

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k22-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC18F8XK22 PINOUT I/O DESCRIPTIONS

Din Nome	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
	9			Master Clear (input) or programming voltage (input).
MCLR/RG5				
RG5		I	ST	This pin is an active-low Reset to the device.
MCLR		I	ST	General purpose, input only pin.
OSC1/CLKI/RA7	49			Oscillator crystal or external clock input.
OSC1		I	CMOS	Oscillator crystal input.
CLKI		I	CMOS	External clock source input. Always associated
				with pin function, OSC1. (See related OSC1/CLKI,
				OSC2/CLKO pins.)
RA7		I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6	50			Oscillator crystal or clock output.
OSC2		0	_	Oscillator crystal output. Connects to crystal or
				resonator in Crystal Oscillator mode.
CLKO		0	_	In certain oscillator modes, OSC2 pin outputs CLKO,
				which has 1/4 the frequency of OSC1 and denotes the
				instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL com	patible input			CMOS = CMOS compatible input or output
ST = Schmitt T	rigger input wit	h CMC	OS levels	Analog = Analog input

- = Input 1
- Ρ = Power
- $I^2C = I^2C^{\text{TM}}/\text{SMBus}$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

- 2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.
- 3: Not available on PIC18F65K22 and PIC18F85K22 devices.
- 4: PSP is available only in Microcontroller mode.
- 5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

0

OD

= Output

= Open-Drain (no P diode to VDD)

Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST (Parameter 39, Table 31-13).

If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the HFIOFS or MFIOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the HFIOFS or MFIOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The LF-INTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping, quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter is incremented on every Q1, with the instruction fetched from the program memory and latched into the Instruction Register (IR) during Q4.

The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-4.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction (such as GOTO) causes the Program Counter to change, two cycles are required to complete the instruction. (See Example 6-3.)

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 6-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	Tcy2	TCY3	TcY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1		_		
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (1	Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addres	ss SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed, one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, the TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	BCF	EECON1, CFGS	;	point to Flash program memory
	BSF	EECON1, EEPGD	;	access Flash program memory
	MOVLW	CODE ADDR UPPER	;	Load TBLPTR with the base
	MOVWE	TBI.PTRII	;	address of the word
	MOVIW	CODE ADDE HIGH		
	MOVWE	TRIDTRU		
	140 V W1			
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+	F	;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+	+	;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVF	WORD_ODD		

7.5 Writing to Flash Program Memory

The programming blocks are:

- PIC18FX5K22 and PIC18FX6K22 32 words or 64 bytes
- PIC18FX7K22 64 words or 128 bytes

Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. The number of holding registers used for programming by the table writes are:

- PIC18FX5K22 and PIC18FX6K22 64
- PIC18FX7K22 128

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 or 128 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write is terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets, and after write operations, is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 or 128 holding registers before executing a write operation.

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0				
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD				
bit 7	I						bit 0				
Legend:		S = Settable b	it								
R = Readabl	le bit	W = Writable I	W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 7	EEPGD: Flas	h Program or D	ata EEPROI	M Memory Seleo	ct bit						
	1 = Access F 0 = Access d	lash program m ata EEPROM m	emory emory								
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	elect bit						
	1 = Access C	onfiguration reg	jisters								
	0 = Access F	lash program o	data EEPR	OM memory							
bit 5	Unimplemen	ted: Read as '0)'								
bit 4	FREE: Flash	Row Erase Ena	able bit								
	1 = Erase the	e program men	nory row add	Iressed by TBLI	PTR on the ne	ext WR comma	nd (cleared by				
	0 = Perform	write-only	ration)								
bit 3	WRERR: Flas	sh Program/Dat	a EEPROM	Error Flag bit ⁽¹⁾							
	1 = A write o	peration is pren	naturely term	ninated (any Res	set during self-	timed program	ming in normal				
	operatior	n or an imprope	r write attem	pt)							
h # 0				<i>l</i> rita Enabla bit							
DILZ	1 = Allows w	rite cycles to El	EEPROIVI W	/nte Enable bit /data EEPROM							
	0 = Inhibits v	vrite cycles to F	lash program	n/data EEPROM							
bit 1	WR: Write Co	ontrol bit									
	1 = Initiates a (The ope	a data EEPRON eration is self-tin	l erase/write ned and the l	cycle, or a progr bit is cleared by	am memory er hardware onc	ase cycle or wr e the write is co	ite cycle omplete.				
	I he WR	bit can only be	set (not clea	red) in software.)						
bit 0	RD: Read Co	ontrol bit		ete							
2	1 = Initiates	an EEPROM re	ad								
	(Read ta	kes one cycle.	RD is cleare	d in hardware.	The RD bit ca	n only be set (not cleared) in				
	software	. The RD bit car t initiate an FFF	not be set w ROM read	/hen EEPGD = :	1 or CFGS = 1)					

