

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k22-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode provides controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. To maintain software compatibility with future devices, it is recommended that SCS0 also be cleared, though its value is ignored. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC/MFIOSEL bit is set, the INTOSC output is enabled. The HFIOFS/MFIOFS bits become set, after the INTOSC output becomes stable, after an interval of TIOBST (Parameter 38, Table 31-13). (For information on the HFIOFS/MFIOFS bits, see Table 4-3.)

Clocks to the peripherals continue while the INTOSC source stabilizes. The HFIOFS/MFIOFS bits will remain set if the IRCF bits were previously at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the HFIOFS/MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD (Parameter 38, Table 31-13) following the wake event, the CPU begins executing code clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what this mode does not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals.

PIC18F87K22 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- Peripheral Enable bit, generically named XXXEN Located in the respective module's main control register
- Peripheral Module Disable (PMD) bit, generically named, XXXMD – Located in one of the PMDx Control registers (PMD0, PMD1, PMD2 or PMD3)

Disabling a module by clearing its XXXEN bit disables the module's functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as the second approach.

Most peripheral modules have an enable bit.

In contrast, setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral are also disabled, so writes to those registers have no effect and read values are invalid. Many peripheral modules have a corresponding PMD bit.

There are four PMD registers in the PIC18F87K22 family devices: PMD0, PMD1, PMD2 and PMD3. These registers have bits associated with each module for disabling or enabling a particular peripheral.

7.5 Writing to Flash Program Memory

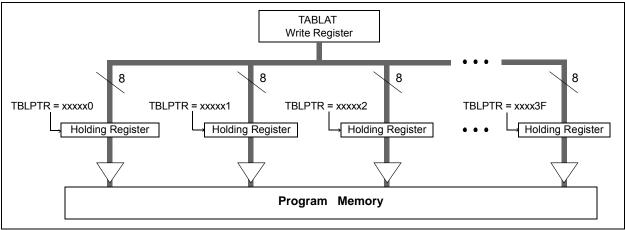
The programming blocks are:

- PIC18FX5K22 and PIC18FX6K22 32 words or 64 bytes
- PIC18FX7K22 64 words or 128 bytes

Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. The number of holding registers used for programming by the table writes are:

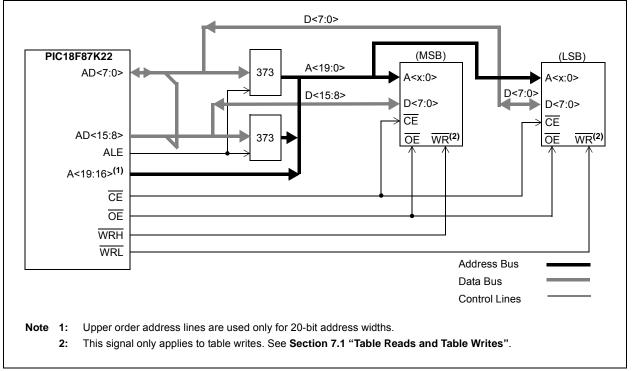
- PIC18FX5K22 and PIC18FX6K22 64
- PIC18FX7K22 128


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 or 128 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write is terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets, and after write operations, is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 or 128 holding registers before executing a write operation.



8.6.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F87K22 family devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories. During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.

REGISTER 11-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7	1 = High prio	,	upt Priority bit				
bit 6	0 = Low prior INT1IP: INT1 1 = High prio 0 = Low prior	External Interr	upt Priority bit				
bit 5	INT3IE: INT3 1 = Enables 1	External Interr the INT3 exterr the INT3 exter	nal interrupt				
bit 4	1 = Enables	External Interr the INT2 exterr the INT2 exter	nal interrupt				
bit 3	1 = Enables	External Interr the INT1 exterr the INT1 exter	nal interrupt				
bit 2	1 = The INT3	External Interr external interr external interr	upt occurred (must be cleared	d in software)		
bit 1	INT2IF: INT2 1 = The INT2	External Interr	upt Flag bit upt occurred (must be cleared	d in software)		
bit 0	INT1IF: INT1 1 = The INT1	External Interr	upt Flag bit upt occurred (must be cleared	d in software)		
	Interrupt flag bits enable bit or the 0 are clear prior to	Global Interrupt	Enable bit. Us	ser software sho	ould ensure the	appropriate int	

