

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k22t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin Buffer	Deceriation	
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTE is a bidirectional I/O port.
RE0/RD/P2D RE0 RD P2D	2	I/O 0	ST TTL	Digital I/O. Parallel Slave Port read strobe. EECP2 PWM Output D.
RE1/WR/P2C RE1 WR P2C	1	I/O I O	ST TTL	Digital I/O. Parallel Slave Port write strobe. ECCP2 PWM Output C.
RE2/ <u>CS</u> /P2B/CCP10 RE2 CS P2B CCP10 ⁽³⁾	64	I/O 0 /O	ST TTL — S/T	Digital I/O. Parallel Slave Port chip select. ECCP2 PWM Output B. Capture 10 input/Compare 10 output/PWM10 output.
RE3/P3C/CCP9/REFO RE3 P3C CCP9 ^(3,4) REFO	63	I/O O I/O O	ST S/T 	Digital I/O. ECCP3 PWM Output C. Capture 9 input/Compare 9 output/PWM9 output. Reference clock out.
RE4/P3B/CCP8 RE4 P3B CCP8 ⁽⁴⁾	62	I/O O I/O	ST — S/T	Digital I/O. ECCP3 PWM Output B. Capture 8 input/Compare 8 output/PWM8 output.
RE5/P1C/CCP7 RE5 P1C CCP7 ⁽⁴⁾	61	I/O O I/O	ST — S/T	Digital I/O. ECCP1 PWM Output C. Capture 7 input/Compare 7 output/PWM7 output.
RE6/P1B/CCP6 RE6 P1B CCP6 ⁽⁴	60	I/O O I/O	ST — S/T	Digital I/O. ECCP1 PWM Output B. Capture 6 input/Compare 6 output/PWM6 output.
RE7/ECCP2/P2A RE7 ECCP2 ⁽²⁾ P2A	59	I/O I/O O	ST ST —	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. ECCP2 PWM Output A.
Legend: TTL = TTL con ST = Schmitt I = Input P = Power $I^2C = I^2C^{TM}/SI$	Trigger input w	rith CN	IOS levels	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 **HFIOFS:** INTOSC Frequency Stable bit
 - 1 = HF-INTOSC oscillator frequency is stable
 - 0 = HF-INTOSC oscillator frequency is not stable
- bit 1-0 SCS<1:0>: System Clock Select bits⁽⁴⁾
 - 1x = Internal oscillator block (LF-INTOSC, MF-INTOSC or HF-INTOSC)
 - 01 = SOSC oscillator
 - 00 = Default primary oscillator (OSC1/OSC2 or HF-INTOSC with or without PLL; defined by the FOSC<3:0> Configuration bits, CONFIG1H<3:0>.)
- Note 1: The Reset state depends on the state of the IESO Configuration bit (CONFIG1H<7>).
 - 2: Modifying these bits will cause an immediate clock frequency switch if the internal oscillator is providing the device clocks.
 - 3: Source selected by the INTSRC bit (OSCTUNE<7>).
 - 4: Modifying these bits will cause an immediate clock source switch.
 - **5:** INTSRC = OSCTUNE<7> and MFIOSEL = OSCCON2<0>.
 - 6: Lowest power option for an internal source.

REGISTER 3-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-0	U-0	U-0	R/W-0	U-0	R-x	R/W-0
—	SOSCRUN	_	—	SOSCGO	—	MFIOFS	MFIOSEL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	SOSCRUN: SOSC Run Status bit
	 1 = System clock comes from a secondary SOSC 0 = System clock comes from an oscillator other than SOSC
bit 5-4	Unimplemented: Read as '0'
bit 3	SOSCGO: Oscillator Start Control bit
	 1 = Oscillator is running, even if no other sources are requesting it 0 = Oscillator is shut off if no other sources are requesting it (When the SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.)
bit 2	Unimplemented: Read as '0'
bit 1	MFIOFS: MF-INTOSC Frequency Stable bit
	1 = MF-INTOSC is stable 0 = MF-INTOSC is not stable
bit 0	MFIOSEL: MF-INTOSC Select bit
	 1 = MF-INTOSC is used in place of HF-INTOSC frequencies of 500 kHz, 250 kHz and 31.25 kHz 0 = MF-INTOSC is not used