REGISTER 9-1: EECON1: DATA EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

11.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are six Peripheral Interrupt Request (Flag) registers (PIR1 through PIR6).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 11-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit
	 1 = A read or write operation has taken place (must be cleared in software) 0 = No read or write operation has occurred
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = An A/D conversion completed (must be cleared in software)0 = The A/D conversion is not complete
bit 5	RC1IF: EUSART Receive Interrupt Flag bit
	 1 = The EUSART receive buffer, RCREG1, is full (cleared when RCREG1 is read) 0 = The EUSART receive buffer is empty
bit 4	TX1IF: EUSART Transmit Interrupt Flag bit
	 1 = The EUSART transmit buffer, TXREG1, is empty (cleared when TXREG1 is written) 0 = The EUSART transmit buffer is full
bit 3	SSP1IF: Master Synchronous Serial Port Interrupt Flag bit
	1 = The transmission/reception is complete (must be cleared in software)0 = Waiting to transmit/receive
bit 2	TMR1GIF: Timer1 Gate Interrupt Flag bit
	1 = Timer gate interrupt occurred (must be cleared in software)0 = No timer gate interrupt occurred
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	1 = TMR2 to PR2 match occurred (must be cleared in software)0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)
	0 = IMR1 register did not overtiow

REGISTER 11-7: PIR4: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP10IF ⁽¹⁾	CCP9IF ⁽¹⁾	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-1 bit 0	CCP<10:4>IF: CCP<10:4> Interrupt Flag bits ⁽¹⁾ <u>Capture Mode:</u> 1 = A TMR register capture occurred (must be cleared in software) 0 = No TMR register capture occurred <u>Compare Mode:</u> 1 = A TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred <u>PWM Mode:</u> Not used in PWM mode. CCP3IF: ECCP3 Interrupt Flag bit <u>Capture Mode:</u> 1 = A TMR register capture occurred (must be cleared in software) 0 = No TMR register capture occurred (must be cleared in software) 0 = No TMR register capture occurred (must be cleared in software) 1 = A TMR register capture occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software) 0 = No TMR register compare match occurred (must be cleared in software)						

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RF6/AN11/C1INA	RF6	0	0	DIG	LATF<6> data output; not affected by analog input.
		1	I	ST	PORTF<6> data input; disabled when analog input is enabled.
	AN11	1	I	ANA	A/D Input Channel 11 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
	C1INA	1	I	ANA	Comparator 1 Input A.
RF7/AN5/SS1	RF7	0	0	DIG	LATF<7> data output; not affected by analog input.
		1	I	ST	PORTF<7> data input; disabled when analog input is enabled.
	AN5	1	Ι	ANA	A/D Input Channel 5. Default configuration on POR.
	SS1	1	I	TTL	Slave select input for MSSP module.

TABLE 12-11: PORTF FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 12-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	—
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	—
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	_
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
ANCON1	ANSEL15	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTF.

12.8 PORTG, TRISG and LATG Registers

PORTG is a 5-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISG and LATG.

PORTG is multiplexed with the AUSART and CCP, ECCP, Analog, Comparator, RTCC and Timer input functions (Table 12-13). When operating as I/O, all PORTG pins have Schmitt Trigger input buffers. The open-drain functionality for the CCPx and UART can be configured using ODCONx.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTG pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register without concern due to peripheral overrides.

