8	9	mA	+25°C	$VDD = 3.3V^{(4)}$	
		4.8	10	mA	+85°C	Regulator Disabled	
		5.2	12	mA	+125°C ⁽⁶⁾		
	All devices	5.1	11	mA	-40°C		
		5.1	11	mA	+25°C	VDD = 5V ⁽⁵⁾	
		5.2	12	mA	+85°C	Regulator Enabled	
		5.7	14	mA	+125°C (6)		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:


OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: 48 MHz, maximum frequency at +125°C.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	80			
Lead Pitch	e	0.50 BSC			
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E	14.00 BSC			
Overall Length	D	14.00 BSC			
Molded Package Width	E1	12.00 BSC			
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B