R/W-0 R/W-1 R/W-1 R/W-1 R-1 R-1 R/W-0 R/W-0 CM RI TO PD POR **IPEN** SBOREN BOR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode) bit 6 SBOREN: BOR Software Enable bit If BOREN<1:0> = 01: 1 = BOR is enabled 0 = BOR is disabled If BOREN<1:0> = 00. 10 or 11: Bit is disabled and read as '0'. CM: Configuration Mismatch Flag bit bit 5 1 = A Configuration Mismatch Reset has not occurred 0 = A Configuration Mismatch Reset has occurred (must be set in software after a Configuration Mismatch Reset occurs) bit 4 RI: RESET Instruction Flag bit 1 = The RESET instruction was not executed (set by firmware only) 0 = The RESET instruction was executed causing a device Reset (must be set in software after a Brown-out Reset occurs) bit 3 TO: Watchdog Time-out Flag bit 1 = Set by power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 2 PD: Power-Down Detection Flag bit 1 = Set by power-up or by the CLRWDT instruction 0 = Set by execution of the SLEEP instruction POR: Power-on Reset Status bit bit 1 1 = A Power-on Reset has not occurred (set by firmware only) 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit 1 = A Brown-out Reset has not occurred (set by firmware only) 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

REGISTER 5-1: RCON: RESET CONTROL REGISTER

Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on Resets may be detected.

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after a Power-on Reset).

TABLE 5-2:				GISTERS (CONTINU MCLR Resets,		
Register	Applicable Devices		Power-on Reset, Brown-out Reset	WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt	
ECCP1AS	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu	
ECCP1DEL	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu	
CCPR1H	PIC18F6XK22	PIC18F8XK22	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR1L	PIC18F6XK22	PIC18F8XK22	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP1CON	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu	
PIR5	PIC18F65K22	PIC18F85K22	0 -000	0 -000	u -uuu	
PIR5	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 0000	0000 0000	uuuu uuuu	
PIE5	PIC18F65K22	PIC18F85K22	0 0000	0 0000	u uuuu (1)	
PIE5	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 000	0000 0000	uuuu uuuu (1)	
IPR4	PIC18F65K22	PIC18F85K22	11 1111	11 1111	uu uuuu	
IPR4	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	1111 1111	1111 1111	uuuu uuuu	
PIR4	PIC18F65K22	PIC18F85K22	00 0000	00 0000	uu uuuu (1)	
PIR4	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 0000	0000 0000	uuuu uuuu (1)	
PIE4	PIC18F65K22	PIC18F85K22	00 0000	00 0000	uu uuuu	
PIE4	PIC18F66K22 PIC18F67K22	PIC18F86K22 PIC18F87K22	0000 0000	0000 0000	uuuu uuuu	
CVRCON	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu	
CMSTAT	PIC18F6XK22	PIC18F8XK22	xxx	xxx	uuu	
TMR3H	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	սսսս սսսս	սսսս սսսս	
TMR3L	PIC18F6XK22	PIC18F8XK22	xxxx xxxx	սսսս սսսս	սսսս սսսս	
T3CON	PIC18F6XK22	PIC18F8XK22	0000 0000	00x0 0x00	սսսս սսսս	
T3GCON	PIC18F6XK22	PIC18F8XK22	0000 0x00	0000 0000	սսսս սսսս	
SPBRG1	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	uuuu uuuu	
RCREG1	PIC18F6XK22	PIC18F8XK22	0000 0000	0000 0000	սսսս սսսս	
TXREG1	PIC18F6XK22	PIC18F8XK22	XXXX XXXX	xxxx xxxx	սսսս սսսս	
TXSTA1	PIC18F6XK22	PIC18F8XK22	0000 0010	0000 0010	սսսս սսսս	
RCSTA1	PIC18F6XK22	PIC18F8XK22	0000 000x	0000 000x	սսսս սսսս	
T1GCON	PIC18F6XK22	PIC18F8XK22	0000 0x00	00x0 0x00	uuuu -uuu	
IPR6	PIC18F6XK22	PIC18F8XK22	1 -111	1 -111	u -uuu	
HLVDCON	PIC18F6XK22	PIC18F8XK22	0000 0101	0000 0101	uuuu uuuu	
PSPCON	PIC18F6XK22	PIC18F8XK22	0000	0000	uuuu	
PIR6	PIC18F6XK22	PIC18F8XK22	0 -000	0 -000	u -uuu	

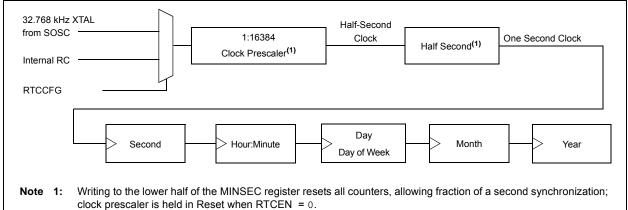
TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt, and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).