EXAMPLE 12-7: INITIALIZING PORTG

CLRF	PORTG		;	Initialize PORTG by
			;	clearing output
			;	data latches
BCF	CM1CON,	CON	;	disable
			;	comparator 1
CLRF	LATG		;	Alternate method
			;	to clear output
			;	data latches
BANKSEL	ANCON2		;	Select bank with ACON2 register
MOVLW	0F0h		;	make AN16 to AN19
			;	digital
MOVWF	ANCON2			
BANKSEL	TRISG		;	Select bank with TRISG register
MOVLW	04h		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISG		;	Set RG1:RG0 as
			;	outputs
			;	RG2 as input
			;	RG4:RG3 as inputs

TABLE 12-13: PORTG FUNCTIONS

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RG0/ECCP3/	RG0	0	0	DIG	LATG<0> data output.
P3A		1	Ι	ST	PORTG<0> data input.
	ECCP3	0	0	DIG	ECCP3 compare output and ECCP3 PWM output; takes priority over port data.
		1	Ι	ST	ECCP3 capture input.
	P3A 0 0				ECCP3 PWM Output A. May be configured for tri-state during Enhanced PWM shutdown events.
RG1/TX2/CK2/	RG1	0	0	DIG	LATG<1> data output.
AN19/C3OUT		1	Ι	ST	PORTG<1> data input.
	TX2	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
	CK2	1	0	DIG	Synchronous serial data input (EUSART module); user must configure as an input.
		1		ST	Synchronous serial clock input (EUSART module).
	AN19	1	Ι	ANA	A/D Input Channel 19. Default input configuration on POR. Does not affect digital output.
	C3OUT	х	0	DIG	Comparator 3 output.

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

REGISTER 12-5: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IBF	OBF	IBOV	PSPMODE	_	—	_	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7	IBF: Input But	ffer Full Status	bit				
	1 = A word ha	as been receive	ed and is waiti	ng to be read l	by the CPU		
	0 = No word h	nas been recei	ved				
bit 6	OBF: Output	Buffer Full Sta	tus bit				
	1 = The output	It buffer still ho	lds a previous	ly written word	1		
			Butautit				
bit 5	IBOV: Input B	utter Overflow	Detect bit				
	1 = A write oc 0 = No overflo	curred when a	previously inp	but word had h	iot been read (m	nust be cleared	in software)
hit 4		Parallel Slave F	Port Mode Sele	ect hit			
	1 = Parallel S	lave Port mod					
	0 = General P	Purpose I/O mo	ode				
bit 3-0	Unimplement	ted: Read as '	0'				
FIGURE 12-4	: PARAI			TE WAVEFO	RMS		

16.1 Timer3/5/7 Gate Control Register

The Timer3/5/7 Gate Control register (TxGCON), provided in Register 14-2, is used to control the Timerx gate.

REGISTER 16-2: TXGCON: TIMERX GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/TxDONE	TxGVAL	TxGSS1	TxGSS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	TMRxGE: Timerx Gate Enable bit
	<u>If TMRxON = 0:</u>
	This bit is ignored.
	<u>If TMRxON = 1:</u>
	1 = Timerx counting is controlled by the Timerx gate function
	0 = Timerx counts regardless of Timerx gate function
bit 6	TxGPOL: Timerx Gate Polarity bit
	 1 = Timerx gate is active-high (Timerx counts when gate is high) 0 = Timerx gate is active-low (Timerx counts when gate is low)
bit 5	TxGTM: Timerx Gate Toggle Mode bit
	1 = Timerx Gate Toggle mode is enabled.
	0 = Timerx Gate Toggle mode is disabled and toggle flip-flop is cleared
	Timerx gate flip-flop toggles on every rising edge.
bit 4	TxGSPM: Timerx Gate Single Pulse Mode bit
	 1 = Timerx Gate Single Pulse mode is enabled and is controlling Timerx gate 0 = Timerx Gate Single Pulse mode is disabled
bit 3	TxGGO/TxDONE: Timerx Gate Single Pulse Acquisition Status bit
	1 = Timerx gate single pulse acquisition is ready, waiting for an edge
	0 = Timerx gate single pulse acquisition has completed or has not been started
	This bit is automatically cleared when TxGSPM is cleared.
bit 2	TxGVAL: Timerx Gate Current State bit
	Indicates the current state of the Timerx gate that could be provided to TMRxH:TMRxL. Unaffected by the Timerx Gate Enable (TMRxGE) bit.
bit 1-0	TxGSS<1:0>: Timerx Gate Source Select bits
	11 = Comparator 2 output
	10 = Comparator 1 output
	01 = TMR(x+1) to match PR(x+1) output ⁽²⁾
	00 = Timer I gate pin The Watchdog Timer oscillator is turned on if TMRxGE = 1, regardless of the state of TMRxON
Note 1:	Programming the TXGCON prior to TXCON is recommended