REGISTER 11-11: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	—	SSP2IE	BCL2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc 1 = Enabled 0 = Disabled	sillator Fail Inter	rupt Enable bi	t			
bit 6	Unimplemen	ted: Read as 'o	,				
bit 5	SSP2IE: Mas	ter Synchronou	s Serial Port 2	Interrupt Enab	le bit		
		the MSSP inter the MSSP inter					
bit 4	1 = Enables	Collision Interru the bus collision the bus collisio	interrupt				
bit 3	BCL1IE: Bus 1 = Enabled 0 = Disabled	Collision Interro	upt Enable bit				
bit 2	HLVDIE: High 1 = Enabled 0 = Disabled	n/Low-Voltage [etect Interrup	t Enable bit			
bit 1	TMR3IE: TM	R3 Overflow Inte	errupt Enable	bit			
	1 = Enabled 0 = Disabled						
bit 0	TMR3GIE: Tin 1 = Enabled 0 = Disabled	mer3 Gate Inter	rupt Enable b	it			

20.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2/4/6/8 will not increment and the state of the module will not change. If the ECCPx pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HF-INTOSC and the postscaler may not be immediately stable.

In PRI_IDLE mode, the primary clock will continue to clock the ECCPx module without change.

20.4.8.1 Operation with Fail-Safe Clock Monitor (FSCM)

If the Fail-Safe Clock Monitor (FSCM) is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit of the PIR2 register will be set. The ECCPx will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

20.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states. This forces the ECCP module to reset to a state compatible with previous, non-Enhanced CCP modules used on other PIC18 and PIC16 devices.

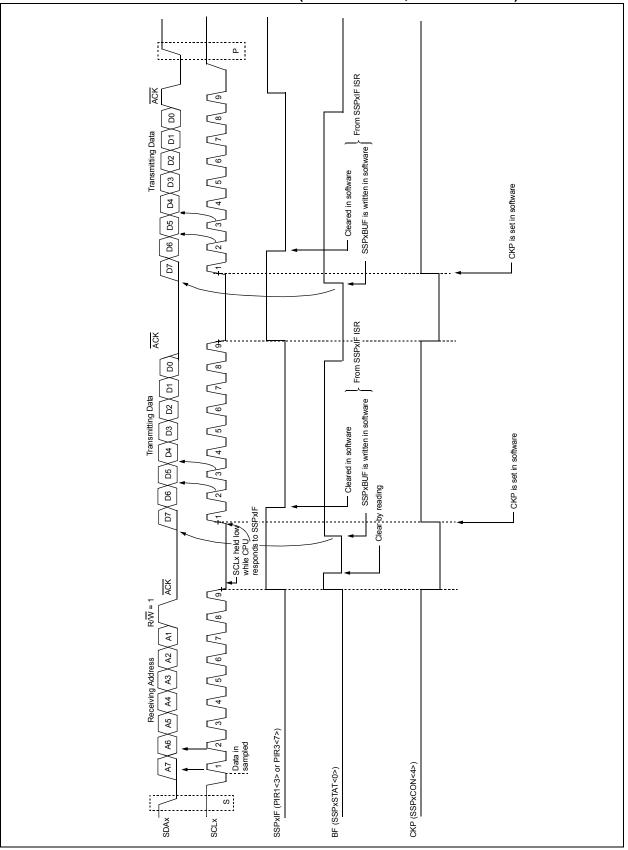
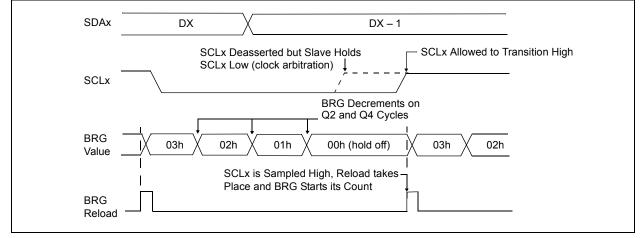