4: See Table 5-1 for Reset value for specific condition.

18.2.2 CLOCK SOURCE

As previously mentioned, the RTCC module is intended to be clocked by an external Real-Time Clock (RTC) crystal, oscillating at 32.768 kHz, but an internal oscillator can be used. The RTCC clock selection is decided by the RTCOSC bit (CONFIG3L<0>).

Calibration of the crystal can be done through this module to yield an error of 3 seconds or less per month. (For further details, see **Section 18.2.9 "Calibration"**.)

18.2.2.1 Real-Time Clock Enable

The RTCC module can be clocked by an external, 32.768 kHz crystal (SOSC oscillator) or the LF-INTOSC oscillator, which can be selected in CONFIG3L<0>.

If the external clock is used, the SOSC oscillator should be enabled. If LF-INTOSC is providing the clock, the INTOSC clock can be brought out to the RTCC pin by the RTSECSEL<1:0> bits (PADCFG<2:1>).

18.2.3 DIGIT CARRY RULES

This section explains which timer values are affected when there is a rollover:

- Time of Day: From 23:59:59 to 00:00:00 with a carry to the Day field
- Month: From 12/31 to 01/01 with a carry to the Year field
- Day of Week: From 6 to 0 with no carry (see Table 18-1)
- Year Carry: From 99 to 00; this also surpasses the use of the RTCC

For the day-to-month rollover schedule, see Table 18-2.

Because the following values are in BCD format, the carry to the upper BCD digit occurs at the count of 10, not 16 (SECONDS, MINUTES, HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 18-1: DAY OF WEEK SCHEDULE

Day of Week						
Sunday	0					
Monday	1					
Tuesday	2					
Wednesday	3					
Thursday	4					
Friday	5					
Saturday	6					

TABLE 18-2:DAY TO MONTH ROLLOVER
SCHEDULE

Maximum Day Field
31
28 or 29 ⁽¹⁾
31
30
31
30
31
31
30
31
30
31

Note 1: See Section 18.2.4 "Leap Year".

20.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE

PIC18F87K22 family devices have three Enhanced Capture/Compare/PWM (ECCP) modules: ECCP1, ECCP2 and ECCP3. These modules contain a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. These ECCP modules are upward compatible with CCP.

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the ECCP1, ECCP2 or ECCP3 module. For example, the control register is named CCPxCON and refers to CCP1CON, CCP2CON and CCP3CON.

ECCP1, ECCP2 and ECCP3 are implemented as standard CCP modules with Enhanced PWM capabilities. These include:

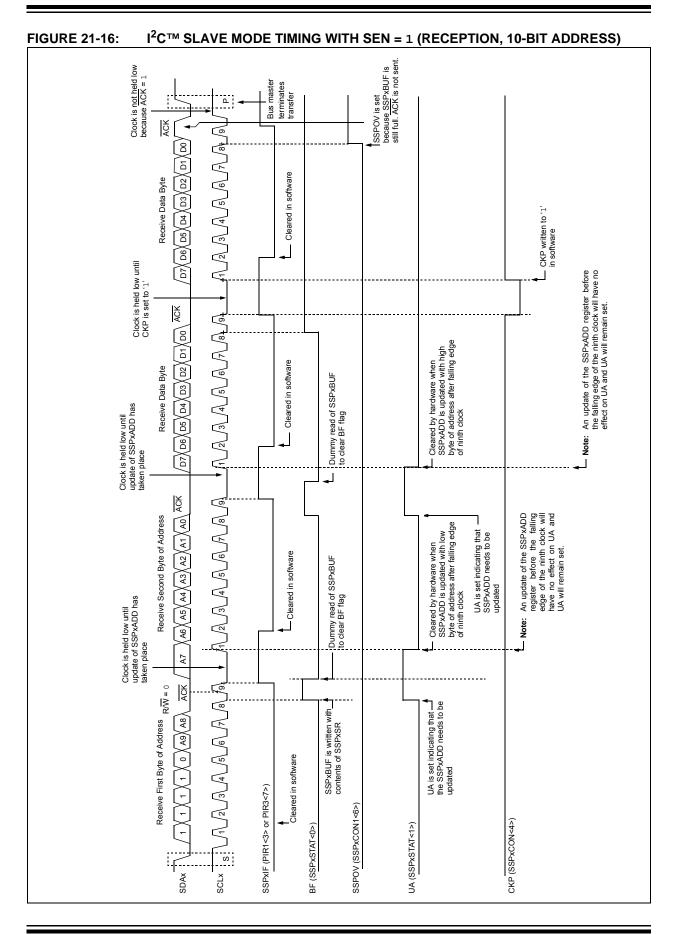
- Provision for two or four output channels
- · Output Steering modes
- · Programmable polarity
- Programmable dead-band control
- · Automatic shutdown and restart