2: Timer(x+1) will be Timer4/6/8 for Timerx (Timer3/5/7), respectively.

18.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

The key features of the Real-Time Clock and Calendar (RTCC) module are:

- · Time: hours, minutes and seconds
- Twenty-four hour format (military time)
- Calendar: weekday, date, month and year
- · Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended period with minimum to no intervention from the CPU. The module is optimized for low-power usage in order to provide extended battery life while keeping track of time.

The module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

Hours are measured in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 18-1: RTCC BLOCK DIAGRAM

REGISTER 23-10: ANCON2: A/D PORT CONFIGURATION REGISTER 2

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSEL23 ⁽¹⁾	ANSEL22 ⁽¹⁾	ANSEL21 ⁽¹⁾	ANSEL20 ⁽¹⁾	ANSEL19	ANSEL18	ANSEL17	ANSEL16
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ANSEL<23:16>: Analog Port Configuration bits (AN23 through AN16)⁽¹⁾

- 1 = Pin is configured as an analog channel; digital input is disabled and any inputs read as '0'
 0 = Pin is configured as a digital port
- **Note 1:** AN15 through AN12 and AN23 through AN20 are implemented only on 80-pin devices. For 64-pin devices, the corresponding ANSELx bits are still implemented for these channels, but have no effect.

The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVSS) or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF- pins. VREF+ has two additional Internal Reference Voltage selections: 2.048V and 4.096V.

The A/D Converter can uniquely operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D Converter's internal RC oscillator.

The output of the Sample-and-Hold (S/H) is the input into the converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF (PIR1<6>), is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset. These registers will contain unknown data after a Power-on Reset.

The block diagram of the A/D module is shown in Figure 23-4.

IORL	W	Inclusive	OR Litera	al with	W			
Synta	ax:	IORLW k	IORLW k					
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$					
Oper	ation:	(W) .OR. k	$x \rightarrow W$					
Statu	s Affected:	N, Z						
Enco	oding:	0000	1001	kkk	k	kkkk		
Desc	cription:	The conter eight-bit lit in W.	nts of W a eral 'k'. Tl	are OR ne resi	ed v ult is	vith the placed		
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	}		Q4		
	Decode	Read literal 'k'	Proce Data	ess a	N	/rite to W		
Example:		IORLW	35h					
	Before Instruc	tion						

IORWF	Inclusive C	DR W wi	th f	
Syntax:	IORWF f	{,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	(W) .OR. (f)	$) \rightarrow \text{dest}$		
Status Affected:	N, Z			
Encoding:	0001	00da	ffff	ffff
Description: Inclusive OR W with register 'f'. If '0', the result is placed in W. If 'd' the result is placed back in register				
	lf 'a' is '0', ti If 'a' is '1', ti GPR bank.	he Acces he BSR i	ss Bank is is used to	selected. select the
	If 'a' is '0' and the extended in set is enabled, this instruction in Indexed Literal Offset Addre mode whenever f ≤ 95 (5Fh). Section 29.2.3 "Byte-Oriented Bit-Oriented Instructions in			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Proce Data	ess V a des	Vrite to stination
Example:	IORWF RI	ESULT,	0, 1	