		2314/0/0/10/1	-					
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
PIR3	TMR5GIF	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIR4	CCP10IF ⁽¹⁾	CCP9IF ⁽¹⁾	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF
PIE3	TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
PIE4	CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
IPR3	TMR5GIP	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
IPR4	CCP10IP ⁽¹⁾	CCP9IP ⁽¹⁾	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0
TMR1H	Timer1 Register	High Byte						
TMR1L	Timer1 Register	Low Byte						
TMR2	Timer2 Register							
TMR3H	Timer3 Register	High Byte						
TMR3L	Timer3 Register	Low Byte						
TMR4	Timer4 Register							
TMR6	Timer6 Register							
TMR8	Timer8 Register							
TMR10 ⁽¹⁾	TMR10 Register	r						
TMR12 ⁽¹⁾	TMR10 Register	r						
PR2	Timer2 Period R	Register						
PR4	Timer4 Period R	Register						
PR6	Timer6 Period R	Register						
PR8	Timer8 Period R	Register						
PR10 ⁽¹⁾	Timer10 Period	Register						
PR12 ⁽¹⁾	Timer12 Period	Register						

TABLE 20-4: REGISTERS ASSOCIATED WITH ECCP1/2/3 MODULE AND TIMER1/2/3/4/6/8/10/12

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18F65K22 and PIC18F85K22).

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.



21.4.7.2 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCLx pin is actually sampled high. When the

SCLx pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 21-20).

EXAMPLE 22-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 10	6 MH	z, desired baud rate of 9600, Asynchronous mode, and 8-bit BRG:
Desired Baud Rate	=	Fosc/(64 ([SPBRGHx:SPBRGx] + 1))
Solving for SPBRGHx:	SPB1	RGx:
Х	=	((FOSC/Desired Baud Rate)/64) – 1
	=	((16000000/9600)/64) - 1
	=	[25.042] = 25
Calculated Baud Rate	=	1600000/(64 (25 + 1))
	=	9615
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
	=	(9615 - 9600)/9600 = 0.16%

TABLE 22-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
SPBRGH1	EUSART1 B	aud Rate Ge	nerator Regis	ster High Byte	;			
SPBRG1	EUSART1 B	aud Rate Ge	nerator Regis	ster				
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16		WUE	ABDEN
SPBRGH2	EUSART2 B	aud Rate Ge	nerator Regis	ster High Byte	;			
SPBRG2	EUSART2 B	aud Rate Ge	nerator Regis	ster				
PMD0	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD
Lonondi –	unimplement					2		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

					SYNC	= 0, BRGH	l = 0, BRG	616 = 0				
BAUD	Fosc	= 40.000) MHz	Fosc	= 20.000	0 MHz	Fosc	: = 10.000) MHz	Fos	c = 8.000	MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_	_			_				_		_	
1.2	—	_	_	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_

TABI E 22-3	BAUD RATES FOR ASYNCHRONOUS MODES
IADLL 22-J.	

			S	YNC = 0, E	BRGH = (, BRG16 =	0		
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	—
9.6	8.929	-6.99	6	—	_	_	_	_	_
19.2	20.833	8.51	2	—	_	_	—	_	_
57.6	62.500	8.51	0	—	_	_	—	_	_
115.2	62.500	-45.75	0	_		_	_		—

					SYNC	= 0, BRGH	i = 1, BRG	i 16 = 0				
BAUD RATE	Fosc	= 40.000) MHz	Fosc	= 20.000	0 MHz	Fosc	= 10.000) MHz	Fos	c = 8.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	—	_	_	_	_	_	_	_	_	_	_	_
1.2	—	—	—	—	—	—	—		—	—	—	—
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

			S	YNC = 0, E	BRGH = 1	L, BRG16 =	0		
BAUD RATE	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_		_		_	_	0.300	-0.16	207
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_
19.2	19.231	0.16	12	_	_	_	_	_	_
57.6	62.500	8.51	3	—	_	_	—	_	_
115.2	125.000	8.51	1		_	—	_	_	—

 $\ensuremath{\textcircled{}^{\circ}}$ 2009-2011 Microchip Technology Inc.