The enhanced features are discussed in detail in Section 20.4 "PWM (Enhanced Mode)".

The ECCP1, ECCP2 and ECCP3 modules use the control registers: CCP1CON, CCP2CON and CCP3CON. The control registers, CCP4CON through CCP10CON, are for the modules, CCP4 through CCP10.

REGISTER 20-5: PSTRxCON: PULSE STEERING CONTROL⁽¹⁾

bit 7							bit 0
CMPL1	CMPL0	—	STRSYNC	STRD	STRC	STRB	STRA
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1


Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

CMPL<1:0>: Complementary Mode Output Assignment Steering Sync bits
00 = See STR <d:a></d:a>
01 = PA and PB are selected as the complementary output pair
10 = PA and PC are selected as the complementary output pair
11 = PA and PD are selected as the complementary output pair
Unimplemented: Read as '0'
STRSYNC: Steering Sync bit
1 = Output steering update occurs on the next PWM period
0 = Output steering update occurs at the beginning of the instruction cycle boundary
STRD: Steering Enable bit D
1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0>
0 = PxD pin is assigned to the port pin
STRC: Steering Enable bit C
1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0>
0 = PxC pin is assigned to the port pin
STRB: Steering Enable bit B
1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0>
0 = PxB pin is assigned to the port pin
STRA: Steering Enable bit A
1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0>
0 = PxA pin is assigned to the port pin
The PWM Steering mode is available only when the CCPxCON register bits, CCPxM<3:2> = 11 and

PxM<1:0> = 00.

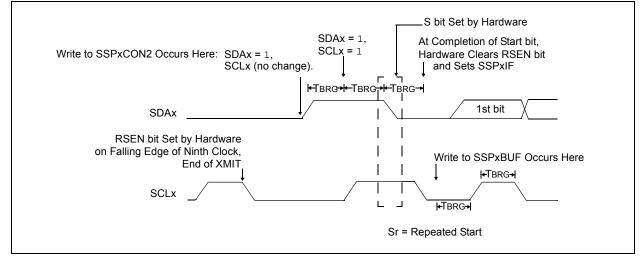
REGISTER 21-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimple	mented bit, rea	id as '0'	
-n = Value		'1' = Bit is set	it.	'0' = Bit is cl		x = Bit is unk	nown
					carca		
bit 7	WCOL: Write	e Collision Detect	bit				
		ansmit mode:			_		
		to the SSPxBUF				onditions were	not valid for a
		sion to be started	d (must be cl	eared in softwa	are)		
	0 = No collis						
	In Slave Trar	PxBUF register is	written while	a it is still trans	mitting the prev	vious word (mus	st he cleared in
	software	-	WHILE IT WHILE				
	0 = No collis	sion					
	<u>In Receive m</u> This is a "doi	node (Master or S	lave modes)	<u>:</u>			
bit 6		ceive Overflow Inc	dicator bit				
	In Receive m						
		s received while th	ne SSPxBUF	register is still	holding the pre	vious byte (mu	st be cleared i
	software	/					
	0 = No over						
	<u>In Transmit r</u> This is a "do	<u>node:</u> n't care" bit in Tra	nsmit mode				
bit 5		ster Synchronous					
		the serial port and			SCLx pins as t	he serial port p	ins
		serial port and co					
bit 4	CKP: SCKx	Release Control I	bit				
	In Slave mod	<u>le:</u>					
	1 = Releases						
		ock low (clock stre	etch), used to	o ensure data s	setup time		
	In Master mo Unused in th						
bit 3-0	SSPM<3:0>	Master Synchro	nous Serial I	Port Mode Sele	ect bits ⁽²⁾		
	1111 = I ² C S	Slave mode: 10-b	it address wi	th Start and St	op bit interrupts	enabled	
	$1110 = I^2 C S$	Slave mode: 7-bit	address with	n Start and Sto	p bit interrupts		
		Firmware Controll					
		I SSPMSK registe Master mode: cloo					
		Slave mode: 10-b			• • • • • • • • • • • • • • • • • • • •		
		Slave mode: 7-bit					
Note 1:	When enabled. t	he SDAx and SC	Lx pins must	be confiaured	as inputs.		
2:		not specifically li	-	-	-	ited in SPI mod	e only.
	When SSPM<3:	• •			•		•
	SSPxMSK regist					,,	
4:	This mode is onl	y available when	7-Bit Addres	s Masking mo	de is selected (MSSPMSK Co	nfiguration bit
	is '1').						