201010 1110010		
W	=	9Ah
After Instruct	tion	
W	=	BFh

mpie.	10	RMF.
Before Instruc	tion	
RESULT	=	13h
W	=	91h
After Instruction	n	
RESULT	=	13h
W	=	93h

MULLW	Multiply Li	teral with W			MULWF	Multiply W w	ith f	
Syntax:	MULLW	k			Syntax:	MULWF f {	,a}	
Operands:	$0 \le k \le 255$	i			Operands:	$0 \le f \le 255$		
Operation:	(W) x k \rightarrow PRODH:PRODL					a ∈ [0,1]		
Status Affected:	None				Operation:	$(W) x (f) \to P$	RODH:PRODL	-
Encoding:	0000	1101 kk	kk kkkk		Status Affected:	None		
Description:	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected.				Encoding: Description:	0000 001a ffff ffff An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged.		
						None of the Status flags are affected.		
Note that neither Overflow nor Ca possible in this operation. A Zero r is possible but not detected.		w nor Carry is . A Zero result ed.	nor Carry is . Zero result I.		Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.			
Words:	1					If 'a' is '0' the	Access Bank	is selected. If
Cycles: Q Cycle Activity:	1					'a' is '1', the E GPR bank.	SR is used to	select the
Q1	Q2	Q3	Q4			If 'a' is '0' and	the extended	instruction set
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL			is enabled, th Indexed Litera whenever f ≤ Section 29.2 Bit-Oriented Literal Offset	is instruction o al Offset Addre 95 (5Fh). See 3 "Byte-Orier Instructions i t Mode" for de	perates in essing mode nted and in Indexed etails.
Example:	MULLW	0C4h			Words:	1		
Before Instruct	ion = E2	Ph			Cycles:	1		
PRODH	= ?				Q Cycle Activity:			
After Instruction	1 = ?				Q1	Q2	Q3	Q4
W PRODH PRODL	= E2 = AE = 08	²h Dh h			Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL
					Example:	MULWF	REG, 1	

 mple:
 MULWF
 RE

 Before Instruction
 W
 =
 C4h

 REG
 =
 B5h

 PRODH
 =
 ?

 PRODL
 =
 ?

 After Instruction
 W
 =
 C4h

 REG
 =
 B5h

 PRODH
 =
 2

 After Instruction
 W
 =
 C4h

 REG
 =
 B5h

 PRODH
 =
 8Ah

 PRODL
 =
 94h

29.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F87K22 family of devices also provides an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are enabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 29-3. Detailed descriptions are provided in **Section 29.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 29-1 (page 432) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

29.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 29.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		return						

TABLE 29-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	_	_	12	bit	$\Delta V \text{REF} \ge 5.0 V$
A03	EIL	Integral Linearity Error	—	±1	±6.0	LSB	ΔVREF = 5.0V
A04	Edl	Differential Linearity Error	—	±1	+3.0/-1.0	LSB	ΔVREF = 5.0V
A06	EOFF	Offset Error	—	±1	±9.0	LSB	ΔVREF = 5.0V
A07	Egn	Gain Error	—	±1	±8.0	LSB	ΔVREF = 5.0V
A10	_	Monotonicity ⁽¹⁾	—	—	—	—	$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	—	Vdd - Vss	V	
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	VDD - 3.0V	V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	_	—	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	—	_	5 150	μΑ μΑ	During VAIN acquisition During A/D conversion cycle

TABLE 31-27: A/D CONVERTER CHARACTERISTICS: PIC18F87K22 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result doesn't decrease with an increase in the input voltage.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF- pin or VSs, whichever is selected as the VREFL source.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	Ν	64				
Pitch	е	0.50 BSC				
Overall Height	A	0.80	0.80 0.90			
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	9.00 BSC				
Exposed Pad Width	E2	7.05	7.15	7.50		
Overall Length	D	9.00 BSC				
Exposed Pad Length	D2	7.05	7.15	7.50		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2