22.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTAx<5>), or the Continuous Receive Enable bit, CREN (RCSTAx<4>). Data is sampled on the RXx pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RCxIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCxIE, was set.
- 8. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREGx register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 22-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

	bit 7	×:	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		RC7/RX1/DT1 — Pin
	1 1 1	:	Ŀ÷Ĺ		÷∟						RC6/TX1/CK1 1 (TXCKP = 0)
											RC6/TX1/CK1 n (TXCKP = 1)
	1 1 1 1	1 1 1			• • •				1 1 1		Write to bit, SREN
	<u> </u>							:	i		SREN bit
'0	i									· ·	CREN bit
	÷			1 1 1	1 1 1			1 1 1	י י <u>י</u>		RC1IF bit (Interrupt)——
╧	i	•	1		<u> </u>					· ·	Read RCREG1 —

Note: Timing diagram demonstrates Sync Master mode with bit, SREN = 1, and bit, BRGH = 0. This example is equally applicable to EUSART2 (RG1/TX2/CK2/AN19/C3OUT and RG2/RX2/DT2/AN18/C3INA).

REGISTER 23-10: ANCON2: A/D PORT CONFIGURATION REGISTER 2

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSEL23 ⁽¹⁾	ANSEL22 ⁽¹⁾	ANSEL21 ⁽¹⁾	ANSEL20 ⁽¹⁾	ANSEL19	ANSEL18	ANSEL17	ANSEL16
bit 7							bit 0
Leaend:							

Legenu.							
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-0 ANSEL<23:16>: Analog Port Configuration bits (AN23 through AN16)⁽¹⁾

- 1 = Pin is configured as an analog channel; digital input is disabled and any inputs read as '0'
 0 = Pin is configured as a digital port
- **Note 1:** AN15 through AN12 and AN23 through AN20 are implemented only on 80-pin devices. For 64-pin devices, the corresponding ANSELx bits are still implemented for these channels, but have no effect.

The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVSS) or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF- pins. VREF+ has two additional Internal Reference Voltage selections: 2.048V and 4.096V.

The A/D Converter can uniquely operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D Converter's internal RC oscillator.

The output of the Sample-and-Hold (S/H) is the input into the converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF (PIR1<6>), is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset. These registers will contain unknown data after a Power-on Reset.

The block diagram of the A/D module is shown in Figure 23-4.

26.2 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

Note: Before changing any module settings (VDIRMAG, LVDL<3:0>), first disable the module (LVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

26.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter D022B (Table 31-13).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

26.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification Parameter 37 (Section 31.0 "Electrical Characteristics"), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 37 (Table 31-13).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 26-2 or Figure 26-3).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	DAM 0	R/W-0					
		_	1		-	R/W-0	-					
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0					
bit 7							bit 0					
Legend:												
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7-2	ITRIM<5:0>:	Current Source	e Trim bits									
	011111 = M a	011111 = Maximum positive change from nominal current										
	011110											
	000001 = Minimum positive change from nominal current											
	000000 = Nominal current output specified by IRNG<1:0>											
	111111 = Minimum negative change from nominal current											
	100001 = Maximum negative change from nominal current											
bit 1-0		IRNG<1:0>: Current Source Range Select bits										
	11 = 100 x Ba											
	10 = 10 x Bas											
	01 = Base Cl	01 = Base Current Level (0.55 μA nominal)										

REGISTER 27-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

00 = Current Source Disabled

28.2.1 CONTROL REGISTER

Register 28-16 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT Enable Configuration bit, but only if the Configuration bit has disabled the WDT.