21.4.9 I²C[™] MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

21.4.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 21-22: REPEATED START CONDITION WAVEFORM

24.6 Comparator Interrupts

The comparator interrupt flag is set whenever any of the following occurs:

- · Low-to-high transition of the comparator output
- High-to-low transition of the comparator output
- Any change in the comparator output

The comparator interrupt selection is done by the EVPOL<1:0> bits in the CMxCON register (CMxCON<4:3>).

In order to provide maximum flexibility, the output of the comparator may be inverted using the CPOL bit in the CMxCON register (CMxCON<5>). This is functionally identical to reversing the inverting and non-inverting inputs of the comparator for a particular mode.

An interrupt is generated on the low-to-high or high-tolow transition of the comparator output. This mode of interrupt generation is dependent on EVPOL<1:0> in the CMxCON register. When EVPOL<1:0> = 01 or 10, the interrupt is generated on a low-to-high or high-tolow transition of the comparator output. Once the interrupt is generated, it is required to clear the interrupt flag by software. When EVPOL<1:0> = 11, the comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMSTAT<7:5>, to determine the actual change that occurred.

The CMPxIF bits (PIR6<2:0>) are the Comparator Interrupt Flags. The CMPxIF bits must be reset by clearing them. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated. Table 24-2 shows the interrupt generation with respect to comparator input voltages and EVPOL bit settings.

Both the CMPxIE bits (PIE6<2:0>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMPxIF bits will still be set if an interrupt condition occurs.

A simplified diagram of the interrupt section is shown in Figure 24-3.

Note: The CMPxIF bits will not be set when EVPOL<1:0> = 00.

CPOL	EVPOL<1:0>	Comparator Input Change	CxOUT Transition	Interrupt Generated
	0.0	VIN+ > VIN-	Low-to-High	No
	00	VIN+ < VIN-	High-to-Low	No
	0.1	VIN+ > VIN-	Low-to-High	Yes
0	01	VIN+ < VIN-	High-to-Low	No
0	1.0	VIN+ > VIN-	Low-to-High	No
	10	Vin+ < Vin-	High-to-Low	Yes
	11	VIN+ > VIN-	Low-to-High	Yes
		VIN+ < VIN-	High-to-Low	Yes
	00	VIN+ > VIN-	High-to-Low	No
	00	Vin+ < Vin-	Low-to-High	No
	01	VIN+ > VIN-	High-to-Low	No
1		Vin+ < Vin-	Low-to-High	Yes
		VIN+ > VIN-	High-to-Low	Yes
	10	VIN+ < VIN-	Low-to-High	No
	11	VIN+ > VIN-	High-to-Low	Yes
	11	VIN+ < VIN-	Low-to-High	Yes

 TABLE 24-2:
 COMPARATOR INTERRUPT GENERATION

NOTES:

EXAMPLE 27-2: CURRENT CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 500
                                         //@ 8MHz = 125uS.
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define RCAL .027
                                         //R value is 4200000 (4.2M)
                                         //scaled so that result is in
                                         //1/100th of uA
#define ADSCALE 1023
                                         //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                         //Vdd connected to A/D Vr+
int main(void)
{
   int i;
   int j = 0; //index for loop
   unsigned int Vread = 0;
   double VTot = 0;
   float Vavg=0, Vcal=0, CTMUISrc = 0; //float values stored for calcs
//assume CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                         //Enable the CTMU
   for(j=0;j<10;j++)</pre>
   {
                                         //drain charge on the circuit
       CTMUCONHbits.IDISSEN = 1;
       DELAY;
                                         //wait 125us
       CTMUCONHbits.IDISSEN = 0;
                                         //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                         //Begin charging the circuit
                                         //using CTMU current source
                                         //wait for 125us
       DELAY;
                                         //Stop charging circuit
       CTMUCONLbits.EDG1STAT = 0;
       PIR1bits.ADIF = 0;
                                         //make sure A/D Int not set
       ADCON0bits.GO=1;
                                         //and begin A/D conv.
       while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
       Vread = ADRES;
                                         //Get the value from the A/D
       PIR1bits.ADIF = 0;
                                         //Clear A/D Interrupt Flag
       VTot += Vread;
                                         //Add the reading to the total
   }
   Vavg = (float)(VTot/10.000);
                                         //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
   CTMUISrc = Vcal/RCAL;
                                         //CTMUISrc is in 1/100ths of uA
```

CPFSGT	Compare f	with W, Skip	if f > W	CPF	SLT	Compare f	with W, Skip	if f < W	
Syntax:	CPFSGT	f {,a}		Synt	ax:	CPFSLT	{,a}		
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]			Oper	rands:	0 ≤ f ≤ 255 a ∈ [0,1]			
Operation:	(f) - (W),			Oper	ration:	(f) - (W),			
	skip if (f) > ((unsigned c	(W) comparison)		oper		skip if (f) < (W) (unsigned comparison)			
Status Affected:	None			Stati	us Affected:	None	ienipalieeni)		
Encoding:	0110	010a ff	ff ffff				000a ff:	ff ffff	
Description:			f data memory		oding:	0110			
		o the contents an unsigned s		Desc	cription:	location 'f' t	o the contents of an unsigned s	•	
		-	eater than the				nts of 'f' are le		
	instruction i	WREG, then a discarded a	nd a NOP is			contents of	W, then the fe	etched	
	executed in two-cycle in	stead, making struction.	g this a				stead, making		
			nk is selected.			-		nk is selected.	
	GPR bank.		d to select the					d to select the	
		nd the extend	ed instruction ction operates	Word	ds:	1			
		Literal Offset A	•	Cycle	es:	1(2)			
		ever f ≤ 95 (5		,		Note: 3 cy	cles if skip an		
		.2.3 "Byte-Or d Instruction				by a	a 2-word instru	iction.	
		set Mode" for		QC	ycle Activity:				
Words:	1				Q1	Q2	Q3	Q4	
Cycles:	1(2)				Decode	Read register 'f'	Process Data	No operation	