REGISTER 28-16: WDTCON: WATCHDOG TIMER CONTROL REGISTER

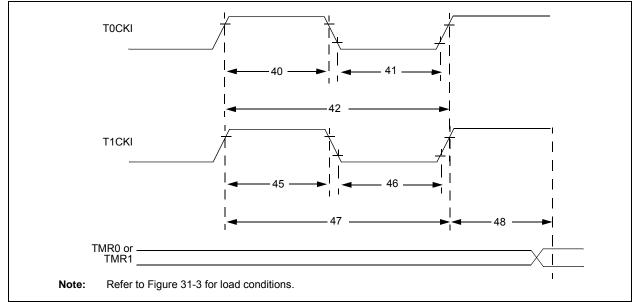
R/W-0	U-0	R-x	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
REGSLP		ULPLVL	SRETEN ⁽²⁾	_	ULPEN	ULPSINK	SWDTEN ⁽¹⁾			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is se	t	ʻ0' = Bit is cl	eared	x = Bit is unk	nown			
bit 7		Regulator Voltag tor goes into Lov	-		s Sloop modo i	anablad				
		tor stays in norm								
bit 6	Unimpleme	ented: Read as	'0'		-					
bit 5	ULPLVL: U	Itra Low-Power	Wake-up Outp	ut bit						
	Not valid ur	less ULPEN = 1	L.							
		e on RA0 pin > ~								
	•	e on RA0 pin < ~		(2)						
bit 4	SRETEN: Regulator Voltage Sleep Disable bit ⁽²⁾ 1 = If RETEN (CONFIG1L<0>) = 0 and the regulator is enabled, the device goes into Ultra Low-Power									
		EN (CONFIG1L< n Sleep	(0>) = 0 and the	e regulator is e	enabled, the dev	rice goes into U	ltra Low-Powe			
		gulator is on w	hen the device	e's Sleep mo	de is enabled	and the Low-F	ower mode is			
		led by REGSLP								
bit 3	Unimpleme	ented: Read as	ʻ0'							
bit 2	ULPEN: UI	tra Low-Power V	Vake-up Modul	e Enable bit						
		ow-Power Wake ow-Power Wake			LVL bit indicate	s the comparat	or output			
bit 1	ULPSINK:	Ultra Low-Powe	r Wake-up Cur	rent Sink Ena	ble bit					
	Not valid ur	less ULPEN = 1	L.							
		ow-Power Wake ow-Power Wake								
bit 0	SWDTEN: S	Software Contro	lled Watchdog	Timer Enable	e bit ⁽¹⁾					
		og Timer is on								
	0 = Watchd	og Timer is off								
Note 1. T	his hit has no o	ffect if the Confi	guration bits. M		are enabled					

Note 1: This bit has no effect if the Configuration bits, WDTEN<1:0>, are enabled.

2: This bit is available only when ENVREG = 1 and $\overline{\text{RETEN}}$ = 0.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
WDTCON	REGSLP		ULPLVL	SRETEN		ULPEN	ULPSINK	SWDTEN

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.


ADDWFC	ADD W an	ADD W and Carry bit to f						
Syntax:	ADDWFC	f {,d {,	a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]						
Operation:	(W) + (f) +	$(W) + (f) + (C) \rightarrow dest$						
Status Affected:	N,OV, C, D	C, Z						
Encoding:	0010	00da	ffff	ffff				
Description:	location 'f' placed in V	Add W, the Carry flag and data memory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.						
	lf 'a' is '1', t	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.						
	If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente Literal Off	led, this i Literal O never f ≤ 0.2.3 "By ed Instru	nstruction ffset Addr 95 (5Fh). te-Orient ctions in	operates essing See ed and Indexed				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proce Data		Vrite to stination				
Example:	ADDWFC	REG,	0, 1					
Before Instruc Carry bit REG W After Instructio Carry bit REG W	= 1 = 02h = 4Dh							