		ycles if skip a		lf sk	kip:				
	by	a 2-word instr	uction.		Q1	Q2	Q3	Q4	
Q Cycle Activity: Q1	Q2	Q3	Q4		No	No	No	No	
Decode	Read	Process	No		operation	operation	operation	operation	
	register 'f'	Data	operation	lt sk	•	d by 2-word in		04	
If skip:	00	00	04		Q1 No	Q2 No	Q3 No	Q4 No	
Q1 No	Q2 No	Q3 No	Q4 No		operation	operation	operation	operation	
operation	operation	operation	operation		No	No	No	No	
If skip and followe			<u> </u>		operation	operation	operation	operation	
Q1	Q2	Q3	Q4						
No	No	No	No	<u>Exar</u>	<u>nple:</u>		CPFSLT REG,	1	
operation No	operation No	operation No	operation No				:		
operation	operation	operation	operation		Defene la star		•		
					Before Instruc PC		dress (HERE)	
Example:	HERE	CPFSGT RE	EG, 0		W	= ?		,	
	NGREATER	:			After Instruction				
Defere lastrus	GREATER	:			lf REG PC	< W; = Ad	dress (LESS)	
Before Instruc PC		dress (HERE)		If REG	≥ W;			
W	= ?		,		PC	= A0	dress (NLES	5)	
After Instructio									
lf REG PC	> W; = Ad	dress (GREA	TER)						
lf REG PC	≤ W;								
PC	- Ad	dress (NGRE	AILK /						

30.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

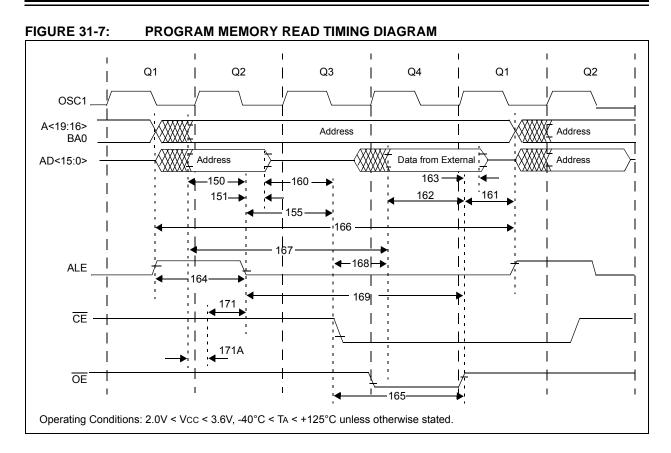
30.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

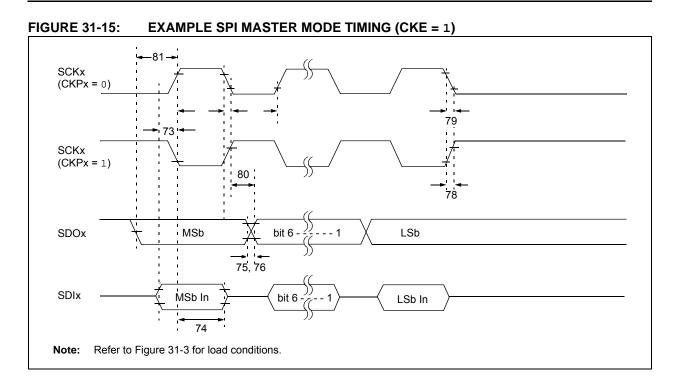
30.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].


The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

31.5 AC (Timing) Characteristics

31.5.1 TIMING PARAMETER SYMBOLOGY

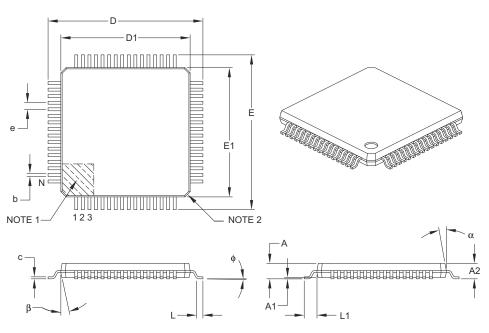

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase letters (pp) and their meanings:			
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase l	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C :	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

Param. No	Symbol	Characteristics	Min	Тур	Мах	Units
150	TadV2alL	Address Out Valid to ALE \downarrow (address setup time)	0.25 TCY – 10	_	_	ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	_	—	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$	10	0.125 TCY	—	ns
160	TadZ2oeL	AD High-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	0		—	ns
161	ToeH2adD	OE ↑ to AD Driven	0.125 Tcy – 5		_	ns
162	TadV2oeH	LS Data Valid before \overline{OE} \uparrow (data setup time)	20	_	—	ns
163	ToeH2adl	OE ↑ to Data In Invalid (data hold time)	0	_	—	ns
164	TalH2alL	ALE Pulse Width	—	0.25 TCY	—	ns
165	ToeL2oeH	OE Pulse Width	0.5 Tcy – 5	0.5 TCY	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	Тсү	—	ns
167	Tacc	Address Valid to Data Valid	0.75 Tcy – 25		—	ns
168	Тое	$\overline{OE}\downarrow$ to Data Valid			0.5 TCY – 25	ns
169	TalL2oeH	ALE ↓ to OE ↑	0.625 Tcy – 10	_	0.625 Tcy + 10	ns
171	TalH2csL	Chip Enable Active to ALE \downarrow	0.25 Tcy – 20	_	—	ns
171A	TubL2oeH	AD Valid to Chip Enable Active			10	ns

TABLE 31-11:	CLKO AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	_	ns	


TABLE 31-18: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

32.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
Dimens	Dimension Limits		NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

RD1/PSP1/T5CKI/T7G 19
RD1/T5CKI/T7G/PSP1/AD1
RD2/PSP219
RD2/PSP2/AD2
RD3/PSP319
RD3/PSP3/AD328
RD4/PSP4/SDO219
RD4/SDO2/PSP4/AD428
RD5/PSP5/SDI2/SDA2
RD5/SDI2/SDA2/PSP5/AD5
RD6/PSP6/SCK2/SCL2
RD6/SCK2/SCL2/PSP6/AD6
RD7/PSP7/SS2
RD7/SS2/PSP7/AD7
RE0/P2D/RD/AD8
RE0/RD/P2D
RE1/P2C/WR/AD9
RE1/WR/P2C
RE2/CS/P2B/CCP10
RE2/P2B/CCP10/CS/AD10
RE3/P3C/CCP9/REFO
RE3/P3C/CCP9/REF0/AD11
RE4/P3B/CCP8/AD12
RE5/P1C/CCP7/AD13
RE5/P1C/CCP7/AD13
RE6/P1B/CCP6/AD14
RE0/P1B/CCP0/AD14
RE7/ECCP2/P2A
RE1/ECCF2/F2A/AD15
RF2/AN7/C1OUT
RF3/AN8/C2INB/CTMUI
RF4/AN9/C2INA
RF5/AN10/C1INB
RF5/AN10/C1INB
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC 22, 33
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 RH0/AN23/A16 34
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH3/AN20/A19 34 RH4/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH3/AN20/A19 34 RH4/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34 RH7/CCP6/P1B/AN15 35
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH3/AN20/A19 34 RH4/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH4/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ1/ <u>OE 36 </u>
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH6/CCP7/P1C/AN14/C1INC 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ1/QE 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ 22, 33 P1D/C3INC 22, 33 RH1/AN22/A16 34 RH1/AN22/A17 34 RH3/AN20/A19 34 RH4/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ1/OE 36 RJ2/WRL 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH4/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ1/OE 36 RJ3/WRH 36 RJ4/BA0 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH5/CCP8/P3B/AN13/C2IND 34 RH5/CCP8/P3B/AN13/C2IND 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ1/OE 36 RJ3/WRH 36 RJ4/BA0 36 RJ5/CE 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH3/AN20/A19 34 RH5/CCP8/P3B/AN13/C2IND 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34 RH7/CCP6/P1B/AN15 35 RJ3/WRH 36 RJ3/WRH 36 RJ4/BA0 36 RJ5/CE 36 RJ6/LB 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH6/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ3/WRH 36 RJ3/WRH 36 RJ4/BA0 36 RJ5/CE 36 RJ6/LB 36 RJ6/LB 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH5/CCP8/P3B/AN13/C2IND 34 RH6/CCP7/P1C/AN14/C1INC 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ3/WRH 36 RJ3/WRH 36 RJ4/BA0 36 RJ5/CE 36 RJ6/LB 36 RJ6/LB 36 RJ7/UB 36 RJ7/UB 36
RF5/AN10/C1INB 32 RF5/AN10/CVREF/C1INB 21 RF6/AN11/C1INA 21, 32 RF7/AN5/SS1 21, 32 RG0/ECCP3/P3A 22, 33 RG1/TX2/CK2/AN19/C3OUT 22, 33 RG2/RX2/DT2/AN18/C3INA 22, 33 RG3/CCP4/AN17/P3D/C3INB 22, 33 RG4/RTCC/T7CKI/T5G/CCP5/AN16/ P1D/C3INC P1D/C3INC 22, 33 RH0/AN23/A16 34 RH1/AN22/A17 34 RH2/AN21/A18 34 RH3/AN20/A19 34 RH6/CCP9/P3C/AN12/C2INC 34 RH5/CCP8/P3B/AN13/C2IND 34 RH7/CCP6/P1B/AN15 35 RJ0/ALE 36 RJ3/WRH 36 RJ3/WRH 36 RJ4/BA0 36 RJ5/CE 36 RJ6/LB 36 RJ6/LB 36

Pino	ut I/O Descriptions	
	PIC18F6XK22	15
	PIC18F8XK22	24
PLL		
	HSPLL and ECPLL Oscillator Modes	
	Use with HF-INTOSC	
		400
	. See Power-on Reset.	
POR		
	Associated Registers	
	LATA Register	170
	PORTA Register	170
	TRISA Register	
POR	•	
	Associated Registers	173
	LATB Register	
	PORTB Register	
	RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)	
	TRISB Register	1/2
POR		
	Associated Registers	
	LATC Register	174
	PORTC Register	174
	RC3/SCKx/SCLx Pin	
	TRISC Register	
POR	5	
. 011	Associated Registers	177
	LATD Register	
	PORTD Register	
	TRISD Register	176
POR		
	Associated Registers	
	LATE Register	178
	PORTE Register	178
	RE0/P2D/RD/AD8 Pin	189
	RE1/P2C/WR/AD9 Pin	
	RE2/P2B/CCP10/CS/AD10 Pin	189
	TRISE Register	
POR		170
FUN	Associated Registers	100
	LATF Register	
	PORTF Register	
	TRISF Register	181
POR		
	Associated Registers	184
	LATG Register	183
	PORTG Register	183
	TRISG Register	183
POR	-	
	Associated Registers	187
	LATH Register	
	PORTH Register	
DCC	TRISH Register	185
POR		
	Associated Registers	
	LATJ Register	187
	PORTJ Register	187
	TRISJ Register	
	-	