ANDLW	AND Litera	AND Literal with W						
Syntax:	ANDLW	k						
Operands:	$0 \le k \le 255$							
Operation:	(W) .AND.	$k \rightarrow W$						
Status Affected:	N, Z							
Encoding:	0000	1011	kkk	k	kkkk			
Description:	The conten 8-bit literal							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	1		Q4			
Decode	Read literal 'k'	Process Data		Write to				
Example:	ANDLW	05Fh						
Before Instruc W	= A3h							
After Instructio W	on = 03h							

RRNCF	Rotate Right f (No Carry)						
Syntax:	RRNCF	RRNCF f {,d {,a}}					
Operands:	$0 \le f \le 253$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:	$(f \le n >) \rightarrow$ $(f \le 0 >) \rightarrow$	dest <n 1<br="" –="">dest<7></n>	L>,				
Status Affected:	N, Z						
Encoding:	0100	00da	fff	f ffff			
Description:	one bit to is placed	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.					
	selected,	n the bank	the BS	nk will be SR value. If 'a' e selected as			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
	Г	► re	egister	f			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q	3	Q4			
Decode	Read	Process		Write to			
	register 'f'	Dat	а	destination			
				destination			
Example 1:	RRNCF	REG, 1	, 0	destination			
Before Instruc REG After Instructi	ction = 1101 ion	0111	, 0				
Before Instruct REG After Instructi REG	ction = 1101 ion = 1110	0111 1011					
Before Instruct REG After Instructi REG Example 2:	ction = 1101 ion = 1110 RRNCF	0111 1011					
Before Instruct REG After Instructi REG	ction = 1101 ion = 1110 RRNCF ction = ? = 1101	0111 1011					

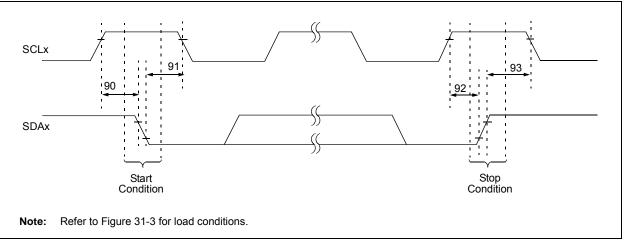

SETF	Set f						
Syntax:	SETF f{,a	a}					
Operands:	$0 \leq f \leq 255$						
	a ∈ [0,1]						
Operation:	$FFh\tof$						
Status Affected:	None						
Encoding:	0110	100a	ffff	ffff			
Description:	The conten are set to F		specified r	register			
	lf 'a' is '0', ti lf 'a' is '1', ti GPR bank.						
	set is enabl in Indexed I mode when Section 29 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proces Data		Write gister 'f'			
Example: Before Instruct REG After Instructio REG	= 5A		8,1				

FIGURE 31-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic	;	Min	Max	Units	Conditions
40	Тт0Н	T0CKI High F	Pulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
41	T⊤0L	T0CKI Low P	ulse Width	No prescaler	0.5 Tcy + 20	—	ns	
			1		10	—	ns	
42	T⊤0P	T0CKI Period	CKI Period		Tcy + 10		ns	
				With prescaler	Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45 T⊤1H		T1CKI High Synchronous, no		o prescaler	0.5 Tcy + 20	—	ns	
		Time	Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	_	ns	
46	T⊤1L	T1CKI Low	Synchronous, n	o prescaler	0.5 TCY + 5	—	ns	
		Time	Synchronous, with prescaler		10		ns	
			Asynchronous		30	—	ns	
47	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	—	ns	N = prescale value (1, 2, 4, 8)
		Asynchronous			60	—	ns	
	F⊤1	T1CKI Oscilla	ator Input Freque	ncy Range	DC	50	kHz	
48	TCKE2TMRI	Delay from E Timer Increm	xternal T1CKI Clo ent	ock Edge to	2 Tosc	7 Tosc	—	

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated Start condition
		Setup Time	400 kHz mode	600	—		
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	600	_		
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600			

5.17	
BNZ	
BOR. See Brown-out Reset.	
BOV	
BRA	
Break Character (12-Bit) Transmit and Receive	
BRG. See Baud Rate Generator.	
Brown-out Reset (BOR)	75
Detecting	75
BSF	
BTFSC	
BTFSS	
BTG	
BZ	

С

C Compilers	
MPLAB C18	482
CALL	446
CALLW	475
Capture (CCP Module)	250
CCPR4H:CCPR4L Registers	
Pin Configuration	
Prescaler	
Software Interrupt	
Timer1/3/5/7 Mode Selection	
Capture (ECCP Module)	
CCPRxH:CCPRxL Registers	
Pin Configuration	
Prescaler	
Software Interrupt	
Timer1/2/3/4/6/8/10/12 Mode Selection	
Capture, Compare, Timer1/3/5/7	200
Associated Registers	253
Capture/Compare/PWM (CCP)	
Capture Mode. See Capture.	245
CCP Mode and Timer Resources	240
CCP6/7/8/9 Pin Assignment	
•	
CCPRxH Register	
CCPRxL Register	249
Compare Mode. See Compare.	240
Configuration	
Open-Drain Output Option	
Charge Time Measurement Unit (CTMU)	
Associated Registers	
Calibrating the Module	
Creating a Delay	
Effects of a Reset	
Measuring Capacitance with the CTMU	
Measuring Temperature	
Measuring Time	
Module Initialization	
Operation	
During Sleep and Idle Modes	
Clock Sources	
Default System Clock on Reset	49
Selection	48
CLRF	447
CLRWDT	447
Code Examples	
16 x 16 Signed Multiply Routine	140
16 x 16 Unsigned Multiply Routine	140
8 x 8 Signed Multiply Routine	139
8 x 8 Unsigned Multiply Routine	
Capacitance Calibration Routine	
Changing Between Capture Prescalers	
Computed GOTO Using an Offset Value	

Current Calibration Routine 393	
Data EEPROM Read 136	
Data EEPROM Refresh Routine 137	
Data EEPROM Write 136	
Erasing a Flash Program Memory Row 116	
Fast Register Stack91	1
How to Clear RAM (Bank 1) Using	
Indirect Addressing 105	
Initializing PORTA 170	
Initializing PORTB	
Initializing PORTC 174	
Initializing PORTD	
Initializing PORTE	
Initializing PORTF	
Initializing PORTG	
Initializing PORTH	
Initializing PORTJ	
Loading the SSP1BUF (SSP1SR) Register	
Reading a Flash Program Memory Word 115	
Routine for Capacitive Touch Switch	7
Routine for Temperature Measurement	_
Using Internal Diode)
Saving STATUS, WREG and BSR Registers	_
in RAM	
Setting the RTCWREN Bit	
Setup for CTMU Calibration Routines	
Ultra Low-Power Wake-up Initialization	
Writing to Flash Program Memory 119–120	
Code Protection	
COMF	
Comparator	
Analog Input Connection, Considerations	
Associated Registers	
Configuration and Control	
Effects of a Reset	
Enable and Input Selection	
Enable and Output Selection	
Interrupts	
Operation	
Operation During Sleep	
Response Time	
Comparator Specifications	
Comparator Voltage Reference	
Accuracy and Error	
Associated Registers	
Configuring	
Connection Considerations	
Effects of a Reset	
Operation During Sleep	
Compare (CCP Module)	
CCP Pin Configuration	
CCPR4 Register	
Software Interrupt	
Special Event Trigger	
Timer1/3/5/7 Mode Selection	
Compare (ECCP Module)	
CCPRx Register	
Pin Configuration	
Software Interrupt	
Special Event Trigger	+ 1
Configuration Rite	
Configuration Bits	
Configuration Register Protection	